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Characterising spoken responses to an intelligent virtual agent by

persons with Mild Cognitive Impairment

Abstract

The diagnosis of Mild Cognitive Impairment (MCI) characterises patients at risk of
dementia and may provide an opportunity for disease-modifying interventions.
Identifying persons with MCI (PwMCI) from adults of a similar age without cognitive
complaints is a significant challenge. The main aims of this study were to determine
whether generic speech differences were evident between PwMCI and healthy controls
(HC), whether such differences were identifiable in responses to recent or remote
memory questions, and to determine which speech variables showed the clearest
between group differences. This study analysed recordings of 8 PWMCI (5 female, 3
male) and 14 HC of a similar age (8 female, 6 male). Participants were recorded
interacting with an intelligent virtual agent: a computer-generated talking head on a
computer screen which asks pre-recorded questions when prompted by the interviewee
through pressing the next key on a computer keyboard. Responses to recent and remote
memory questions were analysed. Mann-Whitney U tests were used to test for
statistically significant differences between PwWMCI and HC on each of twelve speech
variables, relating to temporal characteristics, number of words produced and pitch. It
was found that compared to HC, PWMCI produce speech for less time and in shorter
chunks, they pause more often and for longer, take longer to begin speaking and
produce fewer words in their answers. It was also found that the PwMCI and HC were
more alike when responding to remote memory questions than when responding to
recent memory questions. These findings show great promise and suggest that detailed
speech analysis can make an important contribution to diagnostic and stratification

systems in patients with memory complaints.
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Background

Formerly known as the ‘grey area’ between normal aging and dementia, mild cognitive
impairment (MCI) has gained acceptance as a clinical entity (Sachdev et al., 2014). The
prevalence of MCI is estimated at 10-20% in adults older than 65 years and the risk of
developing MCI increases with age (Langa & Levine, 2014). Identifying persons with
MCI (PwMCI) from adults of a similar age without cognitive complaints is a greater
challenge than identifying persons with dementia from healthy controls (HC). Although
a significant proportion of PwMCI will not progress to dementia even 10 years after
diagnosis (Mitchell & Shiri-feshki, 2009), between 21 and 60% of PwMCI will later
convert to a dementing illness, the most common of which is AD (Yaffe et al., 2006).
Given the enormity of disease burden and the uncertain trajectory, the development of
low-cost, non-invasive tools for early and reliable identification of MCI — and
particularly MCI which converts to AD — is of vast clinical, social and economic

importance.

Speech analysis has proven relevance to the identification of PwWMCI. Subtle
changes are evident in the speech and language of PWMCI (Gosztolya et al., 2019) and
these changes have potential for use as disease biomarkers. These changes, which may
not be apparent in normal communicative interactions, are evident upon analysis of
spoken discourse tasks (Fleming, 2014). It is theorised that various cognitive control
mechanisms outside the language system regulate language processing (Caplan, 1992).
Collectively referred to as executive functions, these mechanisms include planning,
problem solving, cognitive flexibility, attention shifting and organisation (Caplan,
1992). Breakdown of these skills may be the source of decline in discourse production

seen in PWMCI (Fleming & Harris, 2009). A complex speech discourse production task



has been shown to be a sensitive tool for the early detection of MCI compared to both
HC and persons with AD (Fleming, 2014). Asgari et al. (2017) found they could
distinguish PwWMCI from HC purely on linguistic analysis of discourse samples using
the Linguistic Inquiry and Word Count (LIWC2001 Inc.) tool with 84% classification
accuracy. Given the ease with which speech discourse samples can be obtained, their
non-invasive nature, and their scope for repeated sampling for longitudinal analyses,
this appears promising indeed. Szatloczki et al. (2015) state that computerised analysis
of spontaneous speech in the form of a software package may be promising to screen for
MCI and early AD. Traditional tests used in the memory clinic for dementia detection
(e.g. the Montreal Cognitive Assessment, MoCA; Nasreddine et al., 2005) only briefly
screen language function and do not include language tasks complex enough to detect
subtle changes. Also, such tests need a clinician to administer them and have learned

effects making widespread and repeated use more difficult.

Speech samples used in automated language studies have typically been
obtained by the presentation of stimuli such as pictures, short films, paragraphs or
stories. In the current study, language samples from responses to questions concerning
recent and remote memory will be analysed. The rationale behind this, based on clinical
observations as well as Ribot’s law (remote memory is spared to a greater extent than
recent memory, evident in MCI and early AD: Miiller et al., 2016) is that there may be
an interesting and clinically meaningful discrepancy between responses to recent and
remote memory questions that tasks such as picture descriptions may miss. The
relationship between speech and language and cognitive information processing,
including memory, is well-illustrated by Cohen et al. (2015). They found that language

output changed when HC performed tasks with increasingly high internal processing



loads with fewer utterances produced, longer pauses evident, and greater silence overall.
They suggest the use of vocal expression as a marker of information processing across
and also within pathological individuals over time. Since memory is a domain
particularly affected in neurodegenerative cognitive disorders, language differences may
be present in these tasks to a greater degree than in non-memory tasks due to the higher
demands on internal cognitive processing. In early disease stages recent memory may
be more affected than remote memory due to the temporal gradient, hence language

changes may be present to a greater degree in recent memory tasks.

