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Abstract 

This paper analyzes and quantifies the fundamental factors that are likely to cause persistence 

in performing R&D activities: the existence of sunk costs associated with R&D activities and the 

process of learning that characterizes this type of activity.  We estimate our model with Spanish 

manufacturing firms for the period 1991-2014. By decomposing the effects of sunk costs and 

learning effects, we find that both are important determinants of R&D persistence, and that 

failing to allow for learning systematically overestimates sunk cost effects. Both large firms and 

SMEs benefit from direct and indirect (via productivity) effects of R&D experience, but in large 

firms this is more likely to be manifest through productivity improvements while in smaller 

firms the effect is more skewed towards a direct effect on R&D likelihood. Further, our results 

suggest that whereas the impact of sunk costs in R&D persistence is greater for large firms than 

for SMEs, the scope for direct learning from continuous R&D engagement is greater for SMEs 

than for larger firms.  
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1. Introduction  

 

Persistence in R&D is highly desirable for firms. It is related to greater productivity 

growth (Verspagen, 1995; Lööf et al., 2012), higher profitability (Cefis and Ciccarelli, 2005), and 

to an increased level of innovation (Beneito et al., 2015).  This has potential policy implications 

at both national and EU level: for example, the Spanish Strategy for Science and Technology and 

Innovation 2013-2020 recognizes that boosting Spanish performance in R&D and innovation 

entails "promoting the stability and sustainability over time of such investments", and the European Union's ‘Horizon 2020’ includes the promotion of innovative firms as a priority 
objective. Despite the political interest and the existence of previous work that has explored the 

determinants of the innovative persistence of firms, we know little about the factors that lead 

firms to carry out innovative activities – and in particular R&D – in a persistent fashion.  

From a theoretical point of view, the two fundamental factors that are likely to cause 

persistence in performing R&D activities are the existence of sunk costs associated to carrying 

out R&D activities and the processes of learning that characterize this type of activity. Regarding 

the existence of sunk costs associated with R&D activities, it is necessary to take into account 

that when firms decide to perform R&D activities they have to incur initial costs associated with 

the establishment of an R&D department, purchase of specific assets and recruitment and/or 

training of specialized personnel. These sunk costs represent both barriers to entry and exit of 

R&D activities and, therefore, are liable to cause persistence.  

Both the evolutionary theory approach (Nelson and Winter, 1982) and the path-

dependent technological change approach (Ruttan, 1997) recognize the existence of learning 

processes when firms perform R&D activities in a continuous manner. By investing in R&D 

firms develop capabilities, which incrementally give the firm a stock of knowledge and 

experience that can be used to develop new innovations. Therefore, the process of conducting 

R&D activities is characterized by increasing dynamic returns that materialize in learning and 

economies of scope in the production of innovations (Cohen and Levinthal, 1989). Whether firms’ persistence in R&D is due to the existence of sunk costs or to a process of 
learning is highly relevant both from the economic and the political perspective, as it raises 

completely different implications. Sunk costs, insofar as they imply the existence of exit 

barriers, may force firms that in the absence of these sunk cost would quit R&D activities to 

continue performing them, thus distorting the efficient allocation of resources within the firm.  However, if firms’ persistence in R&D is linked to learning processes that increase the efficiency 
of the innovative activity (Beneito et al., 2015), it would be necessary to take measures that 

encourage the continuous engagement in R&D activities. Furthermore, if persistence in innovation is desirable as a means to increase firms’ innovation returns, it is pertinent to know 
what prevents firms from continuous engagement in R&D. Therefore, it is extremely interesting 
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to try to quantify the extent to which the persistence in carrying out R&D activities is linked to 

the existence of sunk costs or learning effects. 

 To the best of our knowledge, the only work that tries to differentiate between sunk 

costs and learning as determinants of the persistence in the realization of R&D is Máñez et al. 

(2015). Using econometric models of duration, they obtain empirical evidence suggesting that 

both sunk costs and learning effects are important determinants of R&D persistence. However, 

their methodology does not permit quantification of the importance of these two factors. In 

order to quantify the role of sunk costs and learning effects to explain firms’ persistent 
engagement in R&D, in this paper we integrate in a single econometric framework the dynamic 

autoregressive models, which analyze the role of sunk costs, with the duration model proposed 

by Mañez et al. (2015) to capture possible learning effects related to the continuous 

engagement in R&D. To achieve this, we adapt and extend the model proposed by Timoshenko (2015) to analyze the role of sunk cost and learning effects in firms’ export decisions. Our model 
adds to the autoregressive structure of Mañez et al. (2009) or Peters (2009) a function of the 

number of years that the firm has been continuously engaged in R&D (R&D age) to capture 

possible learning effects. The comparison of the results of the estimations with and without 

learning effects allows us to measure which part of the persistence in R&D engagement may be 

attributed to the existence of sunk cost and which to possible learning effects. 

 Nevertheless, proper quantification of the effects of sunk costs and learning on R&D 

persistence requires acknowledgement of the possible indirect effect of R&D experience 

(proxied by R&D age) on the likelihood of performing R&D that accrue through its enhancing 

effects on productivity. Therefore, we consider that R&D experience may affect the probability 

of R&D engagement both directly and indirectly. By direct effects we mean those stemming 

from the inherent learning associated to continuous R&D engagement.  By indirect effects we 

mean those that accrue to the probability of performing R&D through increased productivity. 

Further, given that both sunk costs and learning effect are more likely to happen for in-house 

(make) R&D than for external (bought) R&D, we will focus our analysis on in-house R&D. 

Therefore, hereafter unless otherwise stated when referring to R&D we mean in-house R&D. 

To carry out our empirical analysis, we use a representative sample of Spanish 

manufacturing firms for the period 1991–2014, drawn from the Survey of Business Strategies 

(ESEE, henceforth). This annual survey does not include firms with less than 10 employees and 

classifies as SMEs those firms with less than 200 workers, and as large firms those with more 

than 200 workers. Thus, given the sampling procedure of this survey, we consider as SMEs 

those firms having between 10 and 200 employees. 

 The contribution of this paper to the literature on innovation persistence is at least 

threefold. First, this is the first attempt to disentangle and quantify the importance of sunk costs 
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and learning effects as determinants of persistence in R&D. Second, we distinguish between the 

direct effects of R&D experience inherent to continuous R&D engagement, and the indirect 

effects that accrue to the likelihood of R&D engagement through enhanced productivity. Third, 

we analyze whether the role played by sunk costs and learning effects differs between large 

firms and SMEs. In the case of Spain this is especially relevant as SMEs represent about 95% of 

the total number of firms. 

