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Abstract—Sleep apnea is a sleep disorder which is common
in many children and adults. It is characterised by abnormal
breath pauses or shallow breathing during sleep. Traditional
diagnosis of apnea requires special equipment for data collection
in clinical conditions and manual analysis by clinicians which is
expensive and time-consuming. This paper presents a framework
for autonomous detection of sleep apnea, using peripheral
blood haemoglobin oxygen saturation (SpO2) data based on
the fusion of multiple features and Dirichlet process mixture
model. The SpO2 signals are segmented into overlapping
sub-sequences and several features are extracted from each
segment. The distributions of features extracted from disorder
and normal segments are modelled by two Gaussian mixture
models, respectively, with the Dirichlet process as the prior. The
advantage of the framework is that the number of clusters within
mixture models can be learned from training data without strong
assumptions, which contributes to accurate estimation of the
distributions. The proposed framework is subject-independent
and it is trained and tested on two publicly available databases
with 10-fold cross-validation. It obtains accuracy of 84.89% on
the St. Vincent’s University Hospital Sleep Apnea Database and
accuracy of 97.01% on the Apnea-ECG Database, outperforming
state-of-the-art approaches. The results show that the proposed
model is capable of representing the distributions of features
independently of subjects and can accurately classify segmented
signals from patients with symptoms of different severity.
The results show the potential of the developed classification
framework to support clinicians in their decision making.

Index Terms—Sleep apnea-hypopnea syndrome, oxygen
saturation (SpO2) data, Dirichlet process mixture model,
classification, sleep disorder diagnostics, decision making

I. INTRODUCTION

Sleep apnea (cessation of airflow) and hypopnea (reduction

in airflow) are sleep disordered breathing (SDB) during sleep

which has become a major health issue all over the world [1]. It

happens if a person experiences pauses in breathing or overly

shallow breathing during sleep. The prevalence of SDB in

middle-aged adults is estimated to be 9% in women and 24% in

men, with the apnea-hypopnea index (AHI) of 5/hr or higher [2].

Around 2% of women and 4% of men can be diagnosed with

the sleep apnea and hypopnea syndrome (defined as AHI≥ 5/hr

with daytime hypersomnolence), which is a common cause of

sleepiness and neurocognitive impairment, and is related to

cardiovascular disease as well [3].

Overnight polysomnography (PSG) has been recognised as

the gold standard method for a definitive diagnosis of SDB [4].

Figure 1a shows the diagram of such a system for diagnosis.

However, it requires the sleeping process of patients to be

monitored in laboratories with much professional equipment,

of which the high cost and availability limit its application.

Additionally, the obtained overnight data needs to be analysed

by professional doctors or clinical technicians according to

some widely accepted guidance, e.g. the American Academy

of Sleep Medicine (AASM) manual [5]. The lengthy scoring

process and limited number of trained medical experts results in

long waiting times for a diagnosis of sleep disordered breathing.

In addition, the intrusive nature of the test and sheer number of

sensors that are attached make PSG an uncomfortable process

for patients

To solve this problem, the study of automatic SDB detection

has attracted significant attention. Research focuses on detection

with fewer channels of signals or portable devices. Among

them, detection based on peripheral blood haemoglobin oxygen

saturation (SpO2), electrocardiogram (ECG) and sounds have

been widely studied [4]. ECG and SpO2 based approaches

have achieved more accurate detection than the sound-based

methods according to the reviews [4]. As the SpO2 signals

can be measured easily by nocturnal pulse oximetry, the

frameworks based on them are convenient for home sleep

health monitoring [6]. The diagram in Figure 1b shows such a

setup where data can be acquired both at home and in hospitals,

transferred to a cloud server via the Internet and processed to

support decision makers.

There are two types of SDB detection approaches: subject-

based and epoch-based detection approaches, respectively [4].

The former group of approaches provides a result indicating if

a patient has the sleep apnea and hypopnea syndrome based

on the overnight data, while the latter ones detect the existence

of SDB events in each epoch. In the epoch-based detection,

segments with at least one SDB event (whole event or part of

it) in them are defined as ‘apnea’ ones, while those without

any respiratory disorder are set as ‘normal’ segments. This

paper presents an epoch-based detection framework for nearly

real-time detection of sleep disorders.

