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Summary

Plants are reservoirs of extreme chemical diversity, yet biosynthetic pathways remain underexplored
in the majority of taxa. Access to improved, inexpensive genomic and computational technologies
has recently enhanced our understanding of plant specialized metabolism at the biochemical and
evolutionary levels. Genomics has led to the elucidation of pathways leading to key metabolites.
Furthermore, it has provided insights into the mechanisms of chemical evolution, including neo- and
sub-functionalization, structural variation, and modulation of gene expression. The broader
utilization of genomic tools across the plant tree of life, and an expansion of genomic resources from
multiple accessions within species or populations, will improve our overall understanding of
chemodiversity. It will also lead to greater insight into the selective pressures contributing to and
maintaining this diversity, which in turn will enable the development of more accurate predictive
models of specialized metabolism in plants.

Introduction

As with other aspects of biology, genomics has enabled a revolution in plant specialized metabolism
[1] that has been driven by rapid advancements in sequencing technologies [2-4], access to high-
performance computing resources [5], and increased access to genomic and transcriptomic datasets
from species with diverse specialized metabolism (Fig. 1) [6, 7]. Through genome assemblies,
signatures of specialized metabolism such as coexpression, gene duplication, and clustered
biosynthetic pathways greatly facilitate biosynthetic pathway discovery (Fig. 2) [8-11]. In a
complementary manner, the power of comparative genomics permits resolution of mechanisms that
underpin the evolution of metabolism across taxa [12-14]. This is highlighted by phylogenomic
investigations that have revealed the pivotal roles of gene and genome duplication in the diversity of
specialized metabolism [6, 12-16]. In this review, we discuss the general impact of genomics on plant
specialized metabolism research, with a focus on examples from the mint family (Lamiaceae) for
which a multitude of genome sequences have been generated with a primary focus on
understanding specialized metabolism. We conclude by highlighting future directions in genome-
enabled studies of plant specialized metabolism.

Genomic approaches to plant specialized metabolism
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(Phylo-) transcriptomics

Despite rapid increases in genome sequence availability and quality, transcriptome sequencing
(RNA-sequencing, RNA-seq) remains a key approach in the investigation of plant-specialized
metabolism across diverse taxa (see article on Transcriptomics in this issue for more detail).
Candidate genes involved in metabolic pathways can be identified through differential gene
expression across temporal and spatial dimensions [17] and through homology with known genes
[18, 19]. With its low cost and ease of data generation, transcriptome sequencing can enable
generation of comparative data sets for large numbers of species [7], providing multipurpose
datasets for gene discovery [20] and applied phylogenomic analyses [17, 21-23].

There is mounting evidence that gene and whole-genome duplications (WGDs) are prevalent across
land plants and are drivers of trait innovation, including the diversity of specialized metabolism [24].
In the absence of genome sequences from species spanning multiple related lineages, researchers
have relied on phylotranscriptomic analyses to characterize genome dynamics (e.g. duplications) in a
phylogenomic context. Such studies have enabled the discovery and resolution of gene expansions
and WGDs within lineages [17, 21-23], and provided a macroevolutionary understanding of the
origins of chemical diversity [6, 14, 25].

Genome sequencing, assembly, and annotation

Over the past decade, access to inexpensive next-generation sequencing technologies has enabled a
wide range of genome-enabled studies of plant metabolism [1]. With the maturity of third-
generation sequencing technologies, this pace of change promises to continue [reviewed here: [2, 3,
26]]. Two categories of technologies have led to recent improvements in plant genome assemblies:
long-read single molecule sequencing platforms and methods that identify long-range genomic
connections. Sequencing platforms such as the Pacific Biosciences and Oxford Nanopore
Technologies platforms [4, 27-29] provide long contiguous reads that result in longer, more
contiguous genome assemblies generated with a suite of new assembly algorithms. Complementary
methods such as 10X Chromium linked reads, Hi-C proximity ligation, and optical mapping facilitate
generation of longer, chromosome-scale assemblies [27, 28, 30] from long-read generated
assemblies. Coupled with the platform advances are major improvements in genome sequence
assembly and annotation tools. With the advent of Oxford Nanopore Technology, new long-read
genome assembly software have been developed including Shastac [31] and Flye [32], which can
assemble genomes rapidly. Plant species are not always homozygous inbreds, and improvements in
addressing heterozygous genomes have been made including the ability to purge haplotigs [33].
Software for scaffolding the genomes into higher order assemblies such as pseudomolecules or
pseudochromosomes includes SALSA2 [34] and Juicebox [35]. For genome annotation, transcript
evidence is key to accurate gene model construction and multiple software for generation of
genome-guided transcripts using long-read cDNA sequences have been released including Stringtie2
[36] and FLAIR [37]. Collectively, parallel advancements in algorithms and software for third-
generation sequencing platforms will significantly improve the quality of not only genome
assemblies, but also their annotation.

