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Summary 

Plants are reservoirs of extreme chemical diversity, yet biosynthetic pathways remain underexplored 

in the majority of taxa. Access to improved, inexpensive genomic and computational technologies 

has recently enhanced our understanding of plant specialized metabolism at the biochemical and 

evolutionary levels. Genomics has led to the elucidation of pathways leading to key metabolites. 

Furthermore, it has provided insights into the mechanisms of chemical evolution, including neo- and 

sub-functionalization, structural variation, and modulation of gene expression. The broader 

utilization of genomic tools across the plant tree of life, and an expansion of genomic resources from 

multiple accessions within species or populations, will improve our overall understanding of 

chemodiversity. It will also lead to greater insight into the selective pressures contributing to and 

maintaining this diversity, which in turn will enable the development of more accurate predictive 

models of specialized metabolism in plants. 

Introduction 

As with other aspects of biology, genomics has enabled a revolution in plant specialized metabolism 

[1] that has been driven by rapid advancements in sequencing technologies [2-4], access to high-

performance computing resources [5], and increased access to genomic and transcriptomic datasets 

from species with diverse specialized metabolism (Fig. 1) [6, 7]. Through genome assemblies, 

signatures of specialized metabolism such as coexpression, gene duplication, and clustered 

biosynthetic pathways greatly facilitate biosynthetic pathway discovery (Fig. 2) [8-11]. In a 

complementary manner, the power of comparative genomics permits resolution of mechanisms that 

underpin the evolution of metabolism across taxa [12-14]. This is highlighted by phylogenomic 

investigations that have revealed the pivotal roles of gene and genome duplication in the diversity of 

specialized metabolism [6, 12-16]. In this review, we discuss the general impact of genomics on plant 

specialized metabolism research, with a focus on examples from the mint family (Lamiaceae) for 

which a multitude of genome sequences have been generated with a primary focus on 

understanding specialized metabolism. We conclude by highlighting future directions in genome-

enabled studies of plant specialized metabolism. 

Genomic approaches to plant specialized metabolism 
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(Phylo-) transcriptomics 

Despite rapid increases in genome sequence availability and quality, transcriptome sequencing 

(RNA-sequencing, RNA-seq) remains a key approach in the investigation of plant-specialized 

metabolism across diverse taxa (see article on Transcriptomics in this issue for more detail). 

Candidate genes involved in metabolic pathways can be identified through differential gene 

expression across temporal and spatial dimensions [17] and through homology with known genes 

[18, 19]. With its low cost and ease of data generation, transcriptome sequencing can enable 

generation of comparative data sets for large numbers of species [7], providing multipurpose 

datasets for gene discovery [20] and applied phylogenomic analyses [17, 21-23]. 

There is mounting evidence that gene and whole-genome duplications (WGDs) are prevalent across 

land plants and are drivers of trait innovation, including the diversity of specialized metabolism [24]. 

In the absence of genome sequences from species spanning multiple related lineages, researchers 

have relied on phylotranscriptomic analyses to characterize genome dynamics (e.g. duplications) in a 

phylogenomic context. Such studies have enabled the discovery and resolution of gene expansions 

and WGDs within lineages [17, 21-23], and provided a macroevolutionary understanding of the 

origins of chemical diversity [6, 14, 25]. 

Genome sequencing, assembly, and annotation 

Over the past decade, access to inexpensive next-generation sequencing technologies has enabled a 

wide range of genome-enabled studies of plant metabolism [1]. With the maturity of third-

generation sequencing technologies, this pace of change promises to continue [reviewed here: [2, 3, 

26]]. Two categories of technologies have led to recent improvements in plant genome assemblies: 

long-read single molecule sequencing platforms and methods that identify long-range genomic 

connections. Sequencing platforms such as the Pacific Biosciences and Oxford Nanopore 

Technologies platforms [4, 27-29] provide long contiguous reads that result in longer, more 

contiguous genome assemblies generated with a suite of new assembly algorithms. Complementary 

methods such as 10X Chromium linked reads, Hi-C proximity ligation, and optical mapping facilitate 

generation of longer, chromosome-scale assemblies [27, 28, 30] from long-read generated 

assemblies. Coupled with the platform advances are major improvements in genome sequence 

assembly and annotation tools. With the advent of Oxford Nanopore Technology, new long-read 

genome assembly software have been developed including Shastac [31] and Flye [32], which can 

assemble genomes rapidly. Plant species are not always homozygous inbreds, and improvements in 

addressing heterozygous genomes have been made including the ability to purge haplotigs [33].  