The clinical relevance of using recent and remote memory questions to elicit
language samples for analyses is currently unknown. Few studies to date have examined
whether this could be a sensitive measure for detection of MCI. Smolik et al. (2016)
found that propositional density of speech by persons with amnestic MCI was lower
than HC but only when talking about remote memories (childhood) and not when
talking about recent events. Han et al. (2014) reported on the vocal expression of
emotion by HC and persons with early stage AD. They found that emotional expression
as judged by independent evaluators was higher when talking about remote memories

than recent memories.

Data collection for studies of the speech of PWMCI is typically done manually
through interviews or tests administered by a researcher with speech samples recorded
and later transcribed. Recent studies have made use of intelligent virtual agents (IVAs):
a computer-generated talking head on a computer screen which ask pre-recorded
questions when prompted by the interviewee. Tanaka et al. (2016) used such a method

to administer a range of tests to persons with early stage dementia and HC, and found



that data collected in this way was able to inform the detection of early stage dementia.
Mirheidari, Blackburn, Walker, et al. (2019) studied interactions between an IVA and
persons with neurodegenerative disease (ND) and persons with a functional memory
disorder (FMD). They found significant differences in conversational structure, lexis
and acoustic properties between the three groups (i.e. ND, FMD, HC). Ina
development of that work, Mirheidari, Blackburn, O’Malley, et al. (2019) found
significant differences between ND, FMD, HC and PWMCI in conversational structure,
lexis and acoustic properties There is evidence of ecological validity of responses to an
IVA in a memory clinic context. Walker et al. (2018) analysed responses to an IVA
from persons with FMD and persons with dementia: between-group differences of

diagnostic relevance were similar to those observed in patient-neurologist interactions.

Hoffman et al. (2010) proposed that temporal parameters serve as a screening
method for early AD. Temporal differences in spontaneous speech such as increased
number of pauses and increased pause length have been found to be sensitive markers
for the detection of early AD (Szatloczki et al 2015). Satt et al. (2014) studied
recordings of HC, PwMCI and persons with AD performing several spoken tasks
(counting backwards, picture description, repeating a sentence and naming animals).
They used various temporal features extracted from the recordings in a statistical
classifier and reported a classification accuracy of approximately 80% for PWMCI
versus HC. The analysis of acoustic features in Beltrami et al. (2018) focussed on
temporal measures, which were found to be able to distinguish the pathological groups
from the control group and in some cases to be able to distinguish between pathological
groups. Pauses differ depending on the type of discourse, so choice of spontaneous

speech task is important. Pistono et al. (2019) state that anterograde memory function



would predict a patient’s pause frequency in a memory-based narrative, as pauses are
used as compensatory mechanisms in early AD. Memory based narratives may thus be
most sensitive to any change in pause behaviour in PwMCI. Because length of
participant responses can differ greatly, using pause-to-speech ratio may be a consistent
way to measure pause differences across different questions. A higher pause-to-speech
ratio means that there is a greater amount of total pause in a participant’s answer,

compared to the total amount of speech.

The main aims of this study were 1) to determine whether generic speech
differences were evident between PwMCI and healthy controls (HC), 2) to determine
whether such differences were identifiable in responses to recent or remote memory
questions, and 3) to determine which speech variables showed the clearest between

group differences.

Method

Participants

Ethical approval was granted for the study prior to commencement. Consenting PWMCI
(n=8; 5 female, 3 male) were recruited from memory and neuropsychology clinics held
at a tertiary hospital in the UK. MCI was diagnosed according to Petersen’s criteria
(Petersen, 2011) by consultant neurologists. All PwWMCI had no other neurological
disorders. Consenting HC (n=14; 8 female, 6 male) were recruited through the
University of the Third Age, a society for retired community members; participants all
scored within normal range on cognitive testing (Addenbrooke’s Cognitive Examination
Revised). All participants were below clinical cut-offs for anxiety and depression as

measured by the Generalized Anxiety Disorder questionnaire 7 and the Patient Health



Questionnaire 9, respectively, and were first language English speakers. Participants
were recruited to the study by convenience sampling; all were white, of British descent,

and were raised and schooled in English.

Data collection

Participants interacted with an IVA. In these interactions, the interviewee (IE) answered
pre-recorded questions posed by the IVA; when IE pressed a button on the laptop
keyboard the IVA asked the next question or repeated the previous question depending
on the button pressed. A researcher was present during each session but instructed not to
speak unless they were asked direct questions or if other issues arose. Audio and video
recordings were made of the interactions. Data from four of the questions asked by the
IVA were analysed. Two of the questions related to recent memory (‘What did you do
over last weekend, giving as much detail as you can?’, “‘What has been in the news
recently?’), and two of the questions related to remote memory (‘Tell me about the
school you went to and how old you were when you left.’, ‘Tell me what you did when
you left school. What jobs did you do?’). Such questions are typical of those posed by
neurologists during memory clinic appointments. Recent memory questions will be
referred to as REC-Q and remote memory questions will be referred to as REM-Q;

ALL-Q will be used to refer to both question-types combined.

Preparation of data for analysis

This section describes several aspects to preparing the data for analysis: segmentation of
the recordings, the creation of pitch traces, preparation of transcriptions, the nature of

the selected speech variables, and the selection of statistical tests.



Segmentation

Segmentation involves identifying boundaries in the speech-stream. This was done
using a combination of careful listening and inspection of acoustic records (waveforms
and spectrograms). All computer-based analysis of speech was conducted using Praat

(Boersma & Weenink, 2020).

