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Abstract—The Schmidt-Kalman filter (SKF) achieves filtering
consistency in the presence of biases in system dynamic and
measurement models through accounting for their impacts when
updating the state estimate and covariance. However, the perfor-
mance of the SKF may break down when the measurements are
subject to non-Gaussian and heavy-tail noise. To address this, we
impose the Wishart prior distribution on the precision matrix of
measurement noise, such that the measurement likelihood now
has heavier tails than the Gaussian distribution to deal with the
potential occurrence of outliers. Variational inference is invoked
to establish analytically tractable methods for computing the
posterior of the system state, system biases, and the measurement
noise precision matrix. The principle ofn the SKF considers the
effect of system biases but does not actively estimate them when
two variants of outlier-robust SKFs are incorporated. We evaluate
their performance in terms of estimation accuracy and filtering
consistency using simulations and real-world data. Promising
results are obtained.

I. INTRODUCTION

For linear Gaussian state-space models, it is well known

that the Kalman filter (KF) is the minimum mean square error

(MMSE) state estimator [1]. Furthermore, the KF-calculated

state covariance is equal to the true covariance of the state

estimate when both the system dynamic and measurement

models are accurate [2]. In practical state estimation problems,

however, state dynamics and measurements may be subject to

the presence of systematic errors such as sensor biases and

imperfect knowledge on sensor locations and attitudes [3], [4].

Calibration can reduce the systematic errors but there may still

be residual biases. The remaining system biases, if improperly

handled, would make the KF inconsistent such that the state

covariance computed by the KF would be smaller than, in the

matrix positive-semidefinte sense, the true state covariance [5].

In other words, the KF becomes overly confident in this case,

which degrades the tracking accuracy and increases the chance

of filtering divergence [3], [4], [6].

One possible way to account for the presence of system

biases and maintain filtering consistency is to inflate the pro-

cess and measurement noise covariances [7]. This approach,

despite its simplicity, may provide unsatisfactory estimation

accuracy because it does not consider the cross correlation

between system biases and state estimate. An alternative

technique is commonly referred to as the consider analysis

[8]. It first computes a delta covariance using the statistic

information on the system biases and their cross correlation

with the state estimate and then adds it to the state estimation

covariance. In [9], [10], augmented-state KFs were adopted to

estimate the system state and biases simultaneously in order to

attain filtering consistency when the system biases are present.

Nevertheless, in many cases, estimating the system biases is

not necessary or they may have low observability, which could

make jointly identifying system biases and state more prone

to divergence.

To address the aforementioned drawback, the Schmidt-

Kalman filter (SKF) that was originally proposed in [11] and

derived in details in [2] can be employed. The SKF, also called

the consider filter, still augments the system state with the bias

terms but it propagates only the state estimate, its estimation

covariance, and its cross correlation with the biases. The bias

terms and their associated covariance are uncorrected during

the filtering process. In this way, the SKF achieves filtering

consistency by considering the contribution of system biases

when updating the state estimate and its covariance.

The SKF has attracted a significant amount of attention due

to its wide applications in e.g., orbit determination [12], Mars

entry navigation [13] and source geolocation when satellite

ephemeris errors are present [14]. In [15], it was established

theoretically that the SKF is an unbiased state estimator under

linear Gaussian state-space models. Furthermore, it has the

smallest state estimation variance among all the unbiased

state estimators that do not compensate system biases. In

[16], an alternative derivation of the SKF was given and

the difference between the SKF and consider analysis was

discussed. The information-domain equivalent of the SKF,

referred to as the inverse Schmidt estimator, was developed

in [5]. In [17], the SKF was established from the Bayesian

filtering perspective and the interacting multiple model-SKF

(IMM-SKF) was proposed in [3] to track maneuvering objects.

To handle the presence of nonlinearity in the system dynamics

and measurement models, the Gauss-Hermite quadrature rule

and unscented transformation were introduced into the SKF

framework. As a result, the quadrature and unscented SKFs

were established (see [18]–[20]). More recently, the polyno-

mial chaos expansion method was integrated with the SKF

to deal with system nonlinearity and non-Gaussian bias terms

[21].



Most of the studies surveyed above on the SKF assumed that

the measurements are subject to Gaussian noises. This renders

existing SKF algorithms sensitive to measurement outliers,

which could come from e.g., non-line-of-sight (NLOS) signal

propagation [22], transient disturbance, and sensor failure [23].