Software for scaffolding the genomes into higher order assemblies such as pseudomolecules or 

pseudochromosomes includes SALSA2 [34] and Juicebox [35]. For genome annotation, transcript 

evidence is key to accurate gene model construction and multiple software for generation of 

genome-guided transcripts using long-read cDNA sequences have been released including Stringtie2 

[36] and FLAIR [37]. Collectively, parallel advancements in algorithms and software for third-

generation sequencing platforms will significantly improve the quality of not only genome 

assemblies, but also their annotation. 

Some genes involved in specialized metabolism are physically clustered within the genome as 

tandem repeats or metabolic gene clusters, loci containing multiple non-paralogous genes involved 

in a pathway [10]]. Long read length technologies can resolve tandem duplications and extended 

repetitive sequences typical of such regions, revealing complex loci associated with specialized 

metabolism [38, 39]. Syntenic analyses are vital for understanding genome evolution and dynamics, 
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including the origins of gene duplications [15] and gene clusters [13, 40]. Both the quantity and 

quality of genome sequences are essential for the improved resolution of metabolic pathway genes.  

Population-scale studies 

Large-scale genome resequencing-based approaches are emerging as powerful tools for the 

understanding of plant specialized metabolism. Metabolite-associated genome wide association 

studies (mGWAS) involve the identification of genomic loci associated with metabolic traits through 

identification of single nucleotide polymorphisms and selective sweeps in large-scale genome 

resequencing efforts [41-43]. Structural variants such as copy number and presence/absence 

variants have been identified in numerous plant species; functional analyses of a subset of these 

structural variants have revealed roles in adaptation, including biosynthesis of anti-insecticidal 

methyl ketones in Solanum tuberosum L. (potato) [44] and noscapine in Papaver somniferum L. 

(opium poppy) [45].  

The evolution and genomics of specialized metabolism in Lamiaceae 

Mints are a species-rich angiosperm clade (~7000 species) with a cosmopolitan distribution, and 

exhibit a wide range of chemical diversity, including iridoids, polypropanoids, and canonical 

terpenoids. This chemical richness plays functionally significant roles in nature, facilitating complex 

interactions among mints and insects (e.g., plant-pollinator and plant-herbivore interactions [82]), 

phytopathogens (e.g., antimicrobial activity [83]), and other co-occurring plants (e.g., allelopathy 

[84, 85]). It has also led to the use of numerous mint species as herbal medicines (Salvia L., 

Scutellaria L.),  culinary herbs (Mentha L., Origanum L., Thymus L.), and sources for perfume oils 

(Lavandula L., Pogostemon Desf.) and health-promoting or therapeutic bioactive compounds and 

phytochemicals (reviewed in [86]). These uses have motivated recent multidisciplinary and genome-

based research efforts to elucidate their specialized metabolism and identify the origins of their 

chemical diversity and complexity. At the time of writing, there are twelve published genomes from 

eight Lamiaceae species [46-57]. The highest quality genomes, Tectona grandis L.f. (teak) [56] and 

Scutellaria baicalensis Georgi (Chinese skullcap) [57], represent state-of-the-art plant genomes 

sequenced using a hybrid approach and assembled into pseudochromosomes. A recent 

phylotranscriptomic analysis of Lamiacaeae, consisting of 48 mint leaf transcriptomes, led to insights 

into the evolution of metabolism [6] and the occurrence of whole-genome duplications [58] across 

the clade. 

Lineage-specific gene family expansions 

Orthogroup (gene family) expression and occupancy (gene number), and their association with 

chemical traits, were examined across Lamiaceae in a phylogenomic context [6]. The distribution of 

monoterpene diversity and terpene synthase b (TPSb; primarily monoterpene synthases) orthogroup 

occupancy data in Lamiaceae suggests that lineage-specific gene expansions (LSEs) may have 

contributed to chemical novelty or diversity in their respective clades [6]. 

Comparisons of genome assemblies have also implicated LSEs in Lamiaceae, specifically in terpenoid 

related genes. For example, the monoterpene producer lavender had multiple copies of 1-Deoxy-d-

xylulose-5-phosphate synthase (DXS) and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase 

(HDR), genes that control the accumulation of monoterpenes [49]. Patchouli, grown for its high 

sesquiterpene content, had an increased copy number of TPSa genes (primarily sesquiterpene 

synthases) [47, 48]. Interestingly, these TPSa genes showed divergent gene expression patterns, 

including some that were not expressed in any tissue, indicating that they may have undergone 

functional divergence or pseudogenization. 