 To anticipate our results, they are consistent with the previous literature in suggesting 

that both sunk costs and learning effects are crucial drivers of R&D persistence. However, our 

results suggest that, after accounting for possible indirect effects of R&D experience on the 

likelihood of performing R&D, a non-negligible part of the observed state-dependence, 

traditionally attributed to the presence of sunk costs associated R&D engagement, could be 

attributable to direct learning effects in R&D activities (Rosenberg, 1976; Nelson and Winter 

1982). Further, it is interesting to remark that both large firms and SMEs benefit from direct 

and indirect (via productivity) effects of R&D experience, but in large firms this is more likely to 

be manifest through productivity improvements while in smaller firms the effect is more 

skewed towards a direct effect on R&D likelihood.  

The rest of the paper is organized as follows. Section 2 summarizes the literature on 

innovation and R&D persistence.  Section 3 describes the data and provides some descriptive 

statistics. Section 4 presents the empirical model. Section 5 reports the results and, finally, 

Section 6 concludes. 

 

2.  Literature Review 

There is an enormous empirical literature indicating that R&D is a key input for firm-

level product and process innovation1. For this reason alone there is cause to be interested in 

the determinants of R&D and of its persistence. However, persistence in R&D is worth looking at 

in its own right, regardless of whether it is an effective proxy for innovation. There are two 

reasons for this. First, R&D performance is itself productivity enhancing at the firm level 

(Verspagen, 1995; Lööf et al., 2012), and so increasing the number of R&D performers and its 

persistence is a desirable objective at the country level.  Second, as Arqué-Castells (2013) points 

out, many public policies on innovation, such as tax credits and direct public subsidies, are 

actually directed to measurable innovation inputs such as R&D.  Therefore identifying the 

nature and causes of R&D persistence is of economic and policy interest. 

 
1
 See, for example, the references in Roper et al. (2008). Of course, R&D is neither a necessary nor 

sufficient condition for innovation at the firm level.  However, the weight of empirical evidence of the 

links between the two strongly suggests that the association is more than mere correlation. 
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The causes of persistence in both innovation inputs and outputs is still relatively under-

researched, both theoretically and empirically (Ganter and Hecker, 2013). Theoretically, there 

are two principal explanations for persistence in innovation2.  The first is the sunk cost 

argument.  Here, investment in the R&D activities that underlie (technological) innovation 

require a considerable and continuous outlay on capital equipment, specialized and skilled 

labour, and on information such as horizon-scanning and new market opportunities.  These 

costs are typically unrecoverable and thus are sunk costs.  These sunk costs provide a platform 

for future R&D activity for innovators as well as a potential entry barrier into R&D activity for 

non-innovators, leading to persistence in both innovation and non-innovation activity (Mañez et 

al. 2009; Sutton 1991).  The second key explanation for persistence involves learning effects.  

Investing in R&D activities can be characterized as a process of knowledge accumulation and 

learning, in which the firm builds on its previous stock of knowledge and thus generates the new knowledge on which future innovations are based.  Since the firm’s knowledge base is 
cumulative, the process of conducting R&D activities is characterized by increasing dynamic 

returns that materialize in learning and economies of scope in the production of innovations, 

and is a source of future firm capability (Cohen and Levinthal, 1989; Nelson and Winter, 1982). 

Empirically, it is important to determine whether any perceived persistence in 

innovation is real or spurious. Observed persistence could arise simply from individual firm 

heterogeneity, in which firms possess certain characteristics which make them more prone to 

performing innovation.  If these characteristics themselves persist through time, the result can 

be a perception of persistence which is not actually ‘true state dependence’ (Arqué-Castells, 

2013).  While early empirical studies were unable to differentiate between these causes (e.g. 

Cefis and Orsenigo, 2001), more recent work has shed light both on the existence of true 

persistence and on its underlying drivers.  For example, Raymond et al. (2010) conclude that in 

Dutch manufacturing there is true persistence in the probability of innovating in high-tech 

industries and spurious persistence in the low-tech sector.  The emphasis therefore shifts to the 

determinants of persistence. 

Much of the empirical work analyzing the determinants of innovation persistence has 

focused on the persistence in the achievement of innovation outputs such as patents or product 

innovations, and cover a wide range of countries (inter alia Geroski et al. 1997; Crépon and 

Duguet, 1997; Malerba and Orsenigo, 1999; Cefis and Orsenigo, 2001; Cabagnols, 2006; Roper 

and Hewitt-Dundas, 2008; Peters, 2009; Ganter and Hecker, 2013; Fontana and Vezzulli, 2016). 

The choice of innovation measure may influence the findings on whether there is persistence 

and on its determinants.  For example, studies of patents typically find relatively low rates of 

 
2
 A third potential explanation for persistence – financial constraints – has received rather less attention 

in the theoretical and empirical literature (Ganter and Hecker, 2013; Hall, 2002). 
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persistence (e.g. Malerba et al. 1997; Malerba and Orsenigo, 1999; Cefis 2003), while studies 

concentrating on (product) innovations or productivity are somewhat mixed, but on balance do 

tend to find evidence of true persistence (Roper and Hewitt-Dundas, 2008; Raymond et al., 

2010; Ganter and Hecker, 2013; Hecker and Ganter, 2014; Triguero et al., 2014).  Arqué-Castells 

(2013) suggests this may in part reflect different underlying mechanisms determining 

persistence.  For example, persistence in patenting need not be particularly strong at the firm 

level for the firm to remain an innovation leader, as patenting often involves winning patent 

races.  By contrast, measures of innovation based on product innovation measures are less 

demanding indicators, and may better reflect learning effects and dynamic returns to scale. 

In the case of R&D, the most likely reason for persistence a priori would appear to be 

sunk costs resulting in entry barriers which favour incumbents and deter entrants to R&D 

activity (Sutton 1991).  Unsurprisingly, empirical research on R&D persistence has tended to 

focus on the sunk cost argument, with correspondingly little emphasis on possible learning 

effects in R&D. Several studies have analyzed innovative persistence from the perspective of the 

R&D investment, generally finding evidence of true persistence. On the one hand, both Mañez et 

al. (2009) and Peters (2009) specifically analyze the drivers of firms’ persistence in R&D 
engagement. On the other hand, Artés (2009), Arqué-Castells (2013) and Garcia-Quevedo et al. 

