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Abstract—Many types of cancers such as multiple myeloma
cause bone destruction, resulting in pain and fractures in patients
and increased fatality. To quantify the degree of bone disease
caused by cancer and analyse treatment response for bone
repairing, accurate knowledge of the volumetry of all lesions
is needed. To this end, this study proposes to apply two main
approaches to the segmentation of bone lesions in cancer-induced
bone disease from Micro Computed Tomography (µCT) images -
structured forest-based edge detection approach and deep learn-
ing approach. A fast edge detection approach with structured
forest, an extension of [1], is applied to identify the volumetry of
all lesions in mice tibia, where the obtained results are evaluated
against the manually labelled data, demonstrating the efficiency
of the compared approaches. The Gaussian processes (Convnet
GP) approach has achieved the best performance among the
compared approaches, with 99.6% intersection of union and
99.7% precision. Our results demonstrate that the developed
approach provides a reasonable delineation of the samples,
showing the great potential towards fully automatic bone tumour
segmentation.

Index Terms—Machine learning, cancer bone segmentation,
CNNs,FCNs, Capsule networks, Gaussian process approaches,
structured forest edge-based segmentation

I. INTRODUCTION

In the UK, one in four deaths occur due to cancer, and at this

stage, the cancer has spread to bones in over 40% of patients

[2]. Bone disease caused by cancer results in substantial pain,

loss of mobility and fractures in patients, as well as increasing

the fatality and cost of treatment [3], [4]. Unfortunately, there

are no pharmacological treatments to help repair bone disease.

A major limitation to developing bone-healing drugs is a lack

of reliable approaches to accurately quantify bone lesions.

Hence, it is essential to develop an automated approach to

diagnose the bone disease accurately.

Evans et al. developed Osteolytica to measure cancer-

induced lesions in mouse tibiae scanned by micro computed

tomography (µCT) [5]. Osteolytica first dilates the sample

bone volume image until the holes on the outer surface are

filled. A contraction is then performed on the dilated volume,

which stops when the contracted volume reaches the highest

overlapping ratio between itself and the original volume. By

subtracting the original volume and the contracted volume, the

additional areas are obtained as the lesion areas, and therefore,

the areas and the number of the bone lesion can be calculated

[5]. The analysis using Osteolytica provides 0.53% average

variability, which is 37 times more accurate compared with

the ImageJ analysis method from [6], [7].

However, a significant problem with Osteolytica is that it

recognises the cartilage, a normal structure in healthy and

diseased bones, as a bone lesion creating a false-positive result.

The cartilage can be manually excluded, but this creates a

major problem when bone lesions connect with the growth

plate, as the real bone lesion would also be excluded. There-

fore, the aim of this study is to segment bone and cancer-

induced bone lesion in three dimensions using µCT datasets.

More specifically, machine learning approaches are applied on

the pre-clinical CT datasets of bones with and without cancer.

Two main approaches are proposed: the fast edge detection

approach with structured forest, an extension of [1], and deep

learning approaches, such as a convolutional neural network

(CNN) [8], [9], [10], capsule network (CapsNet) [11], [12]

and Gaussian process (GP) approaches [13]. Ultimately, the

objective of this study is to improve the accuracy of quanti-

fying bone lesions to facilitate reliable pre-clinical testing of

new bone-targeted therapies.

The rest of the paper is structured as follows. Section II

presents the developed approaches and describes the real data

sets. Section III describes the performance evaluation and

validation. Finally, Section IV summarises the main results.

II. MICRO COMPUTED TOMOGRAPHY DATA AND THE

PROPOSED APPROACH

A. Datasets

Micro Computed Tomography (µCT) datasets were used by

scanning the proximal end of mouse tibiae with or without

tumour [14]. The µCT datasets contain 2D transverse slices

that can be rendered into a 3D dataset. Each slice has width

W and height H. By aggregating N slices, the datasets are

represented in 3D tensor with W×H×N. During the experi-

ments described in later sections, we use the M9 mouse tibiae



Fig. 1. CNN architecture for bone segmentation.

dataset with tumour to evaluate the approaches. M9 dataset

has 1235 slices, and each slice has 1440×1440 resolution,

which means that M9 dataset is a tensor with dimension of

1440×1440×1235.