 4 

Whole-Genome, Tandem, and Dispersed Duplications 

Ancient WGD events have been associated with increased specialized metabolite diversity and 

species diversification rates in Brassicales, where they may have contributed to the proliferation of 

novel genes and gene interactions and triggered species diversification rates, especially within 

Brassicaceae [12]. Ancient WGDs might explain similar patterns within and among major mint 

clades, which exhibit asymmetrical levels of species richness and chemical diversity [6, 58]. In 

Lamiaceae, phylotranscriptomic analyses have revealed widespread but asymmetrical gene 

duplication dynamics and signatures of ancient polyploidy [58].  As many as 28 putative ancient 

WGD events were inferred across the clade (Fig. 3), with pronounced levels of gene and whole-

genome duplications in the species- and monoterpene- rich Nepetoideae, relative to other major 

mint subclades [58].  

LSEs identified in phylotranscriptomic studies may originate from WGDs, followed by selective 

retention of genes, or from small-scale duplication processes such as tandem duplication. The teak 

genome showed a high prevalence of tandem repeats, with over 60% of TPSs and cytochrome P450 

(CYP) genes occurring in tandem repeats [56]. In the majority of cases, tandem copies had 

differential expression patterns, implying neo-, sub-, or non- functionalization processes were at 

play. In the root-specific flavone biosynthesis pathway in S. baicalensis, root-specific flavone 

synthase II (FNSII-2) and O-methyltransferase 5 (OMT5) originated from tandem duplications 

followed by neofunctionalization or subfunctionalization, respectively [57]. 

Duplications in which paralogs are in distant, non-syntenic, genomic locations are referred to as 

dispersed duplications, and are thought to arise through transposition, segmental duplication, or 

retroduplication [15]. Through synteny, it is possible to identify which paralog is the ancestral locus. 

In S. baicalensis, the root-specific chalcone-synthase (CHS2) and flavone 8-hydroxylase F8H 

neofunctionalized after dispersed duplication events. Curiously, it appears that the new enzyme 

activities evolved in copies present at the ancestral locus, whilst the paralogs that relocated to new 

genomic locations maintained their ancestral function [57]. Fragments of retrotransposons 

surrounding duplicated paralogs point to duplication mechanisms such as unequal crossing-over or 

(retro)transposition. The reason why a specific paralog neofunctionalizes after duplication is unclear, 

though the genomic context of the paralog, including neighboring genes, regulatory elements, and 

chromatin modifications may be influential. 

Gene pairs represent non-random genomic association of two non-paralogous, functionally related, 

genes. These genomic signatures have emerged as a common feature of plant specialized 

metabolism, especially in terpenoid biosynthesis. These associations often echo the early stages of 

terpenoid chemical diversification, with associations observed between TPSs and CYPs [8] or 

prenyltransferases (PTs) [59]. Associations between CYPs and methyltransferases (MTs), enzyme 

pairs involved in late-stage modifications, have also been observed [60]. The genomes of Salvia 

splendens Sellow ex J.A. Shultes (scarlet sage) and S. miltiorrhiza Bunge (Chinese sage or danshen) 

show signatures of association between TPSs and CYPs [46, 53]. The clustered TPS and CYP genes in 

S. miltiorrhiza have roles in tanshinone (diterpene) biosynthesis [61, 62]. The phylogenetic 

relationships between the component genes of the clusters reveals their probable origins from an 

ancestral TPS/CYP pair that underwent cluster duplication prior to CYP tandem duplication. These 

genes do not show clear coexpression patterns within each cluster, indicating that, after duplication, 

the expression patterns diverged due to drift or neo-functionalization. 

Pairwise association of functionally related biosynthetic genes may represent the starting point in 

plant gene cluster formation. These minimal clusters can grow and diversify through tandem 
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repetition of individual components or by recruitment of non-homologous genes. However, gene 

cluster size and prevalence may be underrepresented in poorly assembled genomes. 

The highly contiguous teak genome contains a large terpenoid cluster (~700 kb) that appears to be 

syntenic to the S. miltiorrhiza and S. splendens tanshinone clusters [56]. This cluster features TPSs 

and CYPs from multiple clades, perhaps indicating gene recruitment. Although this cluster is not 

coexpressed across all tissues, four of the clustered genes are expressed in roots and may therefore 

be functionally related. Similar clusters can be observed in patchouli [47], a tantalizing indication of 

conserved loci responsible for (di)terpenoid biosynthesis across Lamiaceae.  Analysis of mint 

genomes using predictive software (e.g. PlantiSmash) may reveal a wealth of uncharacterized gene 

clusters and, consequently, new biosynthetic pathways [9]. 