The approaches of SDB detection can be divided into three

main groups, namely: i) clinical rule-based approaches, ii)

features and classifiers based approaches, and iii) end-to-end

detection approaches. A majority of the clinical rule-based

methods detect the SDB events according to the rules related

to decreases of SpO2 values or decreasing durations [7], [8].

These approaches are clinically explainable, but they are usually

not robust enough to individual differences.
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Fig. 1: Diagram of sleep apnea-hypopnea detection.

The approaches using features extracted from SpO2 signals

together with classifiers have been widely applied to automatic

detection of SDB events in the past decades. To describe the

properties of disordered signals, various features have been

extracted, such as classic oximetric indices, features in time

and frequency domain, and non-linear features. Conventional

features include the minimum and average baseline of SpO2

values, oxygen desaturation indices (ODIs) and cumulative

time (CT) indices. Among them, the ODIs and CT indices

measure the times of SpO2 values dropping below a certain

threshold and the time percentage of signals lower than specific

thresholds, respectively [7], [9]. Similarly to the rule-based

approaches, these features do not work effectively in detecting

sleep disorders with signals from different patients.

Time-domain features include the delta index [7] and

statistics of SpO2 values. The mean, variance, skewness and

kurtosis are among the most widely used features defined in

time domain [9] as they can describe the changes of SpO2

caused by apnea or hypopnea events. Besides the time domain,

features extracted in the frequency domain can also help to

distinguish disordered signals from normal ones. Statistics and

entropy of the power density function calculated by the discrete

Fourier transform (DFT) are often employed as features. The

maximum and relative power of the apnea related frequency

band (0.014-0.033Hz) can work as discriminative features as

well [7].

However, the features in the frequency domain are mostly

used in subject-based SDB detection since long sequences are

needed to achieve fine resolution in the frequency domain.

Additionally, the differences between the changing patterns of

disordered signals and normal ones can be described by non-

linear features such as the central tendency measure (CTM),

Lempel-Ziv complexity (LZC) and sample entropy [4]. The

features mentioned above can be extracted from both overnight

and segmented signals and classified by various algorithms, e.g.

Adaboost, support vector machine (SVM), nearest neighbour

(NN) algorithm, linear discriminant analysis (LDA) and logistic

regression [4], [10].

In addition to the feature-and-classifier based approaches, the

group of ‘end-to-end’ approaches has become popular recently

and has shown good detection results, among which are based

on deep neural networks and Gaussian process regression [11].

These methods use segmented signals as inputs directly and

output decisions based on the temporally changing patterns.

Pathinarupothi et al. employ long short term memory (LSTM)

networks for SDB event detection [12], while a deep belief

network is used by Mostafa et al. in [13]. However, these

approaches may have the problem of over-fitting when the

training data is limited. In [14], a state-space model is combined

with a Gaussian process to model the changing patterns of

oxygen saturation signals and other data for SDB detection.

Also, this model is not subject independent and needs to be



trained and tested on data from the same patients.

To achieve more accurate detection of SDB events, this

paper proposes a near real-time framework based on the

Dirichlet Process mixture model (DPMM) and fusion of

multiple features. The distributions of features extracted from

both apnea and normal signals can be modelled accurately

with limited training data. Specifically, the distributions are

represented by Gaussian mixture models with a Dirichlet

process (DP) as the prior, of which the numbers of clusters can

be learned from training data. This makes the model robust

to individual differences. Additionally, novel features based

on the Haar wavelet transform are proposed to distinguish

the changing patterns of SDB signals from normal ones. The

features are extracted from overlapping segments instead of

non-overlapping ones which are common in related research,

to deal with the delays of SpO2 values decreasing from the

moment when SDB events happen.

The paper is organised as follows. In Section II, we briefly

introduce the features extracted from SpO2 signals for further

processing. Subsequently, the DP background knowledge

is provided in Section III. Section IV presents the novel

framework based on the DPMM and multiple features for

automatic SDB detection, while the corresponding results

and discussions are provided in Section V. In Section VI

we summarise the main results and ideas for future work.

II. FEATURES EXTRACTED FROM SPO2 SIGNALS

To achieve nearly real-time SDB event detection, SpO2

signals are segmented into overlapping sub-sequences of the

same length in the proposed framework, and multiple features

are extracted from each of them for further processing. In

the next subsection we describe the features used in the

classification process, which are defined in time and wavelet

domain.