The start and end of each question by the IVA was identified through careful
listening and inspection of acoustic records. The answer to the question was considered
to start and end where audible vocal behaviour in response to the question begins and
ends. ‘Audible vocal behaviour’ includes any sound produced by IE’s vocal tract,
including for example breathing, clicks and percussives as well as speech. Such noises
were included as they could be indications of responsive ‘gearing up’ to speak. Since
such gearing up suggests cognitive processing in response to the question, the timing of
that gearing up might be useful in characterising the two groups. Out of 88 answers,
there were two where IE responds to the question asked by the IVA and is then
prompted to say more by the researcher; in these cases, the end of the answer is taken to
be the offset of vocal behaviour prior to the researcher prompting more talk. There was
one answer where IE responds to the IVA then begins to talk to the researcher; in this
case the end of the answer is taken to be the offset of vocal behaviour prior to the
speech directed to the researcher. One answer suffers a brief interruption by a noise
from the computer, but since the interruption is very brief, the segmentation was not

altered from the normal procedure.

Within the portions labelled as responses from IE there are periods where there
is no audible vocal activity. Praat was used to estimate the location and duration of these

periods. A silence threshold was determined to do this. The silence threshold is how far



below the maximum intensity in a sample the signal must be in order to be considered
silence. Since the recordings vary in several ways (e.g. recording quality, ambient noise,
distance between IE and the microphone), a silence threshold was established for each
recording. The silence threshold was determined by subtracting the mean intensity value
of an audible inbreath by IE from the maximum intensity in the recording. An inbreath
was used as little, if any, audible vocal behaviour would have a lower intensity than an
inbreath. Provided that the duration criteria for silence detection are met, those parts of
IE’s response with an intensity between the mean intensity of the identified audible
inbreath and the maximum intensity in the recording were marked as ‘sounding’; the
parts of IE’s response which do not satisfy those criteria were marked as ‘non-
sounding’. ‘Sounding’ intervals are taken as a proxy for speech from IE, and the ‘non-
sounding’ intervals as a proxy for silence. Following experimentation with different
values applied to several recordings, the minimum non-sounding (silent) interval
duration was set at 0.2 s; no intervals shorter than this could be considered silent. The

minimum sounding interval duration was left at the default value of 0.1 s.

There are distinct advantages to using silence detection to identify speech and
silence within IE’s responses. It is fairly quick requiring only the identification of the
beginning and end of IE’s answers and measuring the intensity of an inbreath in one of
those answers. Once the silence threshold has been determined the method is objective
and absolutely consistent. In this context, this method compares favourably with
labelling by listening and inspection of acoustic records which is time-consuming and

always subjective to some extent.



Figure 1 shows a screenshot of a Praat window after segmentation was
complete. The label tier ‘ques’ identifies the questions by the IVA (the screenshot
shows the end of the first recent memory question). The label tier ‘IEans’ identifies the
start and end of IE’s responses (the screenshot shows the start of the answer to the first
recent memory question). The label tier ‘IEsp’ contains the output of applying the
silence threshold method described above, with ‘1’ in intervals identified as ‘sounding’
(and treated as speech); intervals identified as ‘non-sounding’ (and treated as silence)
left empty.

[[[FIGURE 1 ABOUT HERE]]]

Pitch traces

Pitch traces were created with a floor and ceiling set by gender and in accordance with
the suggestion in the Praat manual (75-300 Hz for males, 100-500 Hz for females).
Pitch traces may be corrected to remove values which do not accurately reflect the rate
of vibrations of the speaker’s vocal folds (see Walker, 2018). To reduce the amount of
time involved in the preparation of the data for analysis, and to increase the extent to
which this study could be replicated, pitch traces have not been corrected. Since these
are uncorrected pitch traces they are likely to contain errors, especially at extreme
values. For this reason, the measures reported on below only consider values which fall

between the 10th and 90th percentiles in the distribution of pitch values.

Transcriptions

Orthographic transcriptions of the recordings prepared by professional transcribers were
used to assist in word counts. Fillers (e.g. ‘um’, ‘uh’) were retained as transcribed, as
were cut-off words. The number of strings separated by spaces in the transcriptions of

speech produced by IEs was taken as a proxy for words.



Speech variables

The speech variables were selected based on several criteria: (a) variables shown to
distinguish between PwWMCI and HC in previous research, (b) easily replicable, (c¢) time-
efficient, (d) clinically relevant, namely, potentially discernible by a co-present observer
e.g. in a clinical interview. The variables fall into three broad categories: temporal
characteristics (features concerning the duration of speech and/or silence, and measures
derived from those features e.g. speaking and articulation rates), number of words and
pitch. Table 1 lists the variables measured for the responses by IEs and which are
reported on in this paper, along with descriptions and the units in which measures are
reported. Measures of these variables are provided for responses to REC-Q, REM-Q and
ALL-Q in later sections and in the supplemental data.

[[ITABLE 1 ABOUT HERE]]]

Statistical tests

Statistical tests were performed using R (R Core Team, 2020). Mann-Whitney U tests
were used to determine whether the measures of each variable had data distributions
that were significantly different for PwMCI and HC in responses to ALL-Q, REC-Q

and REM-Q. A statistical significance level of 0.05 was used throughout.

Results

The results of Mann-Whitney U tests comparing PwMCI and HC on each variable in
responses to ALL-Q, REC-Q and REM-Q are shown in Table 2. Measures of each
variable for each IE can be found in the supplemental materials.