Some genes involved in specialized metabolism are physically clustered within the genome as
tandem repeats or metabolic gene clusters, loci containing multiple non-paralogous genes involved
in a pathway [10]]. Long read length technologies can resolve tandem duplications and extended
repetitive sequences typical of such regions, revealing complex loci associated with specialized
metabolism [38, 39]. Syntenic analyses are vital for understanding genome evolution and dynamics,



including the origins of gene duplications [15] and gene clusters [13, 40]. Both the quantity and
quality of genome sequences are essential for the improved resolution of metabolic pathway genes.

Population-scale studies

Large-scale genome resequencing-based approaches are emerging as powerful tools for the
understanding of plant specialized metabolism. Metabolite-associated genome wide association
studies (MGWAS) involve the identification of genomic loci associated with metabolic traits through
identification of single nucleotide polymorphisms and selective sweeps in large-scale genome
resequencing efforts [41-43]. Structural variants such as copy number and presence/absence
variants have been identified in numerous plant species; functional analyses of a subset of these
structural variants have revealed roles in adaptation, including biosynthesis of anti-insecticidal
methyl ketones in Solanum tuberosum L. (potato) [44] and noscapine in Papaver somniferum L.

(opium poppy) [45].

The evolution and genomics of specialized metabolism in Lamiaceae

Mints are a species-rich angiosperm clade (~7000 species) with a cosmopolitan distribution, and
exhibit a wide range of chemical diversity, including iridoids, polypropanoids, and canonical
terpenoids. This chemical richness plays functionally significant roles in nature, facilitating complex
interactions among mints and insects (e.g., plant-pollinator and plant-herbivore interactions [82]),
phytopathogens (e.g., antimicrobial activity [83]), and other co-occurring plants (e.g., allelopathy
[84, 85]). It has also led to the use of numerous mint species as herbal medicines (Salvia L.,
Scutellaria L.), culinary herbs (Mentha L., Origanum L., Thymus L.), and sources for perfume oils
(Lavandula L., Pogostemon Desf.) and health-promoting or therapeutic bioactive compounds and
phytochemicals (reviewed in [86]). These uses have motivated recent multidisciplinary and genome-
based research efforts to elucidate their specialized metabolism and identify the origins of their
chemical diversity and complexity. At the time of writing, there are twelve published genomes from
eight Lamiaceae species [46-57]. The highest quality genomes, Tectona grandis L.f. (teak) [56] and
Scutellaria baicalensis Georgi (Chinese skullcap) [57], represent state-of-the-art plant genomes
sequenced using a hybrid approach and assembled into pseudochromosomes. A recent
phylotranscriptomic analysis of Lamiacaeae, consisting of 48 mint leaf transcriptomes, led to insights
into the evolution of metabolism [6] and the occurrence of whole-genome duplications [58] across
the clade.

Lineage-specific gene family expansions

Orthogroup (gene family) expression and occupancy (gene number), and their association with
chemical traits, were examined across Lamiaceae in a phylogenomic context [6]. The distribution of
monoterpene diversity and terpene synthase b (TPSb; primarily monoterpene synthases) orthogroup
occupancy data in Lamiaceae suggests that lineage-specific gene expansions (LSEs) may have
contributed to chemical novelty or diversity in their respective clades [6].

Comparisons of genome assemblies have also implicated LSEs in Lamiaceae, specifically in terpenoid
related genes. For example, the monoterpene producer lavender had multiple copies of 1-Deoxy-d-
xylulose-5-phosphate synthase (DXS) and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase
(HDR), genes that control the accumulation of monoterpenes [49]. Patchouli, grown for its high
sesquiterpene content, had an increased copy number of TPSa genes (primarily sesquiterpene
synthases) [47, 48]. Interestingly, these TPSa genes showed divergent gene expression patterns,
including some that were not expressed in any tissue, indicating that they may have undergone
functional divergence or pseudogenization.