(2014) for Spanish manufacturing firms, Piva and Vivarelli (2007, 2009) for Italian 

manufacturing firms, Raymond et al. (2010) for Dutch manufacturing firms and Woerter (2014) 

for Swiss firms explicitly recognize the existence of persistence on firms’ decision of engaging in 
R&D activities. However, most of these studies use first order autoregressive dynamic models to 

analyze the role of sunk costs in the decision to carry out R&D, and they do not pay much 

attention to the role that intrinsic learning processes to the continuous realization of R&D 

activities can play as explanatory factor of the persistence of firms in R&D engagement. By 

contrast, Máñez et al. (2015) obtain empirical evidence suggesting that both sunk costs and 

learning effects are important determinants of R&D persistence: however, their methodology 

does not permit quantification of the importance of these two factors. 

While it is natural to conceive of R&D persistence as being the preserve of larger firms, 

there is good reason to consider the issue with regard to SMEs.  First, there is considerable 

evidence that official statistics systematically underestimate the extent of R&D carried out by 

SMEs, at least in part because of their tendency to concentrate on development rather than on 

fundamental research (Kleinknecht, 1987; Roper, 1999).  Second, many governments have a 

policy objective of increasing SME competitiveness, often via innovation and 

internationalisation, and so the issue of persistence in R&D and innovation among smaller firms 

becomes of interest.  Theoretically, there are reasons to believe the drivers of persistence may 

differ between smaller and lager firms. To the extent that small firms have more difficulty 
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making the necessary investments for R&D, the associated sunk costs are more likely to provide 

a barrier to R&D entry for small than large firms.  With respect to learning effects, theory 

provides rather more ambiguous lessons.  SMEs may typically be further from the technology 

frontier than large firms, suggesting that they may have more to learn from persistence in R&D 

activity.  But they may also lack the absorptive capacity to successfully turn the opportunities 

for learning into future innovation or productivity, implying that the relative importance of both 

sunk costs and learning with respect to SMEs versus large firms is an empirical issue. The one 

piece of research which explicitly compares the drivers of R&D persistence among large and 

small firms (Máñez et al., 2015) indicates that sunk costs and learning may be present in both 

sets of firms, but sheds no light on the relative size of these effects in either case. 

To summarise, the literature to date suggests that R&D persistence is a real 

phenomenon, that both sunk costs and learning effects may be at work, and that the drivers of 

persistence may differ between large and small firms. However, there is less clarity on the 

relative importance of sunk costs versus learning effects, or in precisely how the drivers of R&D 

persistence differ among firms of different sizes. 

 

3. Data and R&D patterns 

 

The data are drawn from the Spanish Survey of Business Strategies (ESEE, henceforth) 

for the period 1991–2014. This is an annual survey sponsored by the Spanish Ministry of 

Industry and carried out since 1990 that is representative of Spanish manufacturing firms 

classified by industry and size categories. It provides exhaustive information at the firm level. In particular, the ESEE provides information about firms’ strategies, e.g., decisions firms take 
regarding R&D strategies.3 

The sampling procedure of the ESEE is the following. Firms with less than 10 employees 

were excluded from the survey. Firms with 10–200 employees (SMEs) were randomly sampled, 

representing around 5% of the population in 1990. All firms with more than 200 employees 

(large firms) were requested to participate, obtaining a participation rate around 70% in 1990. 

Important efforts have been made to minimize attrition and to annually incorporate new firms 

with the same sampling criteria as in the base year, so that the sample of firms remains representative over time. From the ESEE survey we sample out those firms’ observations that 
 

3 We do not use the year 1990 as the ESEE fails to supply information for some of the variables involved 

in the empirical analysis. Please check the web page of the ESEE in Fundación SEPI for further 

information: http://www.fundacionsepi.es/esee/en/epresentacion.asp. 
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fail to supply relevant information about all variables involved in our analysis. After cleansing 

the data, we end up with a sample of 29,795 observations corresponding to 2,692 firms.4 

The ESEE provides information both about whether the firm invest in in-house R&D, and in case it invests how much it does. In particular, the question we use to determine firm’s R&D status is: “Indicate if during this year, the firm has internally undertaken R&D activity.” (in-

house R&D). As for the question on the quantity the firm invests in internal R&D, it is as follows: “Indicate the total expenditure in internal R&D that the firm has carried out this year”. Recall 

that to simplify exposition, unless otherwise stated along the paper when we refer to R&D we 

mean internal R&D.  

Looking at the distribution of firms performing/not performing R&D in the data (see 

Table 1), we observe that 47.70% of the firms never undertake R&D, 12.93% undertake R&D 

every year they are in the sample, and 39.38% are switchers (i.e. they change from undertaking 

to non-undertaking R&D or vice versa at least once). Comparing for size groups, the percentage 

of firms that always undertake R&D is more than five times higher for large firms than for SMEs 

(31.16% and 5.87%, respectively). Conversely, the percentage of firms that never perform R&D 

is substantially higher for SMEs than for large firms (whilst 61.15% of SMEs never perform 

R&D, for large firms this percentage is 12.92%). As for switchers, whereas 55.98% of large firms 

are switchers (the highest percentage among large firms), this percentage for SMEs is 32.97%. 

The ratio in-house R&D expenditure (in percentage) over sales is 1.60% for the firms that 

perform in-house R&D. Furthermore, this ratio is higher for SMEs (1.95%) than for large firms 

(1.35%) 

As explained in detail in Section 4.2.3, the only group of firms that contribute to the 

identification of the sunk costs and learning effects in our estimation exercise are the switchers. 

Therefore, we circumscribe the rest of this section to the analysis of this group of firms. Thus, 

Table 2 shows both for the full sample of switchers and by sizegroup the percentage of firms 

with j number of R&D spells.5 Most of firms show either one or two R&D spells: 62.2% (51.2%) 

of SMEs (large firms) have a unique R&D spell; and, 28.9% (39.3%) have two R&D spells. 

Furthermore, the maximum number of R&D spells observed is five (both one SME and one large 

firm show five R&D spells) 

  With the aim of gaining insight on the issue of R&D persistence, we display in Figure 1 

the Kaplan-Meier survivor function corresponding to large firms and SMEs. The Kaplan-Meier 

 
4
 Further, since when using Blundell et al. (1999, 2002) method to control for unobserved heterogeneity 

in the estimation of the dynamic equation of the decision to engage in R&D, we use a 4 years pre-sample 

period and we lag explanatory variables one period, we require firms to be at least 6 years in the sample 

to be considered in estimation. 