B. Data preprocess

In order to segment the bone, two steps are required to

be operated in order. First, the backgrounds in the image are

removed; Second, boundaries of the bone are extracted.

1) Background Subtraction: In order to segment bone accu-

rately, background subtraction is essential to enhance the bone

sections. In this study, a logical mask is directly produced by

binarising the slice image. Since the logical masks are the

binarised images, they have the same 2D dimension as the raw

images. Therefore, it is possible to correlate the raw images

with logical masks.

Fig. 2 shows a sample image a) is the raw slice image.

With the assistance of the logical masks, the image, b), can

be generated.

2) Structured Random Forest Edge Detection: The edge

detection approach applied in this study is based on the

structured random forest algorithm illustrated by [1]. The main

idea is to construct decision trees by training the split function

of the tree. A decision tree classifies the input recursively left

or right to the child nodes. Each node is associated with a

split function,

h(x, θj) ∈ {0, 1} (1)

where θj is the parameter required to be optimised, and x is

the input. 0 and 1 represent the two possibilities of the input,

which means that the input can be split left or right to the

child nodes. The input is labelled as y ∈ Y when they reach

the leaves of the decision trees. The training processes become

to chose a value of θj to maximise of the information gain I
at each node.

Ij = I
(
Sj , S

L
j , S

R
j

)
(2)

where, Sj ∈ X ×Y is the training set with X samples and Y
labels. SL

j = {(x, y) ∈ Sj |h(x, θj) = 0} represents to proceed

on the left node and SR
j = Sj/S

L
j represents to proceeding

on the right node, where x ∈ X is one of the sample.

After training the decision trees, the structured random

forest architecture proposes a discrete label set c ∈ C =
{1, 2, ..., k} that is mapped from the labels y ∈ Y . The

dissimilarity of the labels are approximate by calculating

Euclidean distance in the intermediate mapping,

Π : Y → Z (3)

Labels with similar z ∈ Z are mapped into the same discrete

label. The hierarchical label mapping labels each pixel and

therefore, determines the edges. Decision trees corresponding

to different feature channels, such as colour, are assembled,

and the edge detection results are generated by the votes

among all trees.

(a) (b)

Fig. 2. a) Raw slice image. b) Image after removing background.

C. Deep Learning Approaches

Deep learning approaches, such as convolutional neural net-

works (CNNs) [8], [9], are widely applied to image recognition

and data forecasting. In this section, the architecture of the

fully convolutional network, Capsule network and Gaussian

process approaches, we applied will be introduced.

1) CNN: A CNN with three convolution layers and three

pooling layers is designed. The convolution layers have 256,

128 and 64 channels, respectively, and the filter size of each

layer is 3×3. A max pooling layer with a filter size of 2×2



Fig. 3. Fully convolutional network architecture for bone segmentation

and a stride of 2 follows each convolution layer. All the

convolution layers are activated by a Rectified Linear Unit

(ReLu) activation function. At the end of the network, there is

a fully connected layer. The architecture is presented in Fig.

1. The parameters of the network are presented in Table I.

TABLE I
LAYER PARAMETERS OF CNN

Layer Parameter Activation

Convolution1 (256,3,3) ReLu

Polling1 (2,2) -

Convolution2 (128,3,3) ReLu

Polling2 (2,2) -

Flatterning - -

Fully-connected - -

2) Fully convolutional network for segmentation:

As shown in Fig. 3, the first four layers are the same as

the CNN introduced in Fig. 1. These layers performed the

same job as in the CNNs, as they extracted deep feature

hierarchies that encode the locations and semantics. Therefore,

for pixelwise prediction and classification, the encoded infor-

mation is required to connect back to pixels. Deconvolutional

layers are introduced as an efficient and effective solution.