Whole-Genome, Tandem, and Dispersed Duplications

Ancient WGD events have been associated with increased specialized metabolite diversity and
species diversification rates in Brassicales, where they may have contributed to the proliferation of
novel genes and gene interactions and triggered species diversification rates, especially within
Brassicaceae [12]. Ancient WGDs might explain similar patterns within and among major mint
clades, which exhibit asymmetrical levels of species richness and chemical diversity [6, 58]. In
Lamiaceae, phylotranscriptomic analyses have revealed widespread but asymmetrical gene
duplication dynamics and signatures of ancient polyploidy [58]. As many as 28 putative ancient
WGD events were inferred across the clade (Fig. 3), with pronounced levels of gene and whole-
genome duplications in the species- and monoterpene- rich Nepetoideae, relative to other major
mint subclades [58].

LSEs identified in phylotranscriptomic studies may originate from WGDs, followed by selective
retention of genes, or from small-scale duplication processes such as tandem duplication. The teak
genome showed a high prevalence of tandem repeats, with over 60% of TPSs and cytochrome P450
(CYP) genes occurring in tandem repeats [56]. In the majority of cases, tandem copies had
differential expression patterns, implying neo-, sub-, or non- functionalization processes were at
play. In the root-specific flavone biosynthesis pathway in S. baicalensis, root-specific flavone
synthase Il (FNSII-2) and O-methyltransferase 5 (OMT5) originated from tandem duplications
followed by neofunctionalization or subfunctionalization, respectively [57].

Duplications in which paralogs are in distant, non-syntenic, genomic locations are referred to as
dispersed duplications, and are thought to arise through transposition, segmental duplication, or
retroduplication [15]. Through synteny, it is possible to identify which paralog is the ancestral locus.
In S. baicalensis, the root-specific chalcone-synthase (CHS2) and flavone 8-hydroxylase F8H
neofunctionalized after dispersed duplication events. Curiously, it appears that the new enzyme
activities evolved in copies present at the ancestral locus, whilst the paralogs that relocated to new
genomic locations maintained their ancestral function [57]. Fragments of retrotransposons
surrounding duplicated paralogs point to duplication mechanisms such as unequal crossing-over or
(retro)transposition. The reason why a specific paralog neofunctionalizes after duplication is unclear,
though the genomic context of the paralog, including neighboring genes, regulatory elements, and
chromatin modifications may be influential.

Gene pairs represent non-random genomic association of two non-paralogous, functionally related,
genes. These genomic signatures have emerged as a common feature of plant specialized
metabolism, especially in terpenoid biosynthesis. These associations often echo the early stages of
terpenoid chemical diversification, with associations observed between TPSs and CYPs [8] or
prenyltransferases (PTs) [59]. Associations between CYPs and methyltransferases (MTs), enzyme
pairs involved in late-stage modifications, have also been observed [60]. The genomes of Salvia
splendens Sellow ex J.A. Shultes (scarlet sage) and S. miltiorrhiza Bunge (Chinese sage or danshen)
show signatures of association between TPSs and CYPs [46, 53]. The clustered TPS and CYP genes in
S. miltiorrhiza have roles in tanshinone (diterpene) biosynthesis [61, 62]. The phylogenetic
relationships between the component genes of the clusters reveals their probable origins from an
ancestral TPS/CYP pair that underwent cluster duplication prior to CYP tandem duplication. These
genes do not show clear coexpression patterns within each cluster, indicating that, after duplication,
the expression patterns diverged due to drift or neo-functionalization.

Pairwise association of functionally related biosynthetic genes may represent the starting pointin
plant gene cluster formation. These minimal clusters can grow and diversify through tandem



repetition of individual components or by recruitment of non-homologous genes. However, gene
cluster size and prevalence may be underrepresented in poorly assembled genomes.

The highly contiguous teak genome contains a large terpenoid cluster (~700 kb) that appears to be
syntenic to the S. miltiorrhiza and S. splendens tanshinone clusters [56]. This cluster features TPSs
and CYPs from multiple clades, perhaps indicating gene recruitment. Although this cluster is not
coexpressed across all tissues, four of the clustered genes are expressed in roots and may therefore
be functionally related. Similar clusters can be observed in patchouli [47], a tantalizing indication of
conserved loci responsible for (di)terpenoid biosynthesis across Lamiaceae. Analysis of mint
genomes using predictive software (e.g. PlantiSmash) may reveal a wealth of uncharacterized gene
clusters and, consequently, new biosynthetic pathways [9].