5
 Spell is defined as an episode of continuous engagement in R&D. 
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(empirical) survivor functions shows the percentage of R&D spells that continue in operation 

after a given number of years of uninterrupted R&D engagement. It is interesting to note that 

the survivor function for SMEs is always below that of large firms, indicating that SMEs R&D 

spells are shorter than those of their larger counterparts. Thus, whereas the mean (median) 

duration of R&D spells for SMEs is 4.23 (2), for large firms it is 6.63 (4) years. Furthermore, we 

can observe that for large firms and SMEs, the percentage of firms that cease undertaking R&D 

decreases as firms age in R&D activities (the Kaplan-Meier survivor function gets flatter as 

duration in R&D lengthens). This should be interpreted as evidence of negative duration 

dependence, that Mañez et al. (2015) link to learning processes arising from continuous 

engagement in R&D.6 

            Figure 2 shows how R&D expenditure in logs (and deflated to obtain real values) changes 

with R&D age. More specifically, the figure shows the growth of real R&D expenditure relative to 

the first year performing R&D. Thus, each point in the lines shows the ratio of the average real 

log R&D expenditure for firms with R&D age t (for t = 1,..,15) to the average real log R&D 

expenditure for firms in their first year performing R&D. In this figure, we can observe an 

increasing trend of R&D expenditure both for SMEs and large firms. The result is that after 15 

years of continuous R&D performance, average R&D expenditure for large firms and SMEs is 

12.9% and 8% higher, respectively, than the first year performing R&D. This increase in R&D 

expenditure is consistent with a process of learning, although it is possible that part of this 

growth in R&D activities could be due by a process of selection of the more efficient firms into 

performing R&D. 

             Figure 3 shows the evolution of in-house R&D intensity (defined as the ratio of in-house 

R&D expenditure over sales) with respect to R&D age. Two observational facts are worth to 

mention about this figure. On the one hand, regardless of R&D age, R&D intensity of R&D 

performing SMEs firms is higher than R&D intensity of R&D performing large firms. On the 

other hand, although we do not observe a clear pattern on the evolution of R&D intensity with 

respect to R&D age, it seems that for SMEs shows a slightly decreasing trend up to 9 years of 

continuous R&D performing and then an increasing trend. For large firms, the slightly 

decreasing extends up to 10 years of R&D age, and then this decreasing trend is reversed.  

4. Empirical Model and Estimation Issues.   

In this section we adapt and extend for the case of R&D the model proposed by Timoshenko 

(2015) to analyze the role of sunk costs and learning effects in firms’ export decisions. 
 

6 In the terminology of duration models, negative duration dependence implies that the longer the spell, 

the lower the hazard of ending it at a given R&D survival time j. 
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4.1 Age dependence of R&D profits 

Let 𝜋𝑖𝑡(𝑧𝑖𝑡, 𝐴𝑖𝑡 , 𝑝𝑡)  represent the increment to expected profits for firm i associated to 

engaging in R&D in period t (in comparison to a situation in which the firm does not perform 

R&D), assuming that the profit-maximizing level of R&D expenditure is always chosen. It is 

assumed that the extra profits associated to perform R&D are a function of productivity (zit), a 

vector of market-level variables (pt) that the firm takes as exogenous (such as market demand 

evolution or interest rates), and R&D experience (Ait). The novelty with respect to others 

models that analyze the firm dynamic decision of undertaking R&D is the inclusion of R&D 

experience as a determinant of the extra profits associated to engaging in R&D. We assume 𝜋𝑖𝑡() 

to be an increasing function of R&D experience (𝐴𝑖𝑡) on the grounds of previous empirical 

studies that relate persistent R&D engagement to a larger production of innovations that could 

result in larger demand and/or markups (Beneito et al., 2015) with the consequent positive 

effect in profits; or, directly to higher profitability such as it is the case of Cefis and Ciccarelli 

(2005). In both cases, the theoretical arguments linking persistent engagement in R&D and 

profits are the processes of learning-by-doing, learning-to-learn and increasing dynamic returns 

that characterize R&D activities. We will refer to this assumption as the “age dependence assumption” or “learning assumption”.7  

More specifically, we assume that R&D experience, Α𝑖𝑡, is a discrete variable that 

measures the duration of firm i last period of consecutive years of R&D engagement 

immediately before arriving to period t, (i.e., the duration of the most recent R&D spell 

immediately before period t). 𝐴𝑖,𝑡 = 𝑛 implies that firm i performed R&D continuously between 

t – n and t – 1. Further, as Timoshenko (2015) we assume full depreciation of R&D experience 

once a firm stops performing R&D.8 Therefore, if firm i did not perform R&D in period t – 1, 

regardless of its previous R&D experience before period t-1, 𝐴𝑖,𝑡 = 0. Further, let productivity z𝑖𝑡 follow an exogenous Markov process of the form z𝑖𝑡 = 𝜌z𝑖𝑡−1 + 𝜈𝑖𝑡 .  

Knowing its productivity and given its previous R&D experience, firm i decides in every 

period t whether engaging or not in R&D. If the firm i decides to perform R&D in period t its 

extra profits associated to perform R&D are given by 𝜋(𝑧𝑖𝑡 , 𝑝𝑡 , 𝐴𝑖𝑡) if the firm performed R&D in 

period t-1 and 𝜋(𝑧𝑖𝑡 , 𝑝𝑡 , 𝐴𝑖𝑡) − 𝑓𝑒 if the firm was not engaged in R&D in period t - 1. Where, fe are 

the sunk entry costs in which firms have to incur to start performing R&D. These initial sunk 

 
7
 Timoshenko (2015) uses the same terminology to refer to the export experience dependence of the 

extra profits associated with export performance. 

8
 We will relax the assumption of full depreciation of R&D experience once a firm quits performing R&D in 

our empirical exercise. 
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costs are associated with the establishment of a department of R&D, purchase of specific assets 

and recruitment and/or training of specialized personnel. 

 

4.2 A dynamic model of the R&D decision in presence of learning effects 

4.2.1 Empirical model 

In the presence of age-dependence, the persistence in R&D that previous literature has 

associated to the existence of sunk costs (Mañez et al., 2009; Peters, 2009; Arque-Castells, 2013) 

could be also attributed to accumulation of R&D experience, and so to a process of learning. In 

what follows, we present a model of R&D decision in presence of learning effects that closely 

follows that developed by Timoshenko (2015) to model export participation. 