[[ITABLE 2 ABOUT HERE]]]
Figure 2 shows box and whisker plots for variables where p<0.05, showing PwMCI and

HC for ALL-Q. In the plots the bottom and top of the box represents the top of the first



and third quartiles respectively; the horizontal line within the box is the median. The
whiskers extend up to 1.5 times the interquartile range from the box to reach any values
in that range (this is the default in R) and any values lying outside of that range are
represented by circles.

[[[FIGURE 2 ABOUT HERE]]]

Discussion

This section discusses the responses to ALL-Q, then to REC-Q and REM-Q. There is
then discussion of some of the limitations to the study and possible avenues for further

research.

Responses to all questions

There are significant differences in the distribution of values within responses by
PwMCI and HC on eight of the twelve variables in the ALL-Q condition. The statistical
differences evident in these data, coupled with inspection of the medians and means on
each of these variables, give rise to the following observations:
(1) PwMCI produce speech for less time than HC (spDur).
(2) PwMCI produce speech in shorter chunks than HC (aveSpDur)
(3) The average duration of silences in the responses of PWMCI is longer than HC
(aveSilDur)
(4) PwMCI pause more often than HC (silFreq)
(5) PwMCI have a higher pause-to-speech ratio than HC (silToSp)
(6) PwMCI take longer to begin speaking in response to questions than HC (delAns/
delSp)

(7) PwMCI produce fewer words in their answers (wordCount)



Several of these results accord with previous research. Finding (2) accords with
Beltrami et al. (2018) who found statistically significant differences in speech segment
durations between HC, PwMCI, and persons with early dementia. Finding (3) accords
with Szatloczki et al. (2015) and Hoffman et al (2010) who found increased pause
length to be sensitive markers for the detection of early AD. Finding (4) accords with
Szatloczki et al. (2015) who found increased amount of pauses to be sensitive markers
for the detection of early AD. Finding (6) may in part be a reflection of increased
information processing speed and reaction times for PwWMCI compared with HC
(Haworth et al 2016, Andriuta et al 2019). Finding (7) accords with Gonzalez-Moreira
et al. (2015) who reported that HC produced more syllables than persons with mild
dementia in a task consisting of a structured interview and a reading task. (It is
extrapolated that increased syllable production results in increased word production,
given that words comprise of syllables.) In contrast, Roark et al. (2011) and Mueller et
al. (2018) found no difference in verbal output between PWMCI and HC using
neuropsychological interviews and picture description tasks, respectively, to elicit
speech. Use of memory-related questions to elicit speech may pose a greater cognitive
challenge to PwMCI, resulting in reduced verbal output (see studies by Cohen et al.,
2014, 2015 for more on cognitive load and verbal output). In contrast, Dodge et al.
(2015) found that PWMCI produced a higher proportion of the words spoken in

interviews than HC.

There was no significant difference between PwMCI and HC with regard to
pitch range (pRng10t090). Previous related research presents a somewhat mixed picture
with regard to pitch. Gonzalez-Moreira et al. (2015) reported the mean fundamental

frequency for persons with mild dementia (n=10) to be significantly higher than for HC



(n=10). However, Horley et al. (2010) administered expressive tasks to persons with
AD and to HC and found no significant differences between the groups in mean
fundamental frequency, but greater pitch modulation was evident for the control group.
It is worth noting that the measure of pitch adopted here is quite weak from a technical
point of view. The pitch ranges are calculated based on uncorrected pitch traces, created
with simple floor and ceiling values which might not have been optimal in all cases.
The upper and lower thresholds (10th and 90th percentiles) are somewhat arbitrary
based on experience rather than experimental evaluation. Results with greater ecological
validity could be arrived at from hand-corrected pitch traces created with floor and
ceiling values appropriate for each speaker. However, this would be a time-consuming

task and would be more subjective than the method used here.

The non-significant results regarding speaking rate (speakRate) and articulation
rate (artRate) are consistent with previous research. Mueller et al. (2018) identified
several studies which found no significant differences in speaking rate among groups.
Speaking rate and articulation rate are both reflections of motor speech, namely, the
physical act of speaking rather than reflections of the ‘cognitive’ aspect of speaking.
Since MCI does not affect motor control, the speaking and articulation rates for PwWMCI

are expected to be comparable to HC of a similar age.

The lack of significant between-group results for duration of the response
(respDur) was surprising given that there were significant differences in the number of
words produced (wordCount) and average silence duration (aveSilDur). However, this
variable narrowly missed the threshold for statistically significant difference (p=0.059

for all questions). There were clear differences in the distribution of measures on this



variable (median=61.34 s for PwWMCI, 155.18 s for HC; mean=77.35 s for PwWMCI,
164.89 s for HC). Differences between the groups were enlarged by one outlier in the
HC group (participant 160, 312.22 s), but even with that outlier excluded the median
and mean was much higher for HC than PwMCI (if participant 160 is excluded,

median=152.34 s, mean=153.56 s).

Responses to recent vs remote memory questions

Recent memory

All but one of the eight variables which showed a significant difference between
PwMCI and HC in the ALL-Q condition show a significant difference in responses to
REC-Q. The variable delAns only narrowly misses out on the threshold for significance
(p=0.05016). The duration of the speech produced by HC is significantly longer than for
PwMCI (spDur); the average duration of a speech chunk in the speech of PwMCI is
significantly shorter than for HC (aveSpDur); the average silence duration in the speech
of PWMCI is significantly longer than for HC (aveSilDur); the silence to speech ratio
for PWMCI is significantly higher than for HC (silToSp); and the delay before PwWMCI

start to speak is significantly longer than for HC (delSp).

