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Abstract—The application of multiple target tracking algo-
rithms has exponentially increased during the last two decades.
Recently, model-free approaches, such as Gaussian process regres-
sion and convolutional neural networks, have been developed for
target tracking. This paper presents a simulation-based study on
the practical aspects of a very promising and recently proposed
Gaussian process method, namely the Gaussian process motion
tracker [1]. The paper also provides design guidelines on the
various aspects of the above-mentioned tracking method.

Index Terms—Target Tracking, Gaussian Process, Gaussian
Process Motion Tracking, Nonlinear Estimation, Data Driven
Methods

I. INTRODUCTION

Target tracking deals with state estimation of the targets

of interest using sensor data. These methods have been

applied in various automation systems belonging to various

fields such as air traffic control [2], sea surveillance [3],

oceanography [4], autonomous vehicles [5] and many more.

Historically, model-based approaches have been applied for

solving target tracking problems. Recently, machine-learning

based model-free methods have been proposed either as a

complete solution [6] or in a hybrid setup [7], [8]. Hybrid

methods combine model-based and model-free methods for

target tracking.

Machine learning methods rely on the available data to

learn an unknown input to output mapping. Various machine

learning methods have been proposed in literature for different

artificially intelligent systems. In the field of target tracking,

deep learning and Gaussian process based methods have

become popular recently. However, providing a level of trust

in the developed solutions, in the presence of uncertainties, is

still a problem that has not been widely studied. The tracking

results are often an input to a human or computer based decision

making system which cannot perform satisfactorily without

uncertainty measures. Gaussian process methods, have been

recently proposed as an efficient solution to different target

tracking problems [6], [7], [9].

Target tracking methods can be classified as point, extended

and group target tracking [10], [11] methods. Point target

tracking requires target kinematics estimation, i.e. the estima-

tion of positions, velocities and accelerations of the objects

of interest. In tracking of extended and groups of objects, in

addition to the kinematics, we are interested in the estimation

of the target shape, orientation and size. Gaussian process based

methods have been proposed for point, extended and group

target tracking. In this paper, various aspects of the Gaussian

process motion tracker (GPMT) [1] are studied. The GPMT

provides point target state estimation in presence of unknown

target dynamics and measurement noise. The measurement to

target assignment (measurement origin) is assumed known.

A Gaussian process is a flexible stochastic process. It is

a learning based method which relies on a given data for

learning the unknown model. Some example tasks performed

using a Gaussian process are classification, regression and

pattern recognition. A Gaussian process has also been applied

for the target shape estimation [9], [12], [13]. The GPMT

employs the Gaussian process in a regression setting for the

target kinematics estimation. The paper [1] does not discuss

some important aspects of the approach. These include the

choice of the covariance kernel, robustness of the approach to

the measurement noise model and effect of the training data

on the proposed method. This paper focuses on the above-

mentioned aspects of the GPMT in an attempt to highlight the

strength of the proposed method.

The rest of the paper is structured as follows. The background

knowledge for a Gaussian process and the GPMT are given

in Sections II and III, respectively. The kernel choice, the

impact of the training data and the robustness of the GPMT to

the measurement noise is studied in Sections V, VI and VII,

respectively. The studies are followed by conclusions.

II. GAUSSIAN PROCESS

A Gaussian process (GP) is a distribution over functions

and is defined by a mean and covariance kernel [14]. It is a

powerful non-parametric method which has been applied to

solve various problems in the domain of artificial intelligence

such as heart rate analysis [15], classification [16] and pattern

recognition [17]. The Gaussian process regression is briefly

described next since the Gaussian process motion tracker is

based upon it.

Consider a one-dimensional input u which relates non-

linearly to an output f(u) and is modelled using a Gaussian



process. The measurement model is assumed with an additive

Gaussian noise and given below:

z = f(u) + ǫ, ǫ ∼ N (0, σ2), (1)

f(u) ∼ GP (m(u), k(u, u′)), (2)

where z is the measured output, ǫ denotes the zero-mean

independent identically distributed (i.i.d.) Gaussian noise with

variance σ2 and GP (m(u), k(u, u′)) specifies the GP model

with mean m(u) and covariance kernel k(u, u′). A GP is a

learning based method and requires data to learn the unknown

function. Suppose u = [u1, · · · , un]
T and z = [z1, · · · , zn]T

denote, respectively, the input and output vectors, also called

training data. A GP regression on the testing input vector

u⋆ can be applied by using the property of GP models. This

means that the realisations of the GP have a joint Gaussian

distributed. This is mathematically expressed below:

[

z

z⋆

]

∼ N
(

[

m(u)
m(u⋆)

]

,

[

Kuu + σ2In Kuu⋆

Ku⋆u Ku⋆u⋆

]

)

, (3)

Kuu =







k(u1, u1) · · · k(u1, un)
...