In this paper, we develop new SKFs that are robust to the

presence of outlying measurements. In particular, we shall

consider the more general scenario where the measurement

vector at every sampling instant can be partitioned into multi-

ple subvectors with independent noises. For each measurement

subvector, we impose a Wishart prior distribution on its

noise precision matrix, which is equal to the inverse of the

noise covariance, such that the measurement likelihood now

has heavier tails than the Gaussian distribution. To find an

approximation to the analytically intractable joint posterior of

the system state, biases, and measurement noise covariances,

variational inference similar to that used in [24], [25] is

employed. The principle underlying the SKF that we consider,

i.e., the effect of system biases that do not actively estimate

them, is incorporated. Two variants of outlier-robust SKFs

(ORSKFs) are established and their performance are evaluated

using simulations and real-world data.

It is worthwhile to point out that the idea of imposing a prior

distribution on the measurement noise covariance to achieve

robustness to outliers in filtering techniques is not new (see

e.g., [24]–[29] and references therein). This work focuses on

robustifying the KF instead of the SKF, and as a result, the

presence of system biases was not considered. An interesting

topic for future research would be to investigate the integration

of variational inference techniques in [26]–[29] into the SKF

framework to develop other ORSKF algorithms.

The remainder of this paper is organized as follows. Section

II formulates the linear state estimation problem with system

biases and briefly presents the standard SKF. Section III devel-

ops two new ORSKFs using variational inference. Section IV

provides the experimental results obtained using simulations

and real-world data. The conclusions are given in Section V.

II. PROBLEM FORMULATION

Consider the following linear state-space model
[
xk

b

]

=

[
Fx O

O I

]

︸ ︷︷ ︸

F

[
xk−1

b

]

+

[
vk

0

]

(1a)

yk =
[
Hx Hb

]

︸ ︷︷ ︸

H

[
xk

b

]

+wk (1b)

where xk ∈ Rnx×1 is the state of interest at the kth sampling

instant, b ∈ Rnb×1 is the system bias vector, Fx is the

state transition matrix, and Hx and Hb are the measurement

matrices for the state vector xk and bias vector b.

In (1), vk is the process noise vector for xk, which is

white Gaussian with zero mean and covariance Qv (i.e.,

vk ∼ N (0,Qv)). Besides, we assume zero process noise for

b because the biases are often strongly correlated over time

and they will be modeled using a Gaussian random vector

as in [3], [4], [15]. Mathematically, we have b ∼ N (0,B).
To simplify the theoretical development, we consider in this

work the scenario where system biases are present only in the

measurement model (see (1b)). Incorporating non-zero process

noise for the measurement bias terms in b and accounting for

possible biases in the state dynamic model in (1a) as in [15],

[17] would just require some straightforward modifications of

the proposed ORSKFs, which will be omitted here for brevity.

We further assume that the measurement vector yk ∈
Rny×1 can be divided into M subvectors as, with slight

relaxation of notations,

yk =
[
yT
1,k,y

T
2,k, ...,y

T
M,k

]T
. (2)

As a result, the measurement noise vector wk, Hx and Hb

can be correspondingly expressed in block form as

wk =
[
wT

1,k,w
T
2,k, ...,w

T
M,k

]T
(3a)

Hx =
[
HT

1,x,H
T
2,x, ...,H

T
M,x

]T
(3b)

Hb =
[
HT

1,b,H
T
2,b, ...,H

T
M,b

]T
(3c)

such that for i = 1, 2, ...,M and,

yi,k = Hi,xxk +Hi,bb+wi,k. (4)

The noise subvectors wi,k are white and independent to

one another. A practical example for motivating the above

formulation is the fusion of the time difference of arrivals

(TDOAs) and their time derivative, frequency difference of

arrivals (FDOAs) for localization applications. In this case, the

measurements are TDOAs and FDOAs subject to independent

random noises when they are estimated using the maximum

likelihood (ML) method such as the one from [30]. Outlying

measurements can occur due to e.g., temporary time and

frequency offsets [31] but they are still independent, since they

are from different sources of errors.

If the biases in b are ignored and the KF is applied directly

to estimate xk from the obtained measurements yk, the KF

would be inconsistent and the state covariance calculated by

the KF would be smaller than the true one. The standard SKF

provides consistent state covariance by considering the impact

of b without actually identifying it [3], [4], [18].