Remote memory

There are fewer significant differences between PWMCI and HC in responses to REM-
Q than in responses to REC-Q. Measures of four variables (spDur, aveSilDur, SilToSp,
delSp) which were significantly different in responses to REC-Q were not significantly
different in responses to REM-Q. The reduced difference between PwWMCI and HC in
responding to REM-Q may reflect that in PwWMCI, REM-Q pose less of a cognitive
challenge than REC-Q and thus answers are retrieved with greater ease resulting in

speech more like that of HC. A higher cognitive processing load may be experienced by



PwMCI when answering responding to REC-Q), since recent memory is a domain

affected early on in the disease course (temporal gradient of memory loss).

However, there is a need for caution in interpretation of these findings. While fewer
variables show significant differences between PwMCI and HC in response REM-Q
than in responses to REM-Q, there are still notable differences in the median and mean
values. These values are presented in Table 3.

[[ITABLE 3 ABOUT HERE]]]

Study limitations

The sample size for the study was small and the participants were not matched for age,
gender or level of education. Different methods for measuring the selected variables
might have revealed different patterns. For instance, a silence threshold is not perfect at
identifying speech. Since Praat cannot easily separate out speech from other kinds of
noise an interval could have been labelled as ‘sounding’ (= speech) on the basis of other
background noise. More robust measures of speaking and articulation rate may be
possible, albeit more time-consuming, using counts of segments or syllables per second
rather than words. Finally, while the variables were selected for reasons described

above, other variables could have been selected and may have yielded different insights.

The Addenbrooke’s Cognitive Exam Revised was the only cognitive measure used in
the study. Detailed neuropsychology testing on participants could lend depth to the
understanding of their cognitive functioning. It would be possible to explore
relationships between the speech markers outlined in this study and neuropsychology
test scores. Including additional assessments, such as self-report or caregiver-report

measures could add additional dimensions to the results of this study. Participants’



awareness of their decline or otherwise, and whether self report measures and speech
performance correlate would be of interest. The inclusion of data from neuroimaging
could add valuable information about the underlying neural substrates of the observed

behaviours.

Avenues for further research

These preliminary findings show great promise and we recommend further research
using memory-related questions to distinguish between PWMCI and HC, as well as
determining efficacy to identify those with FMD and dementia. Given that subjective
cognitive decline (SCD) may precede a diagnosis of MCI, analysis of speech samples
from persons with subjective cognitive decline would also be of value. Larger samples
are needed to help to establish how widespread the identified patterns might be. Future
research investigating differing speech patterns in various dementias could be of
immense value in a clinical context, either by utilizing automatic speech analysis tools
to aid with differential diagnosis or by training clinicians to listen for some of the
delineated patterns. Further speech variables might be studied, though these should be
considered against the criteria for variable selection set out above to help ensure that the

selected variables reflect vocal behaviour in meaningful ways.

There may be qualitative differences between the responses from participants in
the two groups. Lunsford and Heeman (2015) compared how a recently-told story is
retold by PwMCI and HC and found that PwMCI spent significantly more time in
verbal hesitations (e.g. “‘uh’, ‘um’, ‘let’s see’) than HC, and that verbal hesitations
accounted for a higher proportion of PWMClI's speaking time than that of HC. Lunsford

and Heeman (2015) also found that when retelling a recently-told story, a greater



proportion of PWMCI used phrases such as ‘I guess’, ‘I think it was’, ‘I can't remember’

to mark uncertainty than HC.

The focus in this study has been on how participants speak rather than on what
they say. There has been no consideration of how much information the participants
give, whether answers are accurate or whether all parts of the question are addressed. It
is notable for instance that one participant with MCI describes the school he went to but
not how old he was when he left. An approach following the principles of Conversation
Analysis (CA) seems a good way forward in this respect. Walker et al. (2018) engage in
fine-grained analysis of conversational structure, finding that diagnostically relevant

features can be observed when persons with FMD and ND interact with an IVA.

There has been no consideration of visual information (e.g. gaze, posture,
gesture) which is captured in the video recordings of the interactions. There is some
evidence of the relevance of visible bodily behaviour to the differentiation between
PwMCI and HC: Shinkawa et al. (2019) found that when a classification model
combined measures of speech (lexis and syntax) with measures of gait, classification
accuracy (PwMCI versus HC) improved when compared with models based on one

modality.

While there has been some statistical analysis there has not been any attempt at
statistical classification of the two groups, though this has been done with some success
in other studies (e.g. Kato et al., 2015; Konig et al., 2015; Mirheidari,
Blackburn,0’Malley, et al., 2019; Roark et al., 2011; Toth et al., 2018). It seems

relevant to such a study that Figure 2 shows that there are outliers on most of the



variables shown; this suggests that any classification would require measures of a

package of variables.

Conclusions

This promising study has shown that there are clear differences in the speech patterns of
PwMCI and HC when responding to memory-related questions asked by an IVA. These
differences are reflected in the amount of time respondents speak for (PWMCI<HC), the
length of the speech chunks (PwMCI<HC), the average duration of silences
(PWMCI>HC), the frequency of silences (PWMCI>HC), the pause-to-speech ratio
(PWwMCI>HC), the length of time it takes to begin a response (PwWMCI>HC) and the
number of words produced in answers (PWMCI<HC). There are differences in the way
that persons in the two groups respond to questions concerning recent memory and
questions concerning remote memory. The highest number of variables exhibiting
significant differences between PWMCI and HC occurs when all questions are included,
closely followed by recent memory questions, with remote memory questions having
the fewest variable which exhibit significant differences between PwMCI and HC. It is
proposed that recent memory questions may have particular clinical utility in distinguish
between PwWMCI and HC. It has also been shown that answers to memory-related
questions posed by an IVA can reveal differences in the speech characteristics of

PwMCI and HC.
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Table 1. Speech variables considered; ‘speech’ and ‘silence’ refer to ‘sounding’ and ‘non-sounding’
intervals as identified by silence detection; ‘words’ refers to number of strings separated by spaces

in the orthographic transcriptions.