A. Time-domain Features

1) Variance: The variance of each segment in the time

domain can be calculated and employed as a feature, because

an SDB segment tends to have a larger variance compared

with normal subsequences [9].

2) Range: The range is calculated as the difference between

the maximum and minimum signal values within a segment.

The SpO2 values usually decrease after an SDB event while

those in a normal segment do not change much. Therefore, the

range is chosen as a feature for SDB detection.

3) Minimum Value: As mentioned before, SpO2 values

usually decrease to relatively low levels after SDB events,

which seldom happens in normal sleeping periods.

B. Wavelet Transform Based Features

The discrete wavelet transform (DWT) can capture both

frequency and temporal location information, contributing to its

advantages over the discrete Fourier transform (DFT) which has

been widely used for frequency domain features. To describe

the changing patterns of SpO2 signal segments, the DWT

can extract features of frequency with a fine resolution in

time domain. Figure 2 shows the plots of both ‘apnea’ and

‘normal’ SpO2 segments, together with their corresponding

detail coefficients (from the high-pass filter) of level 2 and 3

obtained by Haar wavelet transform [15]. The Haar wavelet

is chosen because its step-like wavelet function is suitable for

describing the common abrupt changes of SpO2 during apnea

events. The SpO2 values usually decline continuously to a

low level and then recover to normal subsequently when an

SDB event happens, while in a ‘normal’ segment the SpO2

signal keeps stable values or fluctuates in a narrow range.

These differences result to different coefficients of an ‘apnea’

segment and a ‘normal’ one. This means that many peaks are

observed in the wavelet detail coefficients of ‘apnea’ segments,

while only a limited number of peaks are observed in those of

segments corresponding to ‘normal’ breath patterns, as shown

in Figure 2. In the wavelet domain, we use the following

features:

1) Number of Points With Large Wavelet Coefficients: In

the level 2 and 3 detail coefficients from the Haar wavelet

transform, the number of points larger than thresholds can be

employed as features to distinguish ‘apnea’ segments from

‘normal’ ones of SpO2.

2) Mean Energy of Wavelet Coefficients: Similarly, the mean

energy of the wavelet detail coefficients is different between the

‘apnea’ and the ‘normal’ segments. This can be used as another

distinguishing feature. The mean energy fe of a segment is

calculated as

fe =
1

M

M
∑

i=1

d(i)2, (1)

where d(i) is the i-th element of the wavelet coefficients of

a segment and M is the length of the coefficients. In the

experiment, only the mean energy of level 2 detail coefficients is

used for computational efficiency because employing the mean

energies of both level 2 and 3 only leads to small improvement

on detection performance.

III. THE DIRICHLET PROCESS MODEL

In this section, the definition of the DP and a constructing

scheme of a DP, called the stick-breaking process are briefly

described before introducing the proposed framework.

A. Model Setting and Definition of Dirichlet Process

Within the DP framework, it is assumed that each observation

xi is generated from a distribution with parameter(s) θi. The

parameter θi is generated from a prior distribution G, which

can be set as a DP. Thus, the model is as follows:

θi|G ∼ G for each i, (2)

xi|θi ∼ F (θi) for each i, (3)

where F (θi) is the distribution of xi given θi and different

θis are not necessarily of distinct values.

A DP is defined as a distribution of a probability measure

G over a measurable space [16], satisfying the condition

that for any finite measurable partition (A1, ..., AK) of the
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(a) A ‘normal’ segment of SpO2 signal.
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(b) An ‘apnea’ segment of SpO2 signal.
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(c) Level 2 detail coefficients of Haar wavelet transform
of a ‘normal’ segment.
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(d) Level 2 detail coefficients of Haar wavelet transform
of an ‘apnea’ segment.

0 10 20 30 40 50 60 70 80

Index number

-2

-1

0

1

2

L
3

 w
a

v
e

le
t 

c
o

e
ff

ic
ie

n
ts

(e) Level 3 detail coefficients of Haar wavelet transform
of a ‘normal’ segment.
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(f) Level 3 detail coefficients of Haar wavelet transform
of an ‘apnea’ segment.