Let be yit the R&D decision of firm i in period t (with yit = 1 if firm i engages in R&D and zero if it does not). Firms’ decision on whether engaging or not in R&D results from maximizing 

the present discounted value of profits in the following Bellman equation:9  𝑉(z𝑖𝑡 , A𝑖𝑡 , Y𝑖𝑡−1) = maxY𝑖𝑡∈{0,1}{𝜋(z𝑖𝑡 , A𝑖𝑡) − 𝑓𝑒(1 − Y𝑖𝑡−1) +𝛿𝐸z𝑖𝑡+1𝑉(z𝑖𝑡+1, A𝑖𝑡+1, Y𝑖𝑡), 𝛿𝐸z𝑖𝑡+1𝑉(z𝑖𝑡+1, 0, Y𝑖𝑡)}        (1) 

where the discount factor is denoted by 𝛿. 

 If we omit experience effects (i.e. if we omit Ait), equation (1) is the typical R&D decision 

problem considering sunk costs and uncertainty (see for example Mañez, 2009 or Peters, 2009). 

The policy function corresponding to this problem is described by two productivity thresholds: 

the entry threshold (zH) and the exit threshold (zL) with zL < zH.  𝑦𝑖𝑡 = {1 if  𝑧𝑖𝑡 ≥ 𝑧𝐻 − (𝑧𝐻 − 𝑧𝐿)𝑌𝑖𝑡−10 otherwise                                        (2) 

Equation (2) implies that firm i will perform R&D in t if its productivity is above a given 

productivity threshold that depends on whether the firm was engaged in R&D or not in period t 

-1. If firm i did not perform R&D in period t – 1, it will only perform R&D in period t if zit > zH. 

However if firm i was engaged in R&D in period t -1, to continue performing R&D in t, its 

productivity has just to be higher than the lower productivity threshold zL (zit > zL). Therefore, 

the existence of sunk costs produces a wedge between entry and exit productivity, this 

difference (zH –zL) is usually known as “hysteresis band”. This wedge implies that the 
probability of performing R&D in period t depends on whether or not the firm performed R&D 

in in period t-1. Thus, firms that performed R&D in the previous period are more likely to 

 
9
 We omit pt from () as it is a vector of market level variables exogenous to the firm. 
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continue performing R&D than firms that were not engaged in R&D. Therefore, the existence of 

sunk costs itself is enough to cause R&D persistence. It is interesting to note that in this setup 

the higher the sunk R&D starting up costs, the larger is the hysteresis band and, hence, the more 

the expected R&D persistence. However, if sunk R&D costs are equal to zero then zH = zL and the 

probability of engaging in R&D becomes independent of previous R&D history. 

Introducing the probability of learning in this setup (such as in equation (1)) crucially 

affects the role played by sunk costs to explain R&D persistence. Proposition 1 in Timoshenko 

(2015), in a similar setup but related to the export decision, describes the properties of the 

thresholds of participation in a given activity when the profits associated with the performance 

of such activity depends both on sunk costs and experience performing the activity.  

This proposition is based on the three following properties: i) z𝐿(A𝑖𝑡) is decreasing in A𝑖𝑡 ; ii) if 𝑓𝑒 = 0, 𝑧𝐻 = 𝑧𝐿(0); and, iii) if 𝑓𝑒 > 0, z𝐻 > z𝐿(0). Since, now the exit threshold depends 

on Ait, the hysteresis band [𝑧𝐻 − 𝑧𝐿(𝐴𝑖𝑡)] depends on previous R&D experience. Thus, it is 

assumed that the longer the spell of uninterrupted R&D, the more intense the learning (caught 

in the model by a lower 𝑧𝐿(𝐴𝑖𝑡)) and the wider the hysteresis band. From the point of view of 

R&D persistence, this assumption implies that the longer the R&D spell, the higher is the 

probability that the firm continues engaged in R&D.  

After considering the possibility of learning, the R&D participation in equation (2) can 

be rewritten (adding and subtracting 𝑧𝐿(0) from the coefficient of Yit-1) as: 𝑦𝑖𝑡 = { 1 if  𝑧𝑖𝑡 ≥ 𝑧𝐻 − ([𝑧𝐻 − 𝑧𝐿(0)] + [𝑧𝐿(0) − 𝑧𝐿(𝐴𝑖𝑡)])𝑌𝑖𝑡−10 otherwise                                                                                      (3) 

If firm i did not invest in R&D in period t -1 (𝑌𝑖𝑡−1 = 0) then the operating productivity 

threshold is 𝑧𝑖𝑡 > 𝑧𝐻 . However, if firm i invested in R&D in period t -1 (𝑌𝑖,𝑡−1 = 1) then the 

binding productivity threshold is lower, and firm i will perform R&D as long as 𝑧𝑖𝑡 > 𝑧𝐿(𝐴𝑖𝑡). 

Therefore, firms with longer R&D experience (higher scope for learning) are more likely to 

continue undertaking R&D.  

Interestingly, if 𝑓𝑒 =0 (sunk R&D starting-up costs are zero) by Proposition 1 in 

Timoshenko (2015), 𝑧𝐻 = 𝑧𝐿(0), and then the coefficient of 𝑌𝑖𝑡−1 in equation (3) becomes 𝑧𝐿(0) − 𝑧𝐿(𝐴𝑖,𝑡). Thus, the productivity threshold if firm i was engaged in R&D in period t -1 is 𝑧𝑓𝑒=0 = 𝑧𝐿(𝐴𝑖𝑡). For any 𝐴𝑖𝑡 ≥ 1, 𝑧𝐿(𝐴𝑖𝑡) < 𝑧𝐻 , then 𝑧𝑓𝑒=0 < 𝑧𝐻 . This implies that once one 

considers the possibility of learning, even in the absence of sunk R&D costs, previous R&D 

experience has a positive impact on the probability of continuing engaged in R&D (as learning 

has a positive effect on profits). It should be noted that in this setup, it is assumed that once a 

firm decides to cease R&D activities, experience fully depreciates and when deciding to restart 

performing R&D in the future it will need a better productivity shock. 
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Therefore, equation (3) shows that the dependence of current R&D status on previous 

period R&D status is a sign of state dependence, but not necessarily of sunk costs, as state 

dependence could be the result of learning, sunk costs or both. 