As more genome sequences are obtained, and greater numbers of conserved clusters are identified,
our understanding of the origin and function of metabolic gene clusters will improve. Computational
identification and functional characterization of gene clusters, coupled with phylogenomic and
syntenic analyses, will enable identification of key patterns and allow for inference of evolutionary
and genomic events with greater resolution [13, 63].

Evolution without duplication

The S. baicalensis genome contains an unusual example of an enzyme that evolved without
duplication [57]. The enzyme catalyzing the first committed step into the 4-deoxyflavone pathway,
cinnamate-CoA ligase (CLL-7), does not appear to have undergone any duplication or transposition in
Scutellaria L.. Instead, the CLL-7 enzyme from S. baicalensis acquired mutations that enable it to turn
over the cinnamic acid substrate, whereas orthologs from S. miltiorrhiza, S. splendens and Sesamum
indicum L. (Pedaliaceae) cannot. It is unusual to observe evolution of new enzyme function without
gene duplication, though it is possible CLL-7 represents a pre-duplication state in a
subfunctionalization regime [64].

Localization of gene expression

Gene co-expression as determined by transcriptomics continues to be a powerful method for
detecting metabolic gene candidates, with the hypothesis being that genes in the same metabolic
pathway have similar expression patterns across tissue types. For example, in Coleus forskohlii, Vitex
agnus-castus and Salvia militiorrhiza, TPS and P450 genes responsible for diterpenoid biosynthesis
were discovered as they were highly expressed in tissues accumulating the diterpenes (root cork,
trichomes and hair root respectively) [65-67]. Interestingly, S. militiorrhiza copalyl diphosphate
synthases (CPSs) show divergent tissue expression patterns despite similar activities, indicating that
different paralogs have evolved to contribute separately to tanshinone (diterpenoid) biosynthesis in
specific tissues [61].

Regulation of metabolism

Access to a genome rather than a transcriptome assembly permits identification of regulatory
regions that control gene expression and regulation. For example, two novel glandular-trichome
specific promoters were identified in the genome of Mentha longifolia (L.) Huds. (horse mint) and
used to modify the essential oil composition of M. x piperita L. (peppermint) [52]. Analysis of the
promoter regions of genes involved in tanshinone (diterpene) and phenolic acid biosynthesis in S.
miltiorrhiza led to the putative identification of transcription factor binding regions [68-70].
Experimental investigations into transcription factor binding and gene expression has led to a



detailed and complex picture of specialized metabolite regulation in S. miltiorrhiza, where phenolic
acids and tanshinones are regulated antagonistically [71]

Phylotranscriptomic analysis of Lamiaceae indicated that iridoid biosynthesis presence/absence was
primarily controlled by expression of a single gene, geraniol synthase (GES), a dedicated terpene
synthase that occupies the branch point between monoterpene and iridoid biosynthesis (Fig. 3). Loss
of iridoids occurred in the common ancestor of Nepetoideae, the largest of twelve major mint
lineages, though Nepeta L. regained iridoid biosynthesis [72]. Outside of Nepetoideae there have
been at least eight independent losses of iridoid biosynthesis in Lamiaceae, each coupled with
reduction of GES gene expression (Fig. 3).

The teak genome assembly provides insight into mechanisms of iridoid biosynthesis loss. Whilst no
GES expression was detected in the leaf transcriptome (Fig. 3), a GES gene (Tg14g06840) and a gene
encoding iridoid synthase (Tg03g18820), which catalyzes the first committed step into the iridoid
pathway, are both present in the genome. This indicates that reduction of gene expression is a
mechanism for silencing of iridoid biosynthesis. Pseudogenization and gene loss may follow if there
is no selective pressure to maintain these genes (i.e., they are not involved in other pathways).

This highlights the role of regulation in the evolution of metabolism. Not only is the gain and loss of
genes important for metabolic evolution, but similar selective forces also act on promoters,
regulatory regions, and transcription factor networks. WGDs enabled the emergence of a Nicotiana
unique co-expression network which supplements the jasmonic acid signalling systems for mediating
the defence response to herbivory [73]. The fate of promoter regions in gene duplication and gene
cluster formation is largely unknown, but may be key to understanding metabolic evolution [74].