Table 2. Results of Mann-Whitney U tests for differences between responses by persons with Mild Cognitive
Impairment and healthy controls to all questions (ALL-Q), to questions concerning recent memory (REC-Q),

and to questions concerning remote memory questions (REM-Q). Bold indicates p<0.05.

Table 3. Comparison of responses to questions concerning recent and remote memory by persons with Mild
Cognitive Impairment (PwMCI) and healthy controls (HC). The variables are those which show statistically
significant differences in responses to questions concerning recent memory but not in responses to questions
concerning remote memory: see Table 2. Columns headed ‘diff.” show the differences between PWMCI and

HC (PwMCI-HC).

Figure 1. A screenshot of a Praat editor window showing a waveform (top panel), spectrogram

(middle panel), and labels (bottom panel)

Figure 2: Box and whisker plots for variables which showed a significant difference between
responses by persons with Mild Cognitive Impairment (PwMCI) and healthy controls (HC) in
Mann-Whitney U tests (p<0.05)



variable name
spDur
aveSpDur
aveSilDur
silFreq

respDur

silToSp
delAns

delSp

pRng10to90

wordCount
speakRate

artRate

description unit

duration of speech seconds (s)

average duration of speech chunks seconds (s)

average duration of silences seconds (s)

silence frequency, determined by dividing the silence per second (sil/s)
number of silences by the amount of speech
duration of speech and silences

ratio of silence to speech

delay in beginning to answer, determined by
measuring the time between the end of the question
and the onset of audible vocal behaviour in the
answer

delay in beginning to speak, determined by
measuring the time between the end of the question
and the onset of speech as identified by silence
detection

pitch range, determined by calculating the distance semitones (ST)

between the 10th and 90th percentiles in the

distribution of pitch values produced

number of words produced words

speaking rate determined by dividing wordCount bywords per second (words/s)
respDur

articulation rate determined by dividing wordCount words per second (words/s)
by spDur

seconds (s)

seconds (s)

seconds (s)

table1



spDur
aveSpDur
aveSilDur
silFreq
respDur
silToSp
delAns
delSp
pRng10to90
wordCount
speakRate
artRate

ALL-Q

90
99
15
19
84
13
18
20
75
88.5
82
56

0.020
0.002
0.004
0.010
0.059
0.002
0.008
0.013
0.212
0.029
0.082
1.000

REC-Q

87
102
14
22
&3
10
27
23
71
88
82
62

0.035
0.001
0.003
0.020
0.070
0.001
0.050
0.024
0.330
0.029
0.082
0.714

REM-Q

84
92
45
29
80
34
25
30
82
88
67
59

0.059
0.013
0.482
0.070
0.110
0.145
0.035
0.082
0.082
0.029
0.482
0.868

table2



table3

median mean
recent remote recent remote
PwMCIHC diff. PwMCIHC diff. PwMCIHC diff. PwMCI HC diff.
spDur 20.8456.01 -35.17 23.5457.84 -34.30 24.31 72.79 -48.48 32.81 68.12 -35.31

aveSilDur 093 0.46 048 0.58 046 0.12 0.87 049 0.37 0.57 049  0.08
silToSp 044 0.14 029 025 0.14 0.11 048 0.19 0.29 029 0.17 0.12
delSp 194 1.15 079 215 091 124 652 156 4.96 229 1.14 1.15



fig1

4. TextGrid 056

-0.4973

5000 Hz W , _

all in out sel | | bak | &7 (@) v & Group



fig2

f.

80 0 90 G0 ¥0 €0

(s) inqjiSene

I | I I

00G 00 00€ 00c O00L

(s) unqds

I
0

HC

PwMCI

HC

PwMCI

HC

PwMCI

| | I |
G¢ 02 G Ol

(s) suyep

90 S0 ¥0 €0 20 0
dsoyis
S |
I [ [ [
80 90 0 20

(s/11s) baiqyis

HC

PwMCI

HC

PwMClI

HC

PwMCI

=l

I
000}

_ _
009

_ _ _
00c 0

(spiom) JunonHpiom

14

0¢

gL 0l

(s) dsiep

HC

PwMCI

HC

PwMCI



Characterising spoken responses to an intelligent virtual agent by persons with Mild Cognitive Impairment —