 

4.2.2 Estimating equation 

From equation (3), following Timoshenko (2015), it is possible to develop an empirical model of 

R&D participation. The main interest here lies on decomposing state dependence in its sunk 

costs and learning components. Let us decompose the expression in front of 𝑌𝑖𝑡−1 in equation 

(3) into its two elements [𝑧𝐻 − 𝑧𝐿(0)] and [𝑧𝐿(0) − 𝑧𝐿(𝐴𝑖𝑡)].  Further, let us call the first 

elements 𝛽𝑠𝑐 . In the absence of entry sunk costs by Proposition 1 in Timoshenko (2015) 𝑧𝐻 =𝑧𝐿(0) and, thus 𝛽𝑠𝑐 = 0. In the presence of sunk R&D costs 𝑧𝐻 > 𝑧𝐿(0) and so 𝛽𝑠𝑐 > 0. We will 

refer to 𝛽𝑠𝑐  as the sunk cost component of R&D state dependence. The second element of the 

expression in front of of 𝑦𝑖𝑡−1, [𝑧𝐿(0) − 𝑧𝐿(𝐴𝑖𝑡)], catches the effect of R&D age on the probability 

of performing R&D (i.e. how the R&D continuation threshold decreases with R&D experience). 

After this decomposition, equation (3) can be rewritten as: 

𝑌𝑖𝑡 = {1  if (𝑧𝑖𝑡 − 𝑧𝐻) + 𝛽𝑆𝐶𝑌𝑖𝑡−1 + [𝑧𝐿(0) − 𝑧𝐿(𝐴𝑖𝑡)]𝑌𝑖𝑡−1 ≥ 00  otherwise                                                                      ….       (4) 

Finally, if as in Timoshenko (2015) we assume a logarithmic parametrization of the age 

effect, 𝛽𝑎 ln(𝐴𝑖𝑡 + 1), and that (𝑧𝑖𝑡 − 𝑧𝐻) may be parametrized as 𝛼 + 𝛾𝑋𝑖𝑡, our estimation 

equation is given by: 

𝑌𝑖,𝑡 = {1  if 𝛼 + 𝛽𝑆𝐶𝑌𝑖𝑡−1 + 𝛽𝑎 log(𝐴𝑖𝑡 + 1) + 𝛾𝑋𝑖𝑡 + 𝜖𝑖𝑡 ≥ 00  otherwise                                                                  ….       (5) 

where 𝜖𝑖𝑡 is the error term (its structure is detailed later in the next section); and, Xit includes a 

vector of observed firm characteristics that may affect (𝑧𝑖𝑡 − 𝑧𝐻) and so firms’ R&D engagement 
decisions. 

The logarithmic functional assumed for the R&D age allows to separate the state 

dependence effect into its two components. Thus, for example, in equation (5) the effect of one-

year R&D experience is given by 𝛽𝑆𝐶 + 𝛽𝑎log(2).  
 

4.2.3 Estimation issues 

In order to isolate the structural state-dependence parameters in equation (5), we use 

an econometric framework that controls for other competing sources of persistence in R&D 
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decisions, such as firm heterogeneity, or serial correlation in exogenous shocks. Most of this 

task is accomplished by including observable firm characteristics (𝑋𝑖𝑡) -already included in 

equation (5)-, but we will also include industry dummies (𝑠𝑖) and year effects (𝜇𝑡) in equation 

(5). Time effects aim to capture macro-level changes in market conditions that are common 

across firms, such as the business cycle, credit-market conditions, overall changes in demand 

and other time-varying factors. Industry dummies control for unobservable characteristics of 

markets where firms compete such as the use of technology or firm-specific behavior by 

industry. 

Furthermore, it is important to recall that the theoretical model above assumes full 

depreciation of sunk costs and R&D experience once a firm ceases performing R&D. However, it 

is reasonable to assume that this depreciation does not happen all in one period but gradually 

as the firm continues without performing R&D. To account for the possibility of lower sunk 

startup costs and lower learning depreciation (in our setup we cannot distinguish between both 

effects) for firms that restart R&D activities after j years without performing them, we include in 

estimation the set of variables �̃�𝑖𝑡−𝑗which take value 1 if the last time a firm performed R&D was 

in year 𝑡 − 𝑗 (in estimation we assume 𝑗 ≤3). 

Yet, there may be firm unobserved factors affecting causing persistence such as product 

attributes, managerial skills or R&D personnel ability. For this reason, we assume that 𝜖𝑖𝑡 in 

equation (5) has two components, a permanent firm specific effect (𝛼𝑖) and a transitory 

component (𝑢𝑖𝑡), then 𝜖𝑖𝑡 = 𝛼𝑖 + 𝑢𝑖𝑡 . Hence, we allow for two sources of serial correlation in 𝜖𝑖𝑡. 

This is an important issue since, whether or not 𝑢𝑖𝑡 are independent across t, 𝜖𝑖𝑡 will be always 

serially correlated because of 𝛼𝑖  

Therefore, after including observable firm characteristics, industry dummies, time 

effects, the possibility of lower sunk cost when restarting R&D activities and the unobserved 

heterogeneity component, equation (5) becomes: 

𝑌𝑖,𝑡 = {1  if 𝛼 + 𝛽𝑆𝐶𝑌𝑖𝑡−1 + 𝛽𝑎 log(𝐴𝑖𝑡 + 1) + 𝛾𝑋𝑖𝑡−1 + 𝛿𝑗�̃�𝑖𝑡−𝑗 + 𝜇𝑡 + 𝑠𝑖 + 𝜖𝑖𝑡 ≥ 00  otherwise                                                                                                             ….    (6) 

In equation (6) to avoid simultaneity problems we lag one period the observable firm 

characteristics included in Xit..  

Finally, as we aim to analyze whether the relative importance of sunk costs and learning 

effects in explaining R&D persistence differs between SMEs and large firms, we consider a 

version of equation of (6) in which we interact the sunk R&D costs variable and the experience 

effects variable by the dummy variable 𝑑𝐿, that takes value 1 for large firms (firms with more 



 14 

than 200 workers in the ESEE) and zero otherwise. After accounting for differences between 

SMEs and large firms, equation (6) can be rewritten as: 

𝑌𝑖,𝑡 = { 𝛼 + 𝛽𝑆𝐶𝑌𝑖𝑡−1+𝛽𝑆𝐶𝐿 𝑌𝑖𝑡−1𝑑𝐿 + 𝛽𝑎 log(𝐴𝑖𝑡 + 1) +𝛽𝑎𝐿 log(𝐴𝑖𝑡 + 1) 𝑑𝐿 + 𝛽𝑙𝑑𝐿 ++𝛿𝑗�̃�𝑖𝑡−𝑗 + 𝛾𝑋𝑖𝑡−1 + 𝜇𝑡 + 𝑠𝑖 + 𝜖𝑖𝑡 ≥ 0                                                                          0  otherwise                                                                                                                            (7) 

 For the sake of robustness, in the estimation of the dynamic panel data discrete choice 

models of the decision to perform R&D of equations (6) and (7), we control for correlated unobserved firms’ heterogeneity using two alternative approaches proposed by Blundell et al. 