. . .
...

k(un, u1) · · · k(un, un)






, (4)

where m(·) denotes the mean vector, Kuu⋆ is the covariance

matrix between the input training and test vectors and In is an

n-dimensional identity matrix. The GP prediction at the test

vector is given below:

E[z⋆] = m(u⋆) +Ku⋆u

(

Kuu + σ2In

)

−1

(z −m(u)), (5)

C[z⋆] = Ku⋆u⋆ −Ku⋆u

(

Kuu + σ2In

)

−1

Kuu⋆ , (6)

where E[z⋆] and C[z⋆] represent, respectively, the mean and

the covariance of the output test vector and (.)−1 is the matrix

inverse. The above GP regression be easily extended to the

multiple-input and multiple-output case.

The flexibility of the GP regression is linked with the mean

and the covariance kernel, which encapsulate the prior. The

average behaviour of most stochastic processes is unknown.

Similar is the case of the GPMT [1], where the target trajectory

is assumed unknown. In such cases, the mean of the GP is set

to zero. It is important to understand that this does not restrict

the GP regression, except for cases when GP predictions away

from the training data would converge to different results. The

covariance kernel, captures the correlations among the input

space and it is an important design parameter of GP models.

Various covariance kernels have been proposed for the GP

regression, some of which are described briefly below. The two

common parameters of the covariance kernels, also called

hyperparameters, are the magnitude variance σ2
m and the

lengthscale l hyperparameters. The magnitude of the variance

controls the average distance between the mean function and

the mean of the GP regression. The lengthscale controls the

correlation width of the input domain.

1) Squared Exponential Kernel:

kse(u, u
′) = σ2

m exp

(

− (u− u′)2

2l2

)

(7)

is the most commonly used kernel [14]. It is a very

smooth kernel and is infinitely differentiable.

2) Rational Quadratic Kernel: is in the form

krq(u, u
′) = σ2

m

(

1 +
(u− u′)2

2αl2

)

−α

, (8)

where α is a scaling factor. The rational quadratic kernel

behaves as sum of squared exponential kernels with

different lengthscales. The lengthscales are varied using

the α hyperparameter. The rational quadratic kernel meets

the squared exponential kernel as α → ∞.

3) Matérn Kernel.

kν(u, u
′) =

21−ν

Γ(ν)

(

√
2ν(u− u′)

l

)ν
Kν

(

√
2ν(u− u′)

l

)

,

where ν > 0 and Kν is a modified Bessel function.

Unlike other kernels, this function gives a class of kernels.

Various kernels belonging to the Matérn class can be

built for different values of ν. As ν → ∞, the kernel

approaches a squared exponential kernel. As ν → 0, the

kernel approaches an exponential kernel. A well known

kernel from this class is obtained by setting ν = 3

2
[14]

and is given below:

k 3

2

(u, u′)=

(

1 +

√
3(u− u′)

l

)

exp

(

−
√
3(u− u′)

l

)

, (9)

Although, the GP models are quite flexible for constant

hyperparameters. The model adaptation can be improved by

determining the hyperparameters based on the training data.

This process is also called learning. The learning is performed

through optimisation of the marginal likelihood with respect to

the hyperparameters. The logarithm of the marginal likelihood

function is given below:

log p(z|u,η) = −1

2
zT (Kuu + σ2In)

−1z

− 1

2
log |Kuu + σ2In| −

n

2
log 2n, (10)

where p(·) denotes the marginal likelihood, η denotes the

hyperparameters vector and | · | is the matrix determinant.

III. GAUSSIAN PROCESS MOTION TRACKER

The Gaussian process motion tracker (GPMT), proposed

in [1], estimates the two-dimensional kinematics of the point

targets using noisy measurements. The tracker is based upon

the following assumptions:

1) The kinematics in x and y are mutually uncorrelated.

2) The coordinates are temporally correlated.

3) The temporal correlation with points in the distant past

is weak and these points can be ignored while training

of the GP model.

4) The measurement noise is an i.i.d. process.



One of the most commonly observed target manoeuvre model

is coordinated turn. The x and y coordinates are correlated

during a coordinated turn. In GPMT, the coordinates are

assumed mutually uncorrelated. The coordinate coupling can

be introduced in GPMT using coupled GPs [18]. The GPMT

in x-coordinate is given in this section. A similar tracker can

be built for the y-coordinate. It can be extended to any number

of dimensions. Suppose, fx represents the nonlinear target

dynamics function in x coordinate.