Specifically, suppose the measurement noise vector wk has

a Gaussian distribution with zero mean and covariance Qw

(i.e., wk ∼ N (0,Qw)). Let the joint posterior of xk and b at

the (k − 1)th sampling instant be
[
xk−1

b

]

∼ N (mk−1,Σk−1) (5)

where mk−1 and Σk−1 are defined as

mk−1 =

[
µk−1

0

]

, Σk−1 =

[
Pk−1 Ck−1

CT
k−1 B

]

. (6)

µk−1 is the posterior mean of the estimate of the state vector

xk−1 and Pk−1 is its posterior covariance. Ck−1 is the cross

covariance between the state estimate and bias terms in b.

At the kth sampling instant, the standard SKF carries out

the following prediction and update steps in sequence:



1) Prediction: These steps are straightforward. From (1a)

and (1b), the predicted mean and covariance for the vector

combining the current state vector and biases, [xT
k ,b

T ]T , are

mk|k−1 = Fmk−1 (7a)

Σk|k−1 = FΣk−1F
T +

[
Qv O

O O

]

(7b)

where the subscript k|k−1 denotes prediction from sampling

instant k − 1 to the current instant k.

2) Update: The SKF updates the state estimate through

evaluating

Sk = HΣk|k−1H
T +Qw (8a)

Kk =

[
I O

O O

]

Σk|k−1H
TS−1

k (8b)

mk =

[
µk

0

]

= mk|k−1 +Kk · (yk −Hmk|k−1) (8c)

Σk = (I−KkH)Σk|k−1(I−KkH)T +KkQwK
T
k . (8d)

We can see from (6), (7b), (8a) and (8b) that the standard

SKF considers the impact of biases via exploring their prior

covariance B and the cross covariance Ck−1 when computing

the innovation covariance Sk and gain Kk for state update.

Furthermore, according to (8b), the SKF sets the bias compo-

nent of the gain matrix Kk to be zero. As a result, the bias

terms are not actively estimated, they are still zero-mean (see

(8c)) and their posterior covariance given in (8d) can be shown

to be equal to B, which is their prior covariance [18], [19],

[32].

The performance of the standard SKF presented above

depends heavily on the validity of the assumption that mea-

surement noises are Gaussian. When outlying measurements

are present, the SKF may no longer be the minimum–variance

and consistent state estimator among all the unbiased state

estimation techniques. We shall develop in the next section

new ORSKFs that are robust to outliers.

III. OUTLIER-ROBUST SCHMIDT-KALMAN FILTERING

A. Heavy-tail measurement noise model

To cope with non-Gaussian and heavy-tail measurement

noises within the SKF framework, we shall take an approach

similar to the one proposed in [24], [25]. In particular, it is

assumed that the noises wi,k in the measurement subvectors

yi,k are zero-mean Gaussian distributed with covariance Qwi
,

whose inverse, known as the precision matrix, is sampled

from an independent and white Wishart prior distribution.

Mathematically, let Λi = Q−1
wi

and we have that

Λi ∼ W

(
R−1

i

νi
, νi

)

∝ |Λi|
νi−pi−1

2 exp(−
νi
2

tr(RiΛi)) (9)

where νi and R−1
i /νi represent the degrees of freedom and

scale matrix of this conjugate prior distribution [33], [34]. pi
is the dimensionality of the measurement subvector yi,k such

that
∑M

i=1 pi = ny .

It can be shown by carrying out the following integral and

applying the definition of the Wishart distribution in (9) that

the noise vector wi,k would now have a distribution given by

p(wi,k) =

∫

N (0,Λ−1
i )W

(
R−1

i

νi
, νi

)

dΛi

∝

(

1 +
1

νi
wT

i,kR
−1
i wi,k

)−
νi+1

2

.

(10)

We have from (10) that if yi,k has more than one element

(pi > 1), p(wi,k) would have longer tails than the Student’s

t-distribution with the degrees of freedom νi and shape matrix

Ri, which is proportional to
(

1 + 1
νi
wT

i,kR
−1
i wi,k

)−
νi+pi

2

. It

is well-known that compared with the Gaussian distribution,

the Student’s t-distribution has heavier tails. Therefore, by

imposing Wishart priors on the noise vectors wi,k, we obtain

noise distributions with generally much heavier tails than the

Gaussian to handle the presence of outlying measurements.

B. Variational Approximation

As the noise precision matrices Λi are not fixed and they are

latent variables, estimating the state xk from the measurements

yk using the state-space model in (1) requires computing

the joint posterior of xk, the bias vector b, and Λi. This is

analytically intractable despite that the state-space model is

linear, because the noise distribution is no longer Gaussian

(see (10)). We resort to the technique of variational inference

and where appropriate, incorporating the idea of the SKF that

the effect of biases is considered but they are not estimated to

establish two new ORSKFs.