Future perspectives

With access to inexpensive, high quality genome sequencing platforms and advancements in
computational tools (Fig. 2), an explosion in our knowledge of both the components and the
evolutionary origins of chemodiversity will occur. Genome-wide gene duplication dynamics and their
links to chemical evolution have not been explored in a phylogenomic context in any plant group,
representing an area of opportunity for specialized metabolism research that may shed light on
important evolutionary processes operating at the genome level. The comparative contributions of
ancient WGDs and other small-scale gene duplication events to gene family expansions, particularly
those important to specialized metabolism, will be revealed through these studies [75]. Large-scale
resequencing can lead to the detection of selective sweeps, which can facilitate discovery of
candidate genes or biosynthetic gene clusters underlying chemical variation at microevolutionary
scales. Dedicated resequencing projects that annotate structural variants enable construction of
pan-genomes and identification of core and dispensable genes, including genes responsible for
genotype-specific metabolism [76]. Inclusion of epigenomics will augment our understanding of
gene regulation and specialized metabolism, expanding our understanding from a simple
transcription factor-target gene level to a global, genome landscape view of regulation. Paradigm-
altering approaches to gene annotation such as implementation of machine learning algorithms will
enable improved predictions of gene function [77] and, as a consequence, the ease of functional
genomics.

The identification and analysis of conserved gene clusters in a phylogenomic framework will reveal
details of their birth, growth, and death [13][40]. Moreover, detection of cluster variants within
species will provide insights into how population-level (microevolutionary) processes influence
cluster formation and loss and contribute to patterns at macroevolutionary scales. The effects of



gene duplication and gene clustering on gene regulation remains largely unknown. A recent
“recruitment model” of plant metabolic evolution implicates post-duplication promoter evolution as
a key step in the recruitment of genes into new metabolic pathways under the control of conserved
transcription factors [74]. Comparative genomic analyses, coupled with genome editing
experiments, will enable investigations of this compelling hypothesis.
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Figure 1. Phylogenetic diversity of publicly available genome sequences. Angiosperm species with
genome sequences reported by [78]are indicated with colored circles on the seed plant phylogeny of
Smith and Brown [22]. A selection of major clade annotations is provided to aid visualization.
Examples of genomes recently used in investigations of specialized metabolism are denoted with
magenta circles (A—F) and correspond to the following photos, shown as an inset: (A) Piper
methysticum G. Forst. (kava), source of kavalactones [79]; (B) Pogostemon cablin (Blanco) Benth.
(patchouli), source of sesquiterpenes [48]]; (C) Coffea canephora Pierre ex A. Forehner (Robusta
coffee), source of caffeine [16]; (D) Catharanthus roseus (L.) G. Don (Madagascar periwinkle), source
of vincristine [80]; (E) Nicotiana attenuata Torr. ex S. Watson (coyote tobacco), source of nicotine
[81]; (F) Papaver somniferum L. (opium poppy), source of noscapine and morphine [39]. All photos
were sourced from the Encyclopedia of Life and Wikimedia Commons and available under a creative
commons (CC) public domain license, except for the following: (A) P. methysticum by Arthur
Chapman (CC BY-NC 2.0); (E) N. attenuata by Stan Shebs (CC BY-SA 3.0).
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Figure 2. Overview of genome-enabled plant specialized metabolism research. This scheme
highlights how genomics can inform understanding of plant biology and plant specialized
metabolism at different resolutions. Acronyms: mGWAS (metabolic genome-wide association
studies) and WGDs (whole genome duplications). Plant specialized metabolites (L-R):
tetrahydrocannabinol (Cannabis sativa L., Cannabaceae), tanshinone | (Salvia miltiorrhiza Bunge,
Lamiaceae), patchoulol (Pogostemon cablin (Blanco) Benth., Lamiaceae) and morphine (Papaver

somniferum L., Papaveraceae).
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Figure 3. Iridoid biosynthesis in the Lamiaceae. Species tree of Lamiaceae, adapted from [6] and
[58]. Putative whole genome duplication (WGD) events (black circles) are those supported by >2 of 3
methods as reported in [58]. Notice the increased prevalence of WGDs in the species-rich
Nepetoideae clade. Presence of iridoid metabolites depicted with colored branches (blue=present,
orange=absent). Geraniol synthase (GES) orthogroup expression levels from leaf transcriptomes [6]
and depicted as circles on the tips (blue = high expression [z-score > 1], orange solid = low expression
[z-score < 1], orange outline = gene not detected). Notice how absence of iridoid metabolites is
associated with reduction or loss of GES expression. Despite lack of GES expression in Tectona
grandis, a gene encoding GES remains on the genome. Species names in bold have had their
genome, or another species’ genome in their genus, sequenced.
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