The GPMT system model is given below:

x = fx(t), fx(t) ∼ GP x(0, kx(t, t′)), (11)

zx = x+ ǫx, ǫx ∼ N (0, σ2
x), (12)

where GP x denotes the GP model of the x-coordinate with

covariance kernel kx, zx is the measurement and ǫx represents

the i.i.d. zero-mean measurement noise with variance σ2
x.

A typical radar and sonar reports measurements in polar

coordinates. In such scenarios, the process and measurement

models, (11) and (12), are modelled in the polar coordinates.

An alternate approach can be to calculate the measurement pdf

in Cartesian coordinates [19], [20]. The performance may be

degraded in the latter case as the cross-correlation among the

x and y coordinates is ignored according to 11.

The GP regression is a batch processing method. The GPMT

is an online method where it requires a subset of measurements

for the purposes of prediction and estimation. It requires

the d most recent measurements, the position prediction and

estimation, as given below:

µ̃x = Ktt[Ktt + σ2
xId]

−1zx
t
, (13)

φ̃2
x = Ktt −Ktt[Ktt + σ2

xId]
−1KT

tt, (14)

µ̂x = Ktt′ [Kt′t′ + σ2
xId]

−1zx
t′
, (15)

φ̂2
x = Ktt −Ktt′ [Kt′t′ + σ2

xId]
−1KT

tt′ , (16)

where t = k, t = [k − d, k − d + 1, · · · , k − 1]T , t′ = [k −
d+ 1, k− d+ 2, · · · , k]T , µx and φ2

x denote, respectively, the

positional mean and variance, ·̃ and ·̂ represent, respectively, the

predicted and the estimated values, K is the covariance matrix

and is determined using (4) and zx
a

represents the measurement

vector consisting of samples corresponding to time vector a.

The GPMT proposes to determine d using an offline trial and

error method. The method can be improved through online

determination of d as proposed in [21].

In [1], a squared exponential covariance kernel has been

proposed. The learning is done using the maximum likelihood

approach. It has been shown in [1], that the proposed GPMT

performs better than the model based approaches including

fixed grid interacting multiple model in challenging scenarios.

Tracking by using the position derivatives has also been

proposed in [1]. However, here we restrict the study the position

estimates only.

IV. TESTING SCENARIOS AND PERFORMANCE EVALUATION

The simulation-based studies are based upon the target sce-

narios and the evaluation methods described in this section. The

root mean square error (RMSE) of the target predicted position

is chosen as the main performance measure. A comprehensive

database of the point target trajectories is not publicly available.

Hence, the target trajectories are generated using the three most

commonly used point target dynamics models. These are the

nearly constant velocity (NCV) [22], the nearly coordinated

turn (NCT) [22] and the Singer acceleration model [23]. The

state transition and the process noise covariances of the three

models are given below:

FNCV =

[

1 T
0 1

]

,QNCV = qNCV

[

T 4

4

T 3

2
T 3

2
T 2

]

, (17)

FNCT =

[

1 sinωT
ω

0 cosωT

]

,QNCT = qNCT

[

T 4

4

T 3

2
T 3

2
T 2

]

, (18)

F s=





1 T β−1+γ
α2

0 1 1−γ
α

0 0 γ



,Qs=
2σ2

m

α





q11 q12 q13
q21 q22 q23
q31 q32 q33



 . (19)

q11 =
1− γ2 + 2β + 2β3

3
− 2β2 − 4βγ

2α5
, (20)

q12 = q21 =
γ2 + 1− 2γ + 2βγ − 2β + β2

2α4
, (21)

q13 = q31 =
1− γ2 − 2βγ

2α3
, (22)

q22 =
4γ − 3− γ2 + 2β

2α3
, (23)

q23 = q32 =
γ2 + 1− 2γ

2α2
, (24)

q33 =
1− γ2

2α
, (25)

where F · and Q· represent, respectively, the state transition

and the process noise covariance with variance q·, T denotes

the sampling time, ω is the turn rate, σ2
m is the manoeuvre

variance, α = 1

τm
is the reciprocal of the manoeuvre sojourn

time τm, β = αT and γ = exp(−β). The above three models

can represent real target trajectories.

The sampling time is set to T = 1s, the total samples are

K = 100, the measurement noise standard deviation is set

to σ = 25m, the probability of detection is set to pd = 1,

the initial target velocity is randomly chosen in the limits

150m/s ≤ v0 ≤ 250m/s, the process noise variances of the

NCV and the NCT models are set to qNCV = qNCT = 1e−12,

the turn rate is set to ω = 15deg /s, the manoeuvre variance

is set to σ2
m = 168.75m2/s4 and the manoeuvre sojourn time

is set to τm = 8s. The coordinated turn model based scenario

switches between the NCV and the NCT models. The sojourn

time of the NCT based manoeuvre is 8s. The results are

computed over 1000 Monte Carlo runs.