Supplemental material

Supplemental table 1. Measures for persons with Mild Cognitive Impairment, all questions

patld spDur aveSpDur aveSilDur  silFreq respDur silToSp  delAns delSp pRngl10to90
56 54.23 2.01 0.39 0.42 63.10 0.16 2.93 4.71 12.27
82 11.53 1.65 0.82 0.26 14.01 0.21 12.93 13.43 4.02
84 27.64 1.32 0.86 0.62 42.25 0.53 27.03 27.69 11.74
86 45.73 1.91 0.69 0.44 59.58 0.30 3.28 3.28 4.36
102 112.81 2.13 0.56 0.43 140.47 0.25 1.37 2.89 3.35
121 93.97 1.54 0.76 0.61 137.03 0.46 3.11 3.11 2.72
158 17.42 1.24 0.81 0.57 25.52 0.46 10.70 11.21 3.79
159 93.59 1.61 0.80 0.58 136.84 0.46 4.14 4.14 6.91
median 49.98 1.63 0.78 0.51 61.34 0.38 3.71 4.42 4.19
mean 57.11 1.68 0.71 0.49 77.35 0.36 8.19 8.81 6.15

sd 38.64 0.32 0.16 0.12 52.83 0.14 8.65 8.62 3.82

wordCount speakRate

188
32

91
127
376
242
34

184
155.50
159.25
115.17

2.98
2.28
2.15
2.13
2.68
1.77
1.33
1.34
2.14
2.08
0.59

artRate
3.47
2.77
3.29
2.78
3.33
2.58
1.95
1.97
2.78
2.77
0.59



Supplemental table 2. Measures for healthy controls, all questions

patld
89

90

94

97
131
133
154
155
156
160
161
162
170
171
median
mean
sd

spDur aveSpDur aveSilDur

106.05
4891
549.12
31.44
147.28
98.42
45.67
142.52
118.00
259.45
152.31
33.46
145.16
94.90
112.02
140.91
132.32

1.19
2.72
3.89
1.97
4.33
8.20
2.85
3.56
1.79
2.52
231
3.04
3.02
2.88
2.87
3.16
1.67

0.74
0.49
0.54
0.40
0.36
0.32
0.40
0.45
0.55
0.53
0.47
0.63
0.42
0.46
0.47
0.48
0.11

silFreq

0.80
0.29
0.25
0.38
0.20
0.08
0.26
0.25
0.53
0.38
0.41
0.21
0.30
0.31
0.29
0.33
0.17

respDur

169.26

55.72
623.26

36.22
158.02
100.94

50.50
158.54
152.34
312.22
181.51

37.85
163.75
108.29
155.18
164.89
151.24

silToSp
0.60
0.14
0.14
0.15
0.07
0.03
0.11
0.11
0.29
0.20
0.19
0.13
0.13
0.14
0.14
0.17
0.14

delAns
3.49
1.35
3.28
1.19
2.43
0.71
0.74
3.45
1.89
2.26
1.50
1.67
3.10
-0.30
1.78
1.91
1.15

delSp pRngl10to90

7.44
2.02
4.25
1.19
2.68
0.78
1.81
3.45
4.75
2.37
1.67
1.78
3.50
0.12
2.20
2.70
1.89

6.14
7.29
6.03
8.10
3.48
5.96
4.57
4.33
7.00
11.18
7.89
7.13
5.00
13.18
6.57
6.95
2.63

wordCount speakRate

326
148
1346
101
376
315
116
407
353
637
467
102
448
262
339.50
386.00
317.69

1.93
2.66
2.16
2.79
2.38
3.12
2.30
2.57
2.32
2.04
2.57
2.69
2.74
2.42
2.49
2.48
0.32

artRate
3.07
3.03
2.45
3.21
2.55
3.20
2.54
2.86
2.99
2.46
3.07
3.05
3.09
2.76
3.01
2.88
0.28



Supplemental table 3. Measures for persons with Mild Cognitive Impairment, questions concerning recent memory

patld
56

82

84

86
102
121
158
159
median
mean
sd

spDur aveSpDur aveSilDur

28.19

4.28
11.93
24.68
72.19
31.59

4.60
17.00
20.84
24.31
21.90

1.88
1.07
1.33
1.76
2.06
1.50
1.53
0.89
1.52
1.50
0.40

0.41
1.03
0.97
0.81
0.66
0.90
1.01
1.14
0.93
0.87
0.23

silFreq
0.46
0.47
0.59
0.49
0.46
0.60
0.22
1.00
0.48
0.53
0.22

respDur
33.53
6.33
18.70
34.44
93.85
48.72
5.60
36.30
33.99
34.69
28.30

silToSp
0.19
0.48
0.57
0.40
0.30
0.54
0.22
1.14
0.44
0.48
0.30

delAns
0.96
9.06
23.46
1.59
0.40
1.95
10.16
1.53
1.77
6.14
7.97

delSp pRngl10to90

1.93
9.07
23.49
1.59
1.92
1.95
10.67
1.53
1.94
6.52
7.78

13.71
4.39
14.96
4.19
3.59
3.38
2.56
7.71
4.29
6.81
4.90

wordCount speakRate

102
11

44
62
245
85

9

28
53.00
73.25
76.99

3.04
1.74
2.35
1.80
2.61
1.74
1.61
0.77
1.77
1.96
0.70

artRate
3.62
2.57
3.69
2.51
3.39
2.69
1.96
1.65
2.63
2.76
0.75



Supplemental table 4. Measures for healthy controls, questions concerning recent memory

silToSp

patld
89

90

94

97
131
133
154
155
156
160
161
162
170
171
median
mean
sd

spDur aveSpDur aveSilDur

33.22
23.27
262.22
12.40
61.52
52.56
21.13
75.95
59.46
202.30
88.39
10.90
63.24
52.49
56.01
72.79
72.48

0.87
2.33
391
2.48
4.39
8.76
2.11
3.62
1.86
247
2.53
2.72
3.95
2.76
2.62
3.20
1.85