The algorithm development again starts with assuming that

at the (k−1)th sampling instant, the joint posterior of the state

vector xk−1, and bias terms b is Gaussian, which is given in

(5). Let us denote the approximate posterior of xk, b, and Λi

at the current sampling instant k as q(xk,b,Λ1,Λ2, ...,ΛM ).
Applying the mean-field approximation [33] factorizes it into

q(xk,b,Λ1,Λ2, ...,ΛM ) = q(xk,b)

M∏

i=1

q(Λi). (11)

To find the approximate posterior in (11), we first note that

p(yk,xk,b,Λ1,Λ2, ...,ΛM |y1:k−1)

= p(yk|xk,b,Λ1,Λ2, ...,ΛM )

M∏

i=1

p(Λi)p(xk,b|y1:k−1)

(12)

where the Markovian property of the state-space model in

(1), and the fact that the noise precision matrices Λi, have

independent and white priors have been applied. Besides,

y1:k−1 = {y1,y2, ...,yk−1} stands for the set of measure-

ments collected up to sampling instant k − 1. Utilizing that

the measurement subvectors yi,k are subject to independent

noise wi,k further transforms (12) into

p(yk,xk,b,Λ1,Λ2, ...,ΛM |y1:k−1)

=

M∏

i=1

p(yi,k|xk,b,Λi)p(Λi) · p(xk,b|y1:k−1).
(13)



Marginalizing out the state vector xk, biases in b and precision

matrices Λi on both sides of (13) yields the conditional

measurement likelihood p(yk|y1:k−1). Taking the logarithm

of the result, using (11) and applying the Jensen’s inequality

[33], we arrive at

logp(yk|y1:k−1) ≥

∫

q(xk,b)
M∏

i=1

q(Λi)

× log

∏M

i=1 p(yi,k|xk,b,Λi)p(Λi)p(xk,b|y1:k−1)

q(xk,b)
∏M

i=1 q(Λi)

dxkdb dΛ1dΛ2 · · · dΛM .
(14)

The term on the right hand side of (14) is often referred to as

the evidence lower bound (ELBO) [33], [34].

We shall attempt to maximize the ELBO to find the desired

approximate posterior in (11) to develop the desired outlier-

robust SKFs. For this purpose, the fixed-point optimization

is adopted. Specifically, we shall first derive the approximate

posterior of the precision matrices q(Λi) under the condition

that q(xk,b) is given and then proceed to find q(xk,b) with

q(Λi) being fixed.

C. Outlier-robust SKFs

Carrying out the integral in the ELBO and ignoring all

the terms not related to the precision matrix Λi yields that

to maximize the resulting ELBO, q(Λi) has the following

functional form

q(Λi) ∝ exp

(∫

q(xk,b)logp(yi,k|xk,b,Λi)p(Λi)dxkdb

)

.

(15)

From (4) and the discussions above (9), we have that

p(yi,k|xk,b,Λi) follows a Gaussian distribution given by

p(yi,k|xk,b,Λi) ∝ |Λi|
1
2 exp

(

−
1

2
δTi Λiδi

)

(16)

where

δi = yi,k −Hi,xxk −Hi,bb. (17)

Putting (16) and (9) into (15) gives

q(Λi) ∝ |Λi|
νi−pi

2 exp

(

−
1

2
tr
(
(Riνi + 〈δiδ

T
i 〉)Λi

)
)

(18)

where 〈δiδ
T
i 〉 is equal to

〈δiδ
T
i 〉 =

∫

q(xk,b)δiδ
T
i dxkdb. (19)

It can be seen from (18) and (9) that the approximate posterior

of the precision matrix Λi is still a Wishart distribution but

with the degrees of freedom νi + 1 and scale matrix (Riνi +
〈δiδ

T
i 〉)

−1. That is, we have that

q(Λi) = W
(
(Riνi + 〈δiδ

T
i 〉)

−1, νi + 1
)
. (20)