Fig. 2: ‘Normal’ and ‘apnea’ segments of SpO2 signal and their corresponding level 2 and level 3 detail coefficients of the

wavelet transform.

space, (G(A1), ..., G(AK)) follows a Dirichlet distribution

with parameters of (α0G0(A1), ..., α0G0(AK)), where G0 is

a probability measure in the measurable space and α0 is a

positive real parameter [17]. It can be written as:

(G(A1), ..., G(AK) ∼ Dir(α0G0(A1), ..., α0G0(AK)). (4)

When G follows a Dirichlet process, it is denoted as G ∼
DP (α0, G0) with a concentration parameter α0 and a base

distribution G0.

B. The Stick-breaking Process

The stick-breaking process provides a way of constructing

a DP as below

βk ∼ Beta(1, α0), (5)

θ∗

k
∼ G0, (6)

πk = βk

k−1
∏

l=1

(1− βl) = βk

(

1−
k−1
∑

l=1

πl

)

, (7)

G =

∞
∑

k=1

πkθ
∗
k, (8)

where π = {πk}
∞
k=1

is a sequence of mixture weights, θ∗s

are distinct latent parameters drawn from G0, and G is the

constructed DP [17], [18]. Here k denotes the index of a

component. The distribution over π can also be expressed as

π ∼ GEM(α0), which comes from the initials of Griffiths,

Engen and McCloskey [17].



IV. THE NEW FRAMEWORK FOR AUTOMATIC SLEEP APNEA

DETECTION BASED ON A DIRICHLET PROCESS MIXTURE

MODEL AND MULTIPLE FEATURES

Several features are extracted and combined from each

segment of SpO2 signals, including both ‘apnea’ and ‘normal’

ones. The distributions of features extracted from disordered

and normal segments are believed to be different, thus decisions

can be made by comparing the probabilities of each testing

segment generated from the models of ‘apnea’ and ‘normal’.

The distributions of features from ‘apnea’ and ‘normal’

segments can be modelled by two Gaussian mixture models

(GMM), as a GMM can approximate any distribution accurately

by setting a proper component number and adjusting its

parameters. The model settings of the two GMMs are the

same and the only difference is in the training data.

Denote the features extracted from the i-th segment as xi.

Its distribution can be expressed as

p(xi) =
K
∑

k=1

πkN (xi;θ
∗
k), (9)

where N (·) denotes the Gaussian distribution and the

parameters of the k-th component of the mixture model are

denoted as θ∗
k , {µ∗

k,Σ
∗
k}. Here µ∗

k is the mean vector and

Σ
∗
k is the variance matrix of the k-th Gaussian component.

The theory of mixture models [19], [20] assumes that each

xi is generated by first choosing a cluster indexed by an

assignment variable zi according to a categorical distribution

of π = [π1, ..., πK ]. Then the observation xi is generated from

the chosen component with the parameter θi = θ∗
zi

. However,

the number of components K and distribution weight π are

not available, when we only have the observations. Instead

of setting the cluster number K empirically, the proposed

framework sets the prior as a DP to solve this problem.

Combined with the stick-breaking process defined in Section

III-B, the generative model can be represented as follows

π ∼ GEM(α0), (10)

θ∗
k ∼ G0, (11)

zi ∼ π, (12)

xi ∼ N (θ∗
zi
), (13)

where {θ∗
k}

∞
k=1

are distinct values of the parameters θ∗
ks,

sampled independently from the base distribution G0(θ
∗|λ)

(λ is the hyper-parameter of G0) and the distribution of π is

shown in Eq. (7).

Then the generative model can be interpreted as an ‘infinite

mixture model’, which does not have a fixed number of clusters.

Instead, the cluster number may increase with more training

data given. In practical applications, the number of clusters

cannot be infinite, with a limited number of observations. The

model will have a finite number of clusters, which can be

learned from training data by Bayesian inference.

Denote Θ = {θ∗
k}

∞
k=1

and β = {βk}
∞
k=1

as the sets of

variables θ∗
ks and βks, respectively. The random variables βks

are drawn independently from a Beta distribution as defined in

Eq. (5). Let z = {zi}
N
i=1 be the cluster assignment variables

of N training features X = {xi}
N
i=1 and W = {β,Θ, z} be

the collection of all the latent variables.