0.86
0.53
0.52
0.33
0.35
0.32
0.39
0.47
0.54
0.50
0.42
0.82
0.41
0.44
0.46
0.49
0.16

silFreq

1.08
0.34
0.25
0.24
0.20
0.08
0.38
0.25
0.50
0.40
0.37
0.18
0.22
0.32
0.29
0.34
0.24

respDur

64.03
27.49
296.25
13.40
65.74
53.83
24.23
84.90
75.66
242.30
102.17
12.53
69.01
59.96
64.89
85.11
83.11

0.93
0.18
0.13
0.08
0.07
0.02
0.15
0.12
0.27
0.20
0.16
0.15
0.09
0.14
0.14
0.19
0.22

delAns

1.68
0.56
1.30
0.84
0.71
0.09
0.45
2.72
0.61
1.55
0.63
0.97
1.64
0.56
0.78
1.02
0.69

5.16
1.23
2.09
0.84
0.92
0.16
0.78
2.72
2.10
1.57
0.63
1.08
1.64
0.97
1.15
1.56
1.24

delSp pRngl10to90

6.25
8.65
6.84
8.85
3.67
6.57
3.98
4.64
5.92
11.45
8.31
6.61
5.45
13.56
6.59
7.20
2.78

127

60

644

46

141
167

52

215
173
482
278

32

198
138
154.00
196.64
173.37

wordCount speakRate

1.98
2.18
2.17
3.43
2.14
3.10
2.15
2.53
2.29
1.99
2.72
2.55
2.87
2.30
2.29
2.46
0.44

artRate

3.82
2.58
2.46
3.71
2.29
3.18
2.46
2.83
291
2.38
3.15
2.94
3.13
2.63
2.87
2.89
0.47



Supplemental table 5. Measures for persons with Mild Cognitive Impairment, questions concerning remote memory

patld
56

82

84

86
102
121
158
159
median
mean
sd

spDur aveSpDur aveSilDur

26.04

7.26
15.70
21.04
40.62
62.38
12.83
76.59
23.54
32.81
25.02

2.17
242
1.31
2.10
2.26
1.56
1.17
1.96
2.03
1.87
0.46

0.35
0.42
0.78
0.51
0.37
0.68
0.79
0.65
0.58
0.57
0.18

silFreq
0.38
0.14
0.64
0.38
0.39
0.61
0.70
0.48
0.44
0.47
0.18

respDur
29.57
7.67
23.55
25.14
46.62
88.31
19.91
100.54
27.35
42.66
33.88

silToSp
0.14
0.06
0.50
0.19
0.15
0.42
0.55
0.31
0.25
0.29
0.18

delAns
1.97
3.87
3.56
1.69
0.97
1.15
0.55
2.61
1.83
2.05
1.21

delSp pRngl10to90

2.78
4.37
4.20
1.69
0.97
1.15
0.55
2.61
2.15
2.29
1.45

10.85
3.42
5.01
4.74
2.85
231
4.02
6.80
4.38
5.00
2.75

wordCount speakRate

86

21
47

65
131
157
25
156
75.50
86.00
55.90

291
2.74
2.00
2.59
2.81
1.78
1.26
1.55
2.29
2.20
0.64

artRate
3.30
2.89
2.99
3.09
3.23
2.52
1.95
2.04
2.94
2.75
0.53



Supplemental table 6. Measures for healthy controls, questions concerning remote memory

patld
89

90

94

97
131
133
154
155
156
160
161
162
170
171
median
mean
sd

72.83
25.64

286.90

19.04
85.75
45.86
24.54
66.57
58.54
57.14
63.92
22.57
81.92
42.41
57.84
68.12
66.77

1.43
3.21
3.88
1.73
4.29
7.64
4.09
3.50
1.72
2.72
2.06
3.22
2.56
3.03
3.12
3.22
1.56

spDur aveSpDur aveSilDur

0.66
0.43
0.56
0.42
0.36
0.31
0.43
0.42
0.57
0.67
0.53
0.55
0.43
0.49
0.46
0.49
0.11

silFreq

0.67
0.23
0.25
0.47
0.21
0.09
0.16
0.26
0.55
0.33
0.45
0.22
0.37
0.28
0.27
0.32
0.16

respDur

105.22
28.22
327.01
22.82
92.28
47.11
26.26
73.65
76.67
69.92
79.34
25.32
94.74
48.34
71.78
79.78
76.50

silToSp

0.44
0.10
0.14
0.20
0.08
0.03
0.07
0.11
0.31
0.22
0.24
0.12
0.16
0.14
0.14
0.17
0.11

delAns delSp pRngl10to90

1.80 2.29 6.07
0.79 0.79 5.48
1.98 2.17 5.13
0.35 0.35 7.40
1.72 1.76 3.33
0.62 0.62 5.17
0.28 1.03 4.74
0.73 0.73 3.88
1.28 2.66 9.38
0.71 0.80 9.19
0.87 1.03 7.33
0.70 0.70 7.25
1.45 1.85 4.84
-0.86 -0.85 12.91
0.76 0.91 5.78
0.89 1.14 6.58
0.74 0.92 2.58

199

88

702

55

235
148

64

192
180
155
189

70

250
124
167.50
189.36
160.34

wordCount speakRate

1.89
3.12
2.15
241
2.55
3.14
2.44
2.61
2.35
2.22
2.38
2.76
2.64
2.57
2.49
2.52
0.34

artRate

2.73
3.43
2.45
2.89
2.74
3.23
2.61
2.88
3.07
2.71
2.96
3.10
3.05
2.92
291
291
0.26