We next find the approximate posterior of the state vector

xk and biases in b, q(xk,b), using the obtained posterior

of the precision matrices Λi, q(Λi), given in (20). Again,

evaluating the integral in (14) and discarding the terms that

are not dependent on xk or b, simplify the ELBO into

∫

q(xk,b)log
exp

(
∑M

i=1 γi,k + logp(xk,b|y1:k−1)
)

q(xk,b)
dxkdb

(21)

where γi,k is equal to, after applying (16),

γi,k =

∫

q(Λi)logp(yi,k|xk,b,Λi)dΛi

∝ −
1

2
δTi 〈Λi〉δi

(22)

and according to (20) and [33], [34],

〈Λi〉 =

(
Riνi + 〈δiδ

T
i 〉

νi + 1

)−1

. (23)

Substituting (22) back into (21), using (16) and ignoring the

constant terms, we can rewrite the ELBO in (21) as
∫

q(xk,b)log

∏M

i=1 p(yi,k|xk,b, 〈Λi〉)p(xk,b|y1:k−1)

q(xk,b)
dxkdb

(24)

and it is proportional to

−KLD(q(xk,b)||p(xk,b|y1:k, 〈Λ1〉, 〈Λ2〉, ..., 〈ΛM 〉)). (25)

Here, KLD(q||p) denotes the Kullback-Leibler divergence

(KLD) [35] between two distributions, q(·) and p(·).
p(xk,b|y1:k, 〈Λ1〉, 〈Λ2〉, ..., 〈ΛM 〉) is the posterior of the

state vector xk and biases b given that the measurement noises

wi,k are independent Gaussian vectors with zero mean and

covariances 〈Λi〉
−1, i = 1, 2, ...,M . Under the linear state-

space model (see (1)) and noting that the posterior of the state

vector at the previous sampling instant xk−1 and bias terms

b is Gaussian (see (5)), we have that

p(xk,b|y1:k, 〈Λ1〉, 〈Λ2〉, ..., 〈ΛM 〉) = N (m̄k, Σ̄k) (26)

and where the postorior mean and covariance, m̄k and Σ̄k,

are found via evaluating

S̄k = HΣk|k−1H
T + Q̄w (27a)

K̄k = Σk|k−1H
T S̄−1

k (27b)

m̄k =

[
µ̄k

µ̄b
k

]

= mk|k−1 + K̄k · (yk −Hmk|k−1) (27c)

Σ̄k = (I− K̄kH)Σk|k−1(I− K̄kH)T + K̄kQ̄wK̄
T
k . (27d)

It can be seen that the computation in (27) is in fact the

update stage in the standard KF [1]. The measurement noise

covariance is equal to

Q̄w = diag(〈Λ1〉
−1, 〈Λ2〉

−1, ..., 〈ΛM 〉−1). (28)

1) ORSKF-1: One way to derive q(xk,b) and achieve

robust Schmidt-Kalman filtering is to apply the idea of SKF

such that

q(xk,b) = N (mk,Σk) (29)

where with slight relaxation of notations,

mk =

[
µk

0

]

, Σk =

[
Pk Ck

CT
k B

]

. (30)



Because the posterior mean and covariance of the biases b

are known priorly, we can find q(xk,b) by determining µk,

Pk and Ck, which will be achieved by maximizing the ELBO

in (24). Mathematically, this is equivalent to minimizing the

KLD in (25) between N (mk,Σk) in (29) and N (m̄k, Σ̄k) in

(26). After applying the matrix determinant lemma [36], the

associated KLD is proportional to [35]

Lk = −log|Pk −CkB
−1CT

k |+ tr
(
Σ̄−1

k Σk

)

+ (mk − m̄k)
T
Σ̄−1

k (mk − m̄k) .
(31)

To facilitate the derivation, we express Σ̄k and its inverse in

block form as

Σ̄k =

[
P̄k C̄k

C̄T
k B̄k

]

, Σ̄−1
k =

[
Ak Dk

DT
k Sk

]

. (32)

Putting (32) into (31) and neglecting the constant terms convert

Lk into

Lk = −log|Pk −CkB
−1CT

k |+ tr
(
AkPk +DkC

T
k

)

+ tr
(
DT

kCk + SkB
)
− 2(µk − µ̄k)

TDkµ̄
b
k

+ (µk − µ̄k)
TAk(µk − µ̄k).