V. CHOICE OF COVARIANCE KERNELS

The GPMT is proposed using a squared exponential (SE)

covariance kernel in [1]. This kernel is infinitely differentiable

and it helps in tracking all the higher derivatives of the position

coordinates. The kernel is, however, too smooth as compared



to the real target dynamics. In this section, a simulation-based

study is performed to compare the performance of the different

covariance kernels. The two new kernels chosen in this study

are the rational quadratic (RQ) and the Matérn (with ν = 3

2
)

kernels. The results are given in Fig. 1.

It can be observed that the SE and the RQ perform better than

the Matérn for the NCV and Singer target dynamics models

based trajectories. However, the Matérn kernel outperforms

them for the NCT model based trajectory. The RQ based GPMT

performs slightly worse as compared to the Matérn kernel. The

performance of the SE based GPMT is significantly poor and

could be a bad choice for this type of trajectory. Based on the

above study, the following recommendations are made:

1) For the NCV and Singer based scenarios, the SE based

GPMT should be chosen.

2) For applications involving target trajectories based on

all three models, the RQ based GPMT is the preferred

choice.

VI. EFFECT OF THE TRAINING DATA

The parameter d of the GPMT controls the size of the

training data set. The evaluation of the GPMT in paper [1]

is done by setting it as d = 10, that is, the 10 most recent

measurements are considered for the training of the model. In

this section, the performance of the GPMT for the different

values of d is studied for the three kernels. The results are

given in the Figs. 2, 3 and 4.

It can be observed, in Fig. 2, that the accuracy of the SE

based GPMT increases with the increase in the training data

for the NCV model based trajectories. For the remaining two

scenarios, the accuracy decreases. It can be observed, in Fig. 3,

that the accuracy of the RQ based GPMT increases with the

increase in the training data for the NCV and the NCT model

based trajectories. The performance degrades with the increase

in the training data for the Singer model. In Fig, 4, it can

be observed that the accuracy of the Matérn based GPMT

increases with the increasing training data. Based on the above

results, it is recommended to use a Matérn kernel based GPMT

when the training data size is important for the application.

VII. ROBUSTNESS TO MEASUREMENT NOISE MODEL

The measurement noise variance can be set as a hyperpa-

rameter of the GPMT [1] and learned recursively from the

training data. In this way, the GPMT model is robust to the

measurement noise variance. This section provides a simulation

based study on the performance degradation of the GPMT with

the increasing noise variance. The noise standard deviation

is chosen as σ = 25, 50, 75, 100. The percentage increase in

the standard deviation of the noise with respect to σ = 25
is 100%, 200% and 300%. The percentage degradation of the

three kernels for the assumed scenarios is given in Table I. It

can be observed that although the accuracy decreases with the

increase in the noise, the filter does not diverge.
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Fig. 1. Comparison of covariance kernels. This figure show results of
the positional prediction using three different variants of the GPMT based
on different covariance kernels. These are the squared exponential (SE), the
Matérn with ν =

3

2
(M3) and the rational quadratic (RQ) kernels. The three

plots correspond to three different target models which are the NCV (top), the
NCT (middle) and the Singer (bottom).

TABLE I
PERFORMANCE DEGRADATION WITH INCREASED NOISE VARIANCE

NCV NCT Singer
100 200 300 100 200 300 100 200 300

SE 92 181 270 34 64 88 64 127 187

RQ 93 183 273 41 80 112 65 127 187

M3 78 150 217 49 94 132 70 131 187

VIII. CONCLUSIONS

This paper presents a simulation based study of different

aspects of the Gaussian process approach proposed in [1]

for the point target tracking. The study demonstrates that the

rational quadratic kernel is a better choice, as compared to
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Fig. 2. Effect of the training data on the SE kernel. This figure shows
the results for the three scenarios, as explained in Fig.1. The three different
values of the parameter are d = 10, 15, 20.

the originally proposed squared exponential kernel for the

commonly observed point target tracking dynamics. Unlike

the squared exponential and the rational quadratic kernels,

the accuracy of the Matérn kernel improves consistently with

the increase in the training data. Lastly, the robustness of

the approach is demonstrated by assuming unknown noise

variances. Current work is focused on theoretical studies of

the impact of uncertainties on Gaussian process methods.
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