(1999, 2002) and Wooldridge (2005). Both approaches stand to making assumptions about the 

distribution of the unobserved effects (𝛼𝑖) conditional on observed covariates and adopting a 

conditional maximum likelihood approach (Chamberlain, 1982).  

Following Blundell et al. (1999, 2002), we may model the distribution of i as: 𝛼𝑖 = 𝛿0 + 𝛿1 �̅�𝑖 + 𝑒𝑖𝑡           (8) 

where �̅�𝑖  is a vector including both the pre-sample mean of the dependent variable and the pre-

sample mean of all remaining regressors. Blundell et al. (1999) suggests that the firms’ 
permanent effects might be captured by the entry pre-sample mean of the dependent variable, 

which should act as a sufficient statistic for unobserved firm heterogeneity Nevertheless, 

Blundell et al. (2002) suggest that, given that in some cases not all the permanent effects might 

be captured by the pre-sample means of the dependent variable, it might be convenient, when 

available, also include pre-sample means of all remaining regressor. Finally, 𝑒𝑖𝑡  represents the 

error term which is assumed to be independent of the of the pre-sample means of the 

dependent variable, the pre-sample means of the rest of explanatory variables, the explanatory 

variables and the idiosyncratic error term of the main equation. As we use as presample period 

1991-1994 and the explanatory variables in in equation (6) are lagged one period, when 

following this approach, we carry out estimation for the period 1996-2014. 10 

Wooldridge (2005) approach models the distribution of 𝛼𝑖as: 

            𝛼𝑜 = 𝛿0 + 𝛿1�̅�𝑖 + 𝛿2𝑌𝑖𝑜 + 𝑒𝑖𝑡   (9)  

where �̅�𝑖 is a vector including Mundlak-Chamberlain means (Chamberlain, 1980; Mundlak, 

1978). Thus, it includes the within-means of all the exogenous control variables. Yi0 represent 

the initial conditions and eit is the error term which is assumed to be independent of the initial 

conditions, the explanatory variables, and the idiosyncratic error term in our main estimation 

 
10 Experimenting with different pre-sample periods gave qualitatively similar results. 
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equation.11 We cannot include the within mean of the R&D Age variable as this variable is 

predetermined, its value in t depends both on past and future realizations of the R&D decision 

variable. Semykina (2018) suggests that, once time means of the exogenous control variables 

(�̅�𝑖) are included, the effects of the corresponding time-varying covariates are estimated based 

on their deviations from the individual time means. Therefore, this makes Mundlak-

Chamberlain method analogous to fixed effects estimations of linear models. When using this 

estimation method, as Yi0 refers to the value of the dependent variable in 1991 and the 

explanatory variables in equation (6) are lagged one period, we carry out estimation for the 

period 1993-2014. 

Assuming that the strategies proposed above play their role to capture individual 

unobserved effects, proper identification of the parameters of interest in our model requires a 

careful examination on the type of information that within firm variation conveys for three 

types of firms: firms that never invest in R&D; firms that always in invest in R&D; and, 

switchers, i.e. firms that invest in R&D some periods but do not do it other periods. Firms that 

never invest in R&D do not show any variation in the R&D spell length variable and, therefore, 

they do not contribute to the identification of the coefficients of this variable. As for firms that 

always invest in R&D, R&D experience and firm age change at a constant rate every year. Hence, 

within firm variation of these two variables is collinear, and so it will not be possible to 

separately identify the coefficient associated to these two variables. This implies that one 

cannot be sure about whether the coefficient of the R&D experience variable is actually 

capturing learning or different stages in the firms’ life cycle. Thus, identification of the R&D age 

and the firm’s age coefficients should rely on switchers. For these firms, the R&D age variable 

 
11  We have also experimented using Semykina (2018) to model the unobserved individual effects. 

According to this approach, one can assume that that the unobserved individual effects is function only of 

those covariates that theoretically are more likely to be correlated with the unobserved individual effects. 

As a first possibility, we have considered that the individual effects are only correlated to firms internal 

and external financial constraints variables. In this sense, their within-means could be considered as measures of firms’ financial stability, and so they could be considered as proxies for unobserved firm-

specific characteristics. As a second possibility, we have considered that the individual effect is mainly 

related to management quality and so we assume that the unobserved individual effect is only correlated 

to the two labour qualification variables included as explanatory variables. Result for the main variables 

of interest are quite similar to those using the two estimation approaches described above. These results 

are available upon request.  



 16 

both shows within firm variation and its variation is not collinear to the variation of the firms’ 
age variable. Therefore, we carry out all our estimation using just the sample of switchers.12 

Nevertheless, even if we carry out our estimations only with the sample of switchers, 

there is an additional element that we should consider in the identification of the R&D age 

parameter. It is that selection on age could be still at work, so, for example we will only observe 

R&D ages higher than fifteen years for firms older than 15 years. To account for this issue, in 

Appendix D, we show the estimates of our variables of interest when splitting our sample on 

quartiles according to firms’ age. 

 

4.3. Indirect effects of R&D experience on the likelihood of R&D engagement 

 Unlike Timoshenko (2015), we propose that proper quantification of the effects of sunk 

costs and learning on R&D persistence in equations (6) and (7) requires acknowledgement of 

the possible indirect effect of R&D experience (proxied by R&D age) on the likelihood of 

performing R&D that accrue through its enhancing effects on productivity. Therefore, we 

consider that R&D experience may affect the probability of R&D engagement both directly and 

indirectly. By direct effects we mean those stemming from the inherent learning associated to 

continuous R&D engagement. By indirect effects we mean those that accrue to the probability of 

performing R&D through increased productivity 

Exploring the indirect effects of R&D experience on the likelihood of performing R&D implies both to recognise which is the link between firms’ R&D experience and productivity; 
and, the link between productivity and R&D engagement.   

 There are, at least, three strands in the literature supporting a positive relationship between R&D and firms’ productivity. The first is based on the well-known R&D capital stock 

model of Griliches (1979, 1980) that analyses the relationship between R&D investments and 

productivity growth (see Griliches, 2000, for a survey). The second strand in the literature 

rendering theoretical support to the relationship between R&D and productivity growth is the 

active learning model (Ericson and Pakes, 1995; Pakes and Ericson, 1998). According to this 

model, R&D investments contribute to improve firms’ productivity over time. Finally, 
 

12
 In any case, it should be noted that even after restricting estimation to the subsample of switchers, the 

R&D spell length variable could be correlated with the error term (𝐸[𝐴, 𝜖|𝑋 ≠ 0]) because those firms 

affected by negative shocks are likely to quit R&D more often and have shorter R&D spells and the other 

way around. Nevertheless, to address such endogeneity issue is difficult when information on credible 

exogenous sources of variation in R&D spells is not available. We are grateful to an anonymous referee on 

his/her suggestions about the relevance of each type of firms on the identification of the parameters of 

interest in our estimation.  
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endogenous growth theory is the third strand of the literature stressing the importance of R&D 

for productivity growth (Romer, 1990; Aghion and Howitt, 1992). More specifically on the effect 

of R&D experience on productivity, results in Beneito et al. (2014) suggest first, that R&D 

experience has a positive impact both in the number and the quality of the innovations; and, 

then, that these innovations have a positive effect on productivity. 