(33)

To find µk, we calculate the partial derivative ∂Lk/∂µk

and set the result to zero to arrive at

µk = µ̄k +A−1
k Dkµ̄

b
k. (34)

Similarly, the submatrix Pk can be shown, after using the

results on the derivative of the matrix determinant [36], to be

equal to

Pk = A−1
k +CkB

−1CT
k . (35)

The cross covariance Ck can be found using ∂Lk/∂Ck = O,

which is given by

Ck = −A−1
k DkB. (36)

Using the block matrix inversion formula [36], we have that

from (32), A−1
k Dk = −C̄kB̄

−1
k . Substituting this result into

(34), (35) and (36) yields

µk = µ̄k − C̄kB̄
−1
k b̄k (37a)

Pk = P̄k + C̄kB̄
−1
k (B− B̄k)B̄

−1
k C̄T

k (37b)

Ck = C̄kB̄
−1
k B. (37c)

We shall provide a brief proof that the posterior covariance Σk

with its blocks given in (37) is positive definite. Specifically,

we know already that the prior covariance of the biases B is

positive definite. Moreover, we have

Pk −CkB
−1CT

k = P̄k − C̄kB̄
−1
k C̄T

k = A−1
k (38)

which is positive definite. This completes verifying the positive

definiteness of the obtained posterior covariance Σk.

Putting (29) into (19), substituting the definition of δi in

(17) and carrying out the integral yield

〈δiδ
T
i 〉 = (yi,k − [Hi,x,Hi,b]mk)(yi,k − [Hi,x,Hi,b]mk)

T

+ [Hi,x,Hi,b]Σk[Hi,x,Hi,b]
T .

(39)

Using the above result in (23) produces a closed-form expres-

sion for the posterior mean of the precision matrix Λi.

We are ready to present the first proposed ORSKF, referred

to as ORSKF-1. At the current sampling instant k, the ORSKF-

1 takes the following processing steps:

1). Perform state prediction using (7);

2). Initialize 〈Λi〉, i = 1, 2, ...,M , using their prior means

such that 〈Λi〉 = R−1
i ;

3). Generate Q̄w using (28), and find m̄k and Σ̄k using

(27);

4). Compute the posterior mean and covariance of the state

vector and biases, mk and Σk, using (37);

5). Update 〈Λi〉 using (39) and (23);

6). Iterate steps 3)-5) until convergence.

It is important to note that at each sampling instant, the

proposed ORSKF-1 attempts to approximate within the SKF

framework (see (29)) the posterior of the state vector and

bias terms when they are estimated jointly by the KF (see

(27)). Therefore, with the ORSKF-1, the bias terms remain

uncorrected over the whole state estimation process. This is

the key difference between the ORSKF-1 and augmented-state

approaches such as those in [9], [10] where the biases are

always identified together with the state vector. As a result, the

ORSKF-1 could be less prone to filtering divergence when the

biases have low observability, compared with the augmented-

state filters.

2) ORSKF-2: Alternatively, we can note from (23) and

(39) that the precision matrix of the measurement noise Λi

is updated in an adaptive manner such that the measurement

residual δi defined in (17) is taken into account. As such,

if the current measurement subvector yi,k is corrupted by

outliers, the covariance of the measurement residual, 〈δiδ
T
i 〉,

would be large due to the increase in the residual (see (39))1.

This motivates us to develop another ORSKF, which will be

called ORSKF-2, that integrates the standard SKF presented

in Section II and the adaptive updating of the measurement

noise precision matrices.

At the current sampling instant k, the ORSKF-2 takes the

following processing steps:

1). Perform state prediction using (7);

2). Initialize 〈Λi〉, i = 1, 2, ...,M , using their prior means

such that 〈Λi〉 = R−1
i ;

3). Generate Q̄w using (28);

4). Find the posterior mean and covariance of the state

vector and biases, mk and Σk, using the standard SKF given

in (8) with Qw replaced with Q̄w;

5). Update 〈Λi〉 using (39) and (23);

6). Iterate steps 3)-5) until convergence.

It can be seen that the difference between the two proposed

ORSKFs lies in how they calculate the posterior mean and

covariance of the state vector and biases. In particular, the

ORSKF-2 applies the standard SKF with the updated noise

covariances Q̄w while the ORSKF-1 resorts to the KLD

minimization (see (25)).

1Note that the ORSKF-1 also uses this adaptive updating scheme to help
achieve robustness to the outlying measurements (see (28), (23) and (39)).



IV. EXPERIMENT RESULTS

This section evaluates the performance of the two proposed

ORSKFs using synthetic and real-world data. The experi-

ments are all concerned with estimating from raw TDOAs

and FDOAs obtained over time by an array of N sensors

the true TDOAs for the following localization applications

[37]. At each sampling instant, the sensor array generates

N − 1 linearly independent TDOA and FDOA measurements,

with respect to a reference sensor [38], [39]. To fuse these

measurements, when realizing ORSKF-1 and ORSKF-2, we

adopt the constant acceleration (CA) model [1] such that the

state vector now consists of three (N − 1) × 1 subvectors.