Deconvolution is commonly called backward convolution,

which means deconvolutional layers simply reverse the opera-

tions in convolutional layers. Therefore, deconvolutional layers

achieve end-to-end learning by backpropagating the pixelwise

loss [10]. Different from CNN, FCNs replace fully-connected

layers, typically used for classification, by using convolutional

layers to classify each pixel in the image.

Table II lists the parameters of FCN implemented for this

study. The convolutional layers 1 and 2 have 32 filters with

3×3 filter size. The convolutional operations in those two

layers are performed with a stride of 1 with 1 padding and

activated by a ReLu. Pooling layers have filters of size 2×2

applied with a stride of 2 and 0 padding. 32 filters with

4×4 filter size applied with a stride of 1 and 1 cropping are

applied in the deconvolutional layers. Convolutional layer 3

has 32 filters of size 2×2 applied with a stride of 1. The pixel

classification layer applies cross-entropy as the loss function.

3) Capsule Network: CNNs and FCNs have shown a very

TABLE II
LAYER PARAMETERS OF FCN

Layer Parameter Activation

Convolution1 (32,3,3) ReLu

Polling1 (2,2) -

Convolution2 (32,3,3) ReLu

Polling2 (2,2) -

Deconvolution 1 (32,4,4) ReLu

Deconvolution 1 (32,4,4) ReLu

Convolution3 (32,2,2) -

SoftMax - -

Pixel Classification - -

good performance in different applications. However, max

pooling in CNNs and FCNs lose valuable information by

selecting the max values in the activations. There are only

limited and pre-defined pooling mechanisms for handling

variations in the spatial arrangement of data [15]. Since it

is impossible to ensure that the positions of the bones are

exactly the same while CT scanning, either data augmentation

or image registration is required to be applied for CNNs and

FCNs. CapsNet has been proposed in [11] and [12] to address

the drawbacks of CNNs and FCNs. Each layer in CapsNet

contains capsules that represent different characteristics of the

object. The main difference between capsules and artificial

neurons is that capsules are in vector forms, and their acti-

vations provide vector outputs instead of scalers in artificial

neurons. More significantly, the routing algorithm updates the

weights between two capsule layers, which determines the way

that low-level capsules feed their input in high-level capsules.

The architecture of the CapsNet implemented for this case

study is presented in Fig. 4.

The convolutional layers 1 and 2 have 32 filters with 3×3

filter size. The PrimaryCaps has 128 filters with 3×3 filter size.

The convolutional operations in all three layers are performed

with a stride of 1 with 0 paddings and activated by a ReLu

nonlinear activation. Each capsule in PrimaryCaps is an 8-

dimensional vector and capsules in one cuboid share weights.

The last layer is TrafficCpas that has a 16-dimensional capsule

per pixel. The routing algorithm performs between PrimaryC-

pas and TrafficCaps with 3 iterations. The parameters of the

proposed CapsNet is listed in Table III.



Fig. 4. Capsule network architecture for bone segmentation

TABLE III
LAYER PARAMETERS OF CAPSNET

Layer Parameter Activation

Convolution1 (32,3,3) ReLu

Convolution2 (32,3,3) ReLu

PrimaryCaps (128,3,3) ReLu
Capsule zise 8 -

TrafficCaps Capsule size 16 -

4) Gaussian process: Nevertheless, CNNs and FCNs still

face challenges, especially they are time-consuming and com-

putationally expensive. In addition, they provide deterministic

results without uncertainty analysis, and therefore, uncertainty

becomes one of the hidden trouble in high-risk applications,

such as biomedical applications [16]. A GP approach, one

of the most powerful tools in the Bayesian inference, is

potentially to equip CNNs and FCNs with the capabilities of

uncertainty analysis. Garriga et al. [13] proposed that a deep

CNN is essentially a shallow GP, which enabled CNN to be

able to analyse the uncertainty.