As more genome sequences are obtained, and greater numbers of conserved clusters are identified, 

our understanding of the origin and function of metabolic gene clusters will improve. Computational 

identification and functional characterization of gene clusters, coupled with phylogenomic and 

syntenic analyses, will enable identification of key patterns and allow for inference of evolutionary 

and genomic events with greater resolution [13, 63]. 

Evolution without duplication 

The S. baicalensis genome contains an unusual example of an enzyme that evolved without 

duplication [57]. The enzyme catalyzing the first committed step into the 4-deoxyflavone pathway, 

cinnamate-CoA ligase (CLL-7), does not appear to have undergone any duplication or transposition in 

Scutellaria L.. Instead, the CLL-7 enzyme from S. baicalensis acquired mutations that enable it to turn 

over the cinnamic acid substrate, whereas orthologs from S. miltiorrhiza, S. splendens and Sesamum 

indicum L. (Pedaliaceae) cannot. It is unusual to observe evolution of new enzyme function without 

gene duplication, though it is possible CLL-7 represents a pre-duplication state in a 

subfunctionalization regime [64]. 

Localization of gene expression 

Gene co-expression as determined by transcriptomics continues to be a powerful method for 

detecting metabolic gene candidates, with the hypothesis being that genes in the same metabolic 

pathway have similar expression patterns across tissue types. For example, in Coleus forskohlii, Vitex 

agnus-castus and Salvia militiorrhiza, TPS and P450 genes responsible for diterpenoid biosynthesis 

were discovered as they were highly expressed in tissues accumulating the diterpenes (root cork, 

trichomes and hair root respectively) [65-67]. Interestingly, S. militiorrhiza copalyl diphosphate 

synthases (CPSs) show divergent tissue expression patterns despite similar activities, indicating that 

different paralogs have evolved to contribute separately to tanshinone (diterpenoid) biosynthesis in 

specific tissues [61]. 

Regulation of metabolism 

Access to a genome rather than a transcriptome assembly permits identification of regulatory 

regions that control gene expression and regulation. For example, two novel glandular-trichome 

specific promoters were identified in the genome of Mentha longifolia (L.) Huds. (horse mint) and 

used to modify the essential oil composition of M.  piperita L. (peppermint) [52]. Analysis of the 

promoter regions of genes involved in tanshinone (diterpene) and phenolic acid biosynthesis in S. 

miltiorrhiza led to the putative identification of transcription factor binding regions [68-70]. 

Experimental investigations into transcription factor binding and gene expression has led to a 
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detailed and complex picture of specialized metabolite regulation in S. miltiorrhiza, where phenolic 

acids and tanshinones are regulated antagonistically [71] 

Phylotranscriptomic analysis of Lamiaceae indicated that iridoid biosynthesis presence/absence was 

primarily controlled by expression of a single gene, geraniol synthase (GES), a dedicated terpene 

synthase that occupies the branch point between monoterpene and iridoid biosynthesis (Fig. 3). Loss 

of iridoids occurred in the common ancestor of Nepetoideae, the largest of twelve major mint 

lineages, though Nepeta L. regained iridoid biosynthesis [72]. Outside of Nepetoideae there have 

been at least eight independent losses of iridoid biosynthesis in Lamiaceae, each coupled with 

reduction of GES gene expression (Fig. 3). 

The teak genome assembly provides insight into mechanisms of iridoid biosynthesis loss. Whilst no 

GES expression was detected in the leaf transcriptome (Fig. 3), a GES gene (Tg14g06840) and a gene 

encoding iridoid synthase (Tg03g18820), which catalyzes the first committed step into the iridoid 

pathway, are both present in the genome. This indicates that reduction of gene expression is a 

mechanism for silencing of iridoid biosynthesis. Pseudogenization and gene loss may follow if there 

is no selective pressure to maintain these genes (i.e., they are not involved in other pathways). 

This highlights the role of regulation in the evolution of metabolism. Not only is the gain and loss of 

genes important for metabolic evolution, but similar selective forces also act on promoters, 

regulatory regions, and transcription factor networks. WGDs enabled the emergence of a Nicotiana 

unique co-expression network which supplements the jasmonic acid signalling systems for mediating 

the defence response to herbivory [73]. The fate of promoter regions in gene duplication and gene 

cluster formation is largely unknown, but may be key to understanding metabolic evolution [74]. 