They contain respectively the true TDOAs, their first-order

time derivative (i.e., the true FDOAs) and their second-order

time derivative. Thus, the state transition matrix Fx in (1) is

Fx =





IN−1 T · IN−1
T 2

2 · IN−1

ON−1 IN−1 T · IN−1

ON−1 ON−1 IN−1



 . (40)

Besides, as the measurements are the obtained raw TDOAs and

FDOAs, the measurement matrix Hx would be Hx = I2(N−1).

Here, T denotes the sampling interval and IN−1 represents the

(N − 1) × (N − 1) identity matrix. The state process noise

vk in (1a) is white Gaussian. It has zero mean and covariance

Qv = σ2
vGGT , where G = [T

2

2 · IN−1, T · IN−1, IN−1]
T .

A. Synthetic Data

The scenario considered in [37] is used here. There are N =
5 stationary sensors located at s1 = [10, 0]T , s2 = [30, 0]T ,

s3 = [50, 0]T , s4 = [20, 30]T , s5 = [40, 30]T . Starting at

[25, 15]T , the object to be localized moves along an 8-shaped

trajectory with an average speed of 1.5/s for 84s. The object

signal TDOAs and FDOAs are measuremed at the sensor array

every T = 0.1s. The obtained TDOAs are multiplied with the

signal propagation speed and the measured FDOAs are scaled

by the signal wavelength before they are fused. Figs. 1(a) and

1(b) plot the true TDOAs and FDOAs between sensor pair

2 and 1, while in Figs. 1(c) and 1(d), the true TDOAs and

FDOAs between sensor pair 4 and 1 are shown. It is clear

that the FDOAs are the changing rates of the corresponding

TDOAs and they are more sensitive to the object movement.

We carry out two experiments and both have L = 1000
ensemble runs. In each ensemble run, outlier-corrupted TDOA

measurements are generated by adding to the true values mul-

tivariate Student’s t-distributed noises with zero mean, degrees

of freedom λ = 3 and shape matrix Rt = σ2
t (IN−1+11T )/2.

Here, σt = 0.5 and 1 is an (N−1)×1 column vector with all

the elements being equal to 1. The FDOAs with measurement

noises independent to those in the TDOAs are generated

in the same way, except that the shape matrix adopted is

Rf = σ2
f (IN−1+11T )/2, where σf = 0.3. The state process

noise has a standard deviation σv = 1.

For the purpose of comparison, we simulate the standard

KF and SKF as well. The KF employs the CA model as in

the ORSKFs but it ignores the presence of system biases. The

SKF uses the same state-space model as the ORSKFs but it
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Fig. 1. True TDOAs and FDOAs collected by the sensor array over time. (a).
True TDOAs between sensor pair 2 and 1. (b). True FDOAs between sensor
pair 2 and 1. (c). True TDOAs between sensor pair 4 and 1. (d). True FDOAs
between sensor pair 4 and 1.

assumes Gaussian measurement noises. By moment matching

[40], both the KF and SKF use a measurement covariance

equal to Qw = diag( λ
λ−2Rt,

λ
λ−2Rf ). The ORSKFs set

that the Wishart priors for the precision matrices of the

TDOA and FDOA measurement noises have scale matrices

(λ − 2)R−1
t /(λν) and (λ − 2)R−1

f /(λν), where ν = 4. All

the algorithms in consideration are initialized in the same way

using the TDOA and FDOA measurements obtained at the first

sampling instant.

We are interested in the estimation accuracy and consistency

for the true TDOAs. They are quantified using the averaged

root mean square error (RMSE), which is the TDOA estima-

tion RMSE averaged over L = 1000 ensemble runs and N−1
true TDOA estimates, and normalized estimation error squared

(NEES) [1]. Ideally, the NEES should be close to N − 1 = 4.

In the first synthetic data-based experiment, we consider the

scenario where only the raw TDOAs are subject to additive

measurement biases that are modeled as an (N−1)×1 Gaus-

sian random vector with zero mean and covariance σ2
b IN−1.