A standard CNN transformation, with L hidden layers, is

given as following

a
(l+1)
j (X) = blj +

Cl∑

i=1

W l
j,iφ(a

l
i(X)), (4)

where

X = [x1, x2, · · · , xC0 ]T (5)

is the input image with height H(0) and width D(0). blj is the

bias and W l
j,i is the weight matrix that derives from the filter

U l
j,i at the l-th layer. φ(ali(X)) is the activation, and ali(X)

is the feature map from the previous layer. The elements in

a filter U l
j,i are random, and thus, the number of potential

filters could approach infinity, which means that all the filters

together should average out the noise and extract the features

from a polluted input. As described in [13], every element

of U l
j,i is governed by a Gaussian distribution and the bias

blj is governed by another Gaussian distribution as shown in

equations (6) and (7) respectively

ul
j,i,x,y ∼ N (0,

σ2
w

Cl
) (6)

blj ∼ N (0, σ2
b ). (7)

As the weight elements and biases have a Gaussian distribu-

tion, the number of the filters, therefore, approach infinity by

sampling from the corresponding Gaussian distribution. The

number of filters corresponds to the number of channels in a

convolutional layer. With the Central Limit Theorem (CLT),

al+1
j (X) subjects to a Gaussian distribution as the number of

channels approach infinity.

The element-wise feature map transformation is given as,

Al+1
j,g (X) = blj +

Cl∑

i=1

HlDl∑

h=1

W l
j,i,g,hφ(A

l
i,h(X)), (8)

where Cl represents the channels. With the equation (8), we

can drive the mean and covariance function,

E[Al+1
j,g (X)] = E[blj ] +

Cl∑

i=1

HlDl∑

h=1

E[W l
j,i,g,hφ(A

l
i,h(X))] = 0

(9)

C

[
W l

j,i,g,hφ(A
l
i,h(X)),W l

j,i
′
,g,h

′φ(Al
i
′
,h

′ (X
′

))
]

= σ2
b + σ2

w

∑

h∈gth patch

E
[
φ(Al

i,h(X))φ(Al
i,h(X

′

))
] (10)

In [13], the mean equals to 0. While the covariance function

only depends on the expectation of the activation function.

According to [13], the activation function is ReLu.

III. EXPERIMENT AND EVALUATION

The original µCT data are 3D, and thus, the dataset is

considered as a tensor with the size of W×H×N where N

donates the number of the slices, and W×H is the size of

the slices. For the specific case study of M9 dataset, there are

1235 slices, and each slice has a resolution of 1440×1440.

We use 2D image slices as the input.



A. Edge detection

Metrics and Evaluation: The structured random forest

model [1] used in this study was pre-trained by Berkeley

Segmentation Dataset and Benchmark (BSDS500) [17]. The

result was evaluated by precision and recall that are formulated

as following,

Precision =
TP

TP + FP
, (11)

Recall =
TP

TP + FN
, (12)

where TP represents true positives, FP represents false pos-

itives, and FN represents false negatives. The precision rep-

resents the percentage of the correct prediction in the total

number of the prediction. The recall is the fraction of the

predictions that are actually correct. Since there was a large

number of pixels classified as background rather than the edge,

to make the result more accurate, we only evaluated the results

within specific bounding boxes that fully enclose the bone. The

confusion matrix is presented in Table IV.

TABLE IV
MEAN CONFUSION MATRIX FOR FAST EDGE DETECTION

Total Condition Positive Condition negative

Prediction positive 8252 7532

Prediction Negative 66295 7262

By following equations (11) and (12), the mean precision

is 0.529 and recall is 0.574. The visulasation is presented in

Fig. 5.