Given the features X for training and a new sample x
′ for

testing, the probability of x′ being generated from the trained

model can be derived as

p(x′|X)

=

∫

p(x′|z′,W,X)p(z′|W,X)p(W|X)dz′dW (14)

=

∫

p(x′|z′,β,Θ, z,X)p(z′|β,Θ, z,X)p(W|X)dz′dW

(15)

=

∫

p(x′|z′,Θ)p(z′|β)p(W|X)dz′dW (16)

=

∫

p(x′|θ∗
z′)p(z′|β)p(W|X)dz′dW, (17)

where z′ is the assignment variable of the testing data x
′.

The first term p(x′|θ∗
z′) in Eq. (17) can be calculated

according to (13), while p(z′|β) can be calculated by (7) and

(12). However, the posterior of W is difficult to be calculated

analytically because of the integral in the denominator of

p(W|X) =
p(X|W)p(W)

∫

p(X|W)p(W)dW
. (18)

Therefore, a variational distribution in Eq. (19) is employed

to approximate the posterior p(W|X). It is designed as a

family of factorized distributions according the idea of mean-

field variational inference [21]

q(W;φ) =

K
∏

k=1

[q(βk;φ
β
k) q(θ

∗

k
;φθ∗

k )]

N
∏

i=1

q(zi), (19)

where q(zi)s are categorical distributions, and φ
β
k and φθ∗

k

are parameters of distributions q(βk) and q(θ∗

k
), with φk =

{φβ
k , φ

θ∗

k }. Moreover, K is not a fixed number in Eq. (19) but

can increase with more training data, corresponding to the

infinite mixture model of the distribution. It is assumed that

all the parameters φk are tied with k > T ∗(T ∗ ≪ K) and

equivalent to the prior.

The variational distributions are assumed to be in an

exponential family which is a common choice within the

Bayesian nonparametric framework, because of the availability

of their analytical solutions. Specifically, it is assumed that

p(βk|α) = Beta(α1, α2), (20)

q(βk;φ
β
k) = Beta(φβ

k,1, φ
β
k,2), (21)

p(x|θ∗) = h(x) exp{(θ∗)Tx− a(θ∗)}, (22)

p(θ∗|λ) = h(θ∗) exp{λ1θ
∗ + λ2[−a(θ∗)]− a(λ)}, (23)

q(θ∗
k;φ

θ∗

k ) = h(θ∗
k) exp{φ

θ∗

k,1θ
∗
k + φθ∗

k,2[−a(θ∗
k)]− a(φθ∗

k )},
(24)

where α = {α1, α2}, λ = {λ1, λ2} are hyperparameters of

the prior, and φ
β
k = {φβ

k,1, φ
β
k,2}, φθ∗

k = {φθ∗

k,1, φ
θ∗

k,2} are

variational parameters to be optimized. a(·) is the logarithmic



normalizer in the definition of exponential family, ensuring the

distribution integrates to one [22].

The probability q(zi = k) can be calculated as

q(zi = k) =
exp(Ei,k)

∑∞
j=1

exp(Ei,j)
, (25)

where Ei,k is defined as

Ei,k = Eqβ [log p(zi = k|β))] + Eqθ∗
k

[log p(xi|θ
∗
k)]. (26)

Other parameters are updated as

φ
β
k,1 = α1 +

N
∑

i=1

q(zi = k), φ
β
k,2 = α2 +

N
∑

i=1

∞
∑

j=k+1

q(zi = j),

(27)

φθ∗

k,1 = λ1 +

N
∑

i=1

q(zi = k)xi, φθ∗

k,2 = λ2 +

N
∑

i=1

q(zi = k).

(28)

The latent variable zi, and variational parameters φ
β
k and

φθ∗

k , are updated iteratively by Eqs. (25), (27) and (28) until

the free energy is minimised. Details of the derivation of the

variational inference are available in [23].

Then p(x′|X) can be rewritten as:

p(x′|X) =

∫

p(x′|θ∗
z′)p(z′|β)q(W;φ)dz′dW (29)

=

∫

p(x′|θ∗
z′)p(z′|β)

K
∏

k=1

[q(βk;φ
β
k) q(θ

∗

k
;φθ∗

k )]

N
∏

i=1

q(zi) dz
′ dβ dθ∗dz, (30)

which is possible to be calculated analytically.

Given two sets of training features X
1 = {x1

i }
N1

i=1
and

X
0 = {x0

i }
N0

i=1
extracted from ‘apnea’ and ‘normal’ segments,

respectively, the probabilities of x′ generated by the two models

can be calculated according to Eq. (30). It is classified as an

‘apnea’ segment if

log
p(x′|X1)

p(x′|X0)
≥ c, (31)

where c is a threshold influencing the balance of sensitivity and

specificity. Otherwise, the segment is recognised as ‘normal’.