Future perspectives 

With access to inexpensive, high quality genome sequencing platforms and advancements in 

computational tools (Fig. 2), an explosion in our knowledge of both the components and the 

evolutionary origins of chemodiversity will occur. Genome-wide gene duplication dynamics and their 

links to chemical evolution have not been explored in a phylogenomic context in any plant group, 

representing an area of opportunity for specialized metabolism research that may shed light on 

important evolutionary processes operating at the genome level. The comparative contributions of 

ancient WGDs and other small-scale gene duplication events to gene family expansions, particularly 

those important to specialized metabolism, will be revealed through these studies [75]. Large-scale 

resequencing can lead to the detection of selective sweeps, which can facilitate discovery of 

candidate genes or biosynthetic gene clusters underlying chemical variation at microevolutionary 

scales. Dedicated resequencing projects that annotate structural variants enable construction of 

pan-genomes and identification of core and dispensable genes, including genes responsible for 

genotype-specific metabolism [76].  Inclusion of epigenomics will augment our understanding of 

gene regulation and specialized metabolism, expanding our understanding from a simple 

transcription factor-target gene level to a global, genome landscape view of regulation. Paradigm-

altering approaches to gene annotation such as implementation of machine learning algorithms will 

enable improved predictions of gene function [77] and, as a consequence, the ease of functional 

genomics. 

The identification and analysis of conserved gene clusters in a phylogenomic framework will reveal 

details of their birth, growth, and death [13][40]. Moreover, detection of cluster variants within 

species will provide insights into how population-level (microevolutionary) processes influence 

cluster formation and loss and contribute to patterns at macroevolutionary scales. The effects of 
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gene duplication and gene clustering on gene regulation remains largely unknown. A recent 

“recruitment model” of plant metabolic evolution implicates post-duplication promoter evolution as 

a key step in the recruitment of genes into new metabolic pathways under the control of conserved 

transcription factors [74]. Comparative genomic analyses, coupled with genome editing 

experiments, will enable investigations of this compelling hypothesis. 
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Figure 1. Phylogenetic diversity of publicly available genome sequences. Angiosperm species with 

genome sequences reported by [78]are indicated with colored circles on the seed plant phylogeny of 

Smith and Brown [22]. A selection of major clade annotations is provided to aid visualization. 

Examples of genomes recently used in investigations of specialized metabolism are denoted with 

magenta circles (A–F) and correspond to the following photos, shown as an inset: (A) Piper 

methysticum G. Forst. (kava), source of kavalactones [79]; (B) Pogostemon cablin (Blanco) Benth. 

(patchouli), source of sesquiterpenes [48]]; (C) Coffea canephora Pierre ex A. Forehner (Robusta 

coffee), source of caffeine [16]; (D) Catharanthus roseus (L.) G. Don (Madagascar periwinkle), source 

of vincristine [80]; (E) Nicotiana attenuata Torr. ex S. Watson (coyote tobacco), source of nicotine 

[81]; (F) Papaver somniferum L. (opium poppy), source of noscapine and morphine [39]. All photos 

were sourced from the Encyclopedia of Life and Wikimedia Commons and available under a creative 

commons (CC) public domain license, except for the following: (A) P. methysticum by Arthur 

Chapman (CC BY-NC 2.0); (E) N. attenuata by Stan Shebs (CC BY-SA 3.0). 
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Figure 2. Overview of genome-enabled plant specialized metabolism research. This scheme 

highlights how genomics can inform understanding of plant biology and plant specialized 

metabolism at different resolutions. Acronyms: mGWAS (metabolic genome-wide association 

studies) and WGDs (whole genome duplications). Plant specialized metabolites (L-R): 

tetrahydrocannabinol (Cannabis sativa L., Cannabaceae), tanshinone I (Salvia miltiorrhiza Bunge, 

Lamiaceae), patchoulol (Pogostemon cablin (Blanco) Benth., Lamiaceae) and morphine (Papaver 

somniferum L., Papaveraceae). 
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Figure 3. Iridoid biosynthesis in the Lamiaceae. Species tree of Lamiaceae, adapted from [6]  and 

[58]. Putative whole genome duplication (WGD) events (black circles) are those supported by >2 of 3 

methods as reported in [58]. Notice the increased prevalence of WGDs in the species-rich 

Nepetoideae clade. Presence of iridoid metabolites depicted with colored branches (blue=present, 

orange=absent). Geraniol synthase (GES) orthogroup expression levels from leaf transcriptomes [6] 

and depicted as circles on the tips (blue = high expression [z-score > 1], orange solid = low expression 

[z-score < 1], orange outline = gene not detected). Notice how absence of iridoid metabolites is 

associated with reduction or loss of GES expression. Despite lack of GES expression in Tectona 

grandis, a gene encoding GES remains on the genome. Species names in bold have had their 

genome, or another species’ genome in their genus, sequenced. 
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