B. Deep Learning Approaches

For deep learning approaches, the dataset, M9, were ran-

domly split into 70% training and 30% testing. Due to the

limitation of computational resources and efficiency, the slice

images were downsampled 53 times from 1440×1440 to

27×27 for the CNN, CapsNet and Convnet GP. Only FCN was

still trained with original, 1440×1440, data. The downsam-

pling errors were evaluated by the structural similarity (SSIM).

With 53-time downsampling, the SSIM equals to 0.927.

The intersection of union (IOU), given by Equation (13), the

and root mean square error (RMSE) is defined as Equation (14)

IOU =
Area of Overlap

Area of Union
, (13)

RMSE =

√∑I

i=1(yx,y − ŷx,y)2

N
. (14)

are used to evaluate the performance of the approaches. Here

yx,y is ground truth pixel value and ŷx,y is the predicted pixel

value. The CNN and CapsNet were trained with the common

starting learning rate of 0.0005 and the exponential decay

rate of 0.9999. The FCN was trained with a learning rate of

0.001 and the exponential decay rate of 0.9. The results were

(a) (b)

(c) (d)

(e) (f)

Fig. 5. a) Evaluation of the edge detection. Red represents the ground-truth
points that are failed to be predicted, and yellow represents the prediction.
b) is the visualisation of result obtained from CNN. c) is the visualisation
of result obtained from FCN. d) is the visualisation of result obtained from
CapsNet. e) is the visualisation of result obtained from Covnet GP. In b), c),
d) and e), the red areas represent the background and blue areas represent the
bone ares. f) ROC curve.

evaluated by the IOU, RMSE and precision and recall and

their values are given in Table V.

The Convnet GP approach has achieved the best segmen-

tation performance with downsampled data. However, FCN

achieves acceptable results with full-resolution data. On the

hand of the generalization of the model, CNN, FCN and

Convnet GP has their drawbacks on handling with rotation,

and thus, the data augmentation is required to be applied. On

the aspect of computational complexity, the applied CapsNet

consumes the longest time, 62 computer hours, for training.

The FCN takes second place with 31 minutes. The CNN takes

3.53 seconds, and the Convnet GP takes 2.15 seconds for



training.

TABLE V
DEEP LEARNING APPROACH EVALUATION

Approach IOU RMSE Percision Recall

CNN 99.33% 0.065 0.995 0.998

FCN(Full resoultion dataset) 86.12% - 0.996 0.996

CapsNet 98.58% 0.086 0.989 0.996

Convnet GP 99.60% 0.031 0.997 0.999

IV. CONCLUSIONS

This paper introduces the fast edge detection and four deep

learning neural networks to the segment cancer bones from the

µCT datasets. The fast edge detection approach has provided

0.529 precision and 0.574 recall which are less acceptable

compared with deep learning approaches. The other four deep

learning NNs have provided outstanding segmentation results

with a preclinical dataset. Convnet GP has achieved the highest

accuracy respected either on IOU or pixel-wise evaluation

(RMSE, precision and recall). However, FCN has the ability

to process large scale data, and CapsNet is rotation invariant.

FCN, CapsNet and Convnet GP have different strengths.

This work provides a new perspective of dealing with

bone cancer segmentation and compares the effectiveness of

machine learning approaches for this challenging segmentation

problem. In the next stage of the research, we aim to segment

the lesion area from the datasets with artificial lesions with

a user-defined size to test the accuracy of our deep learning

approaches in three dimensions. A challenge we face is that,

while the bone is easily identifiable, the bone lesion areas are

almost the same as the background. A limitation in our current

approach is that it requires downsampled datasets. Since some

information within the dataset is lost during downsampling,

the full-size dataset will be processed in the next stage to

improve the accuracy. Furthermore, the experiments have been

performed on 2D slices of the µCT dataset. Given that the

bone lesions are a 3D structure, it is possible that 2D CNN

will not be sufficient to process the dataset. Therefore, the

implementation of 3D CNN is a potential architecture that

can be investigated in parallel.
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