The parameter c is set as 0 in the experiments of this paper.

V. PERFORMANCE VALIDATION AND EVALUATION

A. Sleep Apnea Datasets

The data for the experiments are from two publicly

available databases, the St. Vincent’s University Hospital Sleep

Apnea Database [24] and the Apnea-ECG Database [25],

respectively. The former database contains 25 full overnight

polysomnograms, including the SpO2 signals employed in

this paper, while the Apnea-ECG Database has 8 recordings

containing SpO2 signals. The data of both databases are from

adults.
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(b) SpO2 signal and the segments to be processed and classified by the
proposed framework.

Fig. 3: Diagrams of segments of signals for manual annotations

by clinicians and being processed by the proposed framework

automatically.

B. Data Preprocessing

The oximetry saturation signals are divided into overlapping

segments of an equal size, instead of into non-overlapping ones

which are commonly used. This choice is made due to the

delay present between an SDB event and the corresponding

changes of SpO2 values. Figure 3 shows graphs of SpO2,

oronasal signals of three consecutive segments, and the ground

truth of respiratory events. Figure 3a shows the oronasal airflow

signals measured by thermistor based on which clinicians score

SDB events according to the rules in [5], while Figure 3b

provides the corresponding SpO2 signals of Figure 3a. From

Figure 3b we can see that the decreases of SpO2 happen a few

seconds after the SDB events which are marked in red shades

in Figure 3. If the classification of segments is performed by

detecting the changing patterns of SpO2 signals, the second

segment will be classified as an ‘apnea’ one instead of the first

one, resulting in classification errors. To solve this problem,

the proposed framework processes overlapping segments of

signals. Specifically, the consecutive segments of signals have

overlaps in the experiments, while the ground truth of SDB is

manually marked by assigning a label to each minute based

on the oronasal airflow signals as shown in Figure 3.

The annotations of the Apnea-ECG Database are provided

by minutes, which can be used directly, while those of the St.

Vincent’s University Hospital Sleep Apnea Database need to

be changed into annotations for each segment. The annotation

transferring is conducted in a similar way as in [13]. The

minutes in which SDB events happened are defined as ‘apnea’

while the ones without any disordered breathing are marked

as ‘normal’. If one apnea event happens across two successive

minutes, the one with a consecutive disordered period shorter



than five seconds in it is annotated as ‘normal’. Otherwise, the

corresponding minute(s) will be marked as ‘apnea’.

Poor contact of a nocturnal pulse oximetry caused by body

movement may result in artefacts. SpO2 values lower than

50 are treated as artefacts and the segments with such data

points in them will not be used for training or testing. Besides,

the signals of the Apnea-ECG dataset are downsampled to

the sampling rate of 10Hz, to tackle the big difference in the

sampling rates of the two datasets (Apnea-ECG 100Hz, St.

Vincent’s University Hospital Sleep Apnea Database 8Hz).

C. Performance Criteria

There are 2602 ‘apnea’ segments and 7541 ‘normal’ ones

in the St. Vincent’s University Hospital Sleep Apnea Database,

while 1456 ‘apnea’ segments and 2267 ‘normal’ ones in the

Apnea-ECG Database. The proposed framework is trained and

tested on the two publicly available databases, independently

with 10-fold cross-validation.

The performance of the proposed framework is measured

by accuracy, sensitivity and specificity, defined as:

Accuracy =
TP + TN

TP + FN + TN + FP
,

Sensitivity =
TP

TP + FN
,

Specificity =
TN

TN + FP
,

where TP, FN, TN and FP denote the true positive, false

negative, true negative and false positive numbers of segments,

respectively [26].

D. Results and Discussion

The proposed framework achieves better performance

compared with the results reported by the state-of-the-art

methods tested on the same datasets, e.g. an approach

combining conventional features [10] and an approach using

a deep neural network [13]. The results on two datasets are

given in Table I and Table II, respectively. We also present the

results of the support vector machine (SVM) approach and the

linear discriminant analysis (LDA) using the same features for

comparison. Additionally, the proposed model is also trained

and tested on features extracted from segments of different

length (with the same minute-wise ground truth), which is

shown in Table III and Table IV, to explore the influence of

overlaps. All the results in Table I to Table IV are average

scores across the testing folds of 10-fold cross-validation.