σb is set to be 0.3. Figs. 2 and 3 depict the obtained averaged

TDOA estimation RMSE and NEES results as a function of

time. It can be seen that in this simulation, the proposed

ORSKF-1 provides the best TDOA estimation accuracy while

maintaining a NEES slightly smaller than 4, indicating that

filtering consistency is achieved. The standard SKF suffers

from significant degradation in its TDOA estimation perfor-

mance due to the non-Gaussian noises in both the TDOA and

FDOA measurements. The two developed ORSKFs performs

better than the SKF, as they both can adaptively estimate

the measurement noise covariance. Besides, according to Fig.

3, the standard KF has a NEES close to 40 (not shown

in the figure), which is much greater than 4. Thus, it is

highly overconfident because it simply neglects the presence

of TDOA measurement biases.

We repeat the first experiment but this time, only the raw

FDOAs are subject to additive zero-mean Gaussian-distributed

measurement biases with covariance σ2
b IN−1. The simulation

results are summarized in Figs. 4 and 5. We can see that the
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Fig. 2. Comparison of averaged TDOA estimation RMSEs over time under
TDOA measurement biases.
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Fig. 3. Comparison of TDOA estimation NEESs over time under TDOA
measurement biases.

ORSKF-1 continues to provide the smallest averaged TDOA

estimation RMSE. But in this experiment, it over-estimates the

true TDOA covariance and becomes a conservative filter, as

the NEES is evidently lower than 4. This change in the filtering

consistency of the ORSKF-1 might be explained by examining

(37). It can be observed that the state estimate covariance is

generated in a way somewhat independent of how the state

estimate is modified (see (37a) and (37b)). The ORSKF-2 and

standard SKF have similar performance but the ORSKF-2 is

less sensitive to large measurement noises, again thanks to it

adaptively estimating the measurement noise covariance. The

KF remains overly confident in this simulation and it offers

the worst TDOA estimation accuracy.

B. Real-World Data

A measurement compaign was conducted in November

2019, where three ground sensors were used to collect the

signal TDOAs and FDOAs from a flying object. Some of the

obtained measurements are shown in Fig. 6, where ri1 and

fi1, i = 2, 3, represent the TDOA and FDOA between sensor

pair i and 1. Clearly, the TDOAs between sensors 3 and 1 are

subject to a lot of outliers. The FDOA measurements have low

noise level. But f21 has a negative bias from 5500s to 7900s;

f31 has a negative bias as well from 8100s to 10000s.

The proposed ORSKFs are applied to fuse the TDOAs and

FDOAs. Their implementations are the same as the ones used
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Fig. 4. Comparison of averaged TDOA estimation RMSEs over time under
FDOA measurement biases.

0 10 20 30 40 50 60 70 80
t (s)

0

1

2

3

4

5

6

7

T
D

O
A

 E
st

im
at

io
n 

N
E

E
S

KF
SKF
ORSKF-1
ORSKF-2

Fig. 5. Comparison of TDOA estimation NEESs over time under FDOA
measurement biases.

in the second synthetic data-based experiment, except that

now, N = 3, σt = 50, σf = 0.1 and σb = 0.05. The estimated

true TDOAs from ORSKFs are shown in Fig. (6a) and (6c). It

can be seen that both ORSKFs show robustness to the outlying

measurements but the TDOA estimates from the ORSKF-1

better follows the temporal evolution of the measurements.

V. CONCLUSIONS

The standard SKF attains filtering consistency by consid-

ering the impact of system biases when estimating the state

and its covariance. Its optimality as a minimum variance state

estimator without actively identifying the system biases would

break down when the measurement noise is no longer Gaus-

sian. To handle outlying measurements in the SKF framework,

we assumed that the precision matrix of the measurement noise

has a Wishart prior distribution. In this way, the measurement

noise distribution now has longer tails than Gaussian, which

could mitigate the effects of outliers on the filtering accuracy.

Variational inference was utilized and two computationally

tractable ORSKFs, namely ORSKF-1 and ORSKF-2, were

established. They differ in how the SKF principle is integrated

and they both estimate the measurement noise covariance

adaptively to achieve robustness. Experiments using both

synthetic and real-world data were conducted. It was found

that both ORSKFs can provide improved state estimation
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Fig. 6. (a). Measured and ORSKF-filtered TDOAs between sensor pair 2
and 1. (b). Measured FDOAs between sensor pair 2 and 1. (c). Measured and
ORSKF-filtered TDOAs between sensor pair 3 and 1. (d). Measured FDOAs
between sensor pair 3 and 1.

accuracy over the standard SKF when outliers are present. The

estimated state covariance was either close to or greater than

the true value, which corroborates that the proposed ORSKFs

are consistent/conservative state estimators.
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