From the results in Table I and Table II, it can be seen that

the best accuracy is achieved by the proposed framework with

features extracted from 20 second overlapping segments. On

the St. Vincent’s University Hospital Sleep Apnea Database,

the accuracy of the proposed framework has improvement of

more than 1% and 2% over SVM and LDA, respectively, while

on the Apnea-ECG dataset, all three methods achieve similar

performance.

As patients suffer from sleep apnea and hypopnea syndrome

of different severities, the features, such as decreasing levels

TABLE I: Results of St. Vincent’s University Hospital Sleep

Apnea Database

Method
Segment
overlap(s)

Accuracy Sensitivity Specificity

LDA 20 82.68% 73.69% 85.79%

SVM 20 83.78% 50.46% 95.28%

Proposed framework 20 84.92% 62.65% 92.60%

TABLE II: Results of Apnea-ECG Database

Method
Segment
overlap(s)

Accuracy Sensitivity Specificity

LDA 20 96.96% 97.04% 96.91%

SVM 20 97.12% 96.01% 97.84%

Proposed framework 20 97.01% 95.18% 98.19%

TABLE III: Results of the proposed framework with different

segment length on St. Vincent’s University Hospital Sleep

Apnea Database

Segment overlap (seconds) Accuracy Sensitivity Specificity

0 81.78% 63.27% 88.16%

10 84.09% 65.00% 90.68%

15 84.89% 62.11% 92.75%

20 84.92% 62.65% 92.60%

25 84.84% 66.74% 91.08%

TABLE IV: Results of the proposed framework with different

segment length on Apnea-ECG dataset

Segment overlap (seconds) Accuracy Sensitivity Specificity

0 96.32% 92.86% 98.55%

10 96.41% 93.08% 98.55%

15 96.45% 93.68% 98.24%

20 97.01% 95.18% 98.19%

25 96.85% 95.17% 97.92%

of SpO2 and lasting time of events, vary with individuals,

which results in misclassification errors. Besides, it is quite

challenging to detect SDB events in signals from patients

with mild symptoms. To solve the problems, the Dirichlet

process mixture model can take into account the features

reflecting different severity of SDB and individual differences

when estimating the distributions, by ‘learning’ the Gaussian

components from various data. Compared with the Apnea-

ECG dataset, the individual differences are well obvious in

the St. Vincent’s University Hospital Sleep Apnea Database,

resulted from a larger patient number and more patients of

mild symptoms. Therefore, SDB detection on the St. Vincent’s

University Hospital Sleep Apnea Database is more challenging

and the results of the three models have larger differences

compared with those on Apnea-ECG dataset.

Additionally, the accuracy is improved with the increase of

the overlap between segments and reaches the highest value at

20 seconds, as illustrated in Tables III and IV, since overlapping

segments consider the delay of SpO2 declines from SDB events

and include more information as well.

VI. CONCLUSIONS

This paper proposes a framework for automatic SDB event

detection using SpO2 signals. It models the distributions of

multiple features extracted from ‘apnea’ signal segments and



‘normal’ ones with two GMMs, respectively. All the parameters,

including cluster numbers, can be learned from the training

data by setting the prior of GMMs as DPs. In this way, the

distributions are estimated accurately by avoiding the errors

resulted from improperly set cluster numbers. Additionally,

novel features based on Haar wavelet transform are proposed

in this paper to describe the different changing patterns of

‘apnea’ and ‘normal’ segments. The experimental results of two

publicly available databases show that the proposed framework

achieves better performance than state-of-the-art methods.

Since some patients experience no or mild decreases of

SpO2 after SDB events, more accurate detection results are

expected to be achieved by fusing other signals, including

EEG and ECG, together with the oximetry data. While this

work fuses features from the same type of signals - for oxygen

saturation, our future work will focus on automatic detection

of sleep disorders based on the fusion of SpO2 and ECG data.

Additionally, the proposed framework detects the existence of

sleep disordered breathing without differentiating the central

and obstructive apneas. Research on automatically examining

the respiratory effort bands will be carried out in the future

to provide more information for clinicians to determine the

appropriate treatment for patients.
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