 As for the positive link between productivity and likelihood of performing R&D, the 

usual argument is a process of self-selection of the more productive firms into performing R&D 

(only the more productive firms can afford the sunk costs associated with R&D activities, see 

Sutton, 1991; Manez et al., 2009).  

 Accounting for the potential role of R&D experience in forging future firms’ productivity 
involves departing from Timoshenko (2015) assumption of an exogenous Markov process for 

the law of motion of productivity, and considering an endogenous Markov process in which past 

R&D experience is explicitly allowed to affect current productivity (see DeLoecker, 2013 or 

Doraszelski and Jaumandreu, 2013 for similar strategies for exports and R&D, respectively).13 

The consideration of this endogenous Markov process makes it possible to analyse the existence 

of positive returns of R&D experience on productivity. In the next paragraphs we briefly sketch 

how to estimate total factor productivity under the assumption of and endogenous Markov 

process for the law of motion of productivity. For a more detailed explanation see Appendix B.  

 To estimate TFP, we assume that firms produce using a Cobb-Douglas technology: 𝑦𝑖𝑡 = 𝛽0 + 𝛽𝑙𝑙𝑖𝑡 + 𝛽𝑚𝑚𝑖𝑡 + 𝛽𝑘𝑘𝑖𝑡 + 𝑧𝑖𝑡 + 𝜂𝑖𝑡     (10) 

where 𝑦𝑖𝑡is the natural log of production of firm i at time t, 𝑙𝑖𝑡is the natural log of labour 

measured as the number of effective hours worked), 𝑚𝑖𝑡 is the log of intermediate materials, 

and 𝑘𝑖𝑡is the log of capital (adjusted for for capital utilization).14 As for the unobservables, 𝑧𝑖𝑡 is 

productivity (not observed by the econometrician but observable or predictable by the firm) 

and 𝜂𝑖𝑡  is a standard i.i.d. error term that is neither observable nor predictable by the firm. 

Further, we assume that capital is a state variable, whereas labour and materials are variable 

non-dynamic inputs that can be adjusted whenever the firm faces a productivity shock. 

 We follow Wooldridge (2009) to get consistent estimates of input elasticities and 

estimates of TFP residuals. According to Wooldridge (2009), the semiparametric control 

function approaches proposed by Olley and Pakes (1996) and Levinsohn and Petrin (2003) can 

 
13

 Timoshenko assumes an AR1 process for the law of motion of productivity. She estimates a value added 

production function using Levinsohn and Petrin (2003) algorithm. 

14 Production, intermediate materials and capital have been deflated using individual firms’ price 
deflators. 
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be reconsidered as consisting of two equations that can be jointly estimated by GMM using the 

appropriate instruments. The first equation deals with the problem of endogeneity of labour 

and materials. The second equation tackles the issue of the law of motion of productivity. 

 In the first equation, to solve the problem of endogeneity of labour and materials, we 

follow Levinshon and Petrin (2003) strategy and proxy for firm productivity inverting the 

demand of intermediate materials.15 In this way, unobserved productivity can be written as a 

function of observables. In the second equation, to proxy for unobserved firm productivity, we 

assume that productivity evolves according to an endogenous Markov process: 

 𝑧𝑖𝑡 = 𝑓(𝑧𝑖𝑡−1, 𝑅&𝐷 𝐴𝑔𝑒𝑖𝑡−1) + 𝜈𝑖𝑡       (11) 

where 𝑓(⋅) is an unknown function that relates productivity in t to productivity in t-1 and to 

past R&D experience (measured by R&D age), and 𝜈𝑖𝑡 is an innovation term by definition 

uncorrelated with kit. This endogenous Markov process allows past R&D experience explicitly 

affects current productivity. 

The estimation of the production of the production function (10) for each of the 20 

industries of the ESEE provides both estimates of the input elasticities at industry level, and 

firm specific estimates as a residual. Estimates of the input elasticities are shown in Table B1 in 

Appendix B. 

 Finally, it should be noted that in our estimation strategy, direct effects of R&D 

experience on R&D persistence are measured by the estimated coefficient of R&D age in 

equations (6) and (7). Empirical support for the existence of indirect effects will require: first, to 

show that R&D experience has a positive impact on productivity; and second, a positive and 

significant estimate of our productivity measure (included as explanatory variable) in equations 

(6) and (7).  

 

5. Estimation results 

Table 3 and 4 present the estimation results of our dynamic model for the decision to 

engage in R&D (equations 6 and 7). Table 3 shows the results corresponding to the estimation 

in which unobserved effects (𝛼𝑖) are modelled following Wooldridge (2005) approach (WO 

estimation); and, Table 4 displays the results corresponding to the estimation using Blundell 

(1999, 2002) approach to model unobserved heterogeneity (BL estimation). 

 
15

 To invert the demand of materials, we rely on the assumptions that this function is strictly monotonic 

in unobserved productivity and that productivity is the only unobservable in the function (scalar 

unobservable assumption). 



 19 

As for the set of variables included to catch the role of firms’ observable characteristics 

we include the usual variables in this type of analyses such as size (log(Capital stock)), 

productivity (log(TFP)) and age (log(Age). It is important, to recall that the inclusion of the 

productivity variable is a key element to capture possible indirect effects of R&D experience 

that accrue to the probability of R&D engagement through enhanced productivity. 

We also include two variables capturing firm ownership structure, namely, foreign 

capital participation (Foreign capital) and whether the firm is a limited liability corporation 

(Limited liability). Foreign capital is included not as a measure of internationalisation per se, but 

because of the well-established tendency for foreign-owned establishments to have 

systematically different R&D and innovation tendencies from indigenously-owned firms (Love 

et al. 2009). As for the limited liability control, most companies do indeed have limited liability 

structure – but not all, hence the need for the control. Furthermore, we consider measures of 

both internal and external financial constraints (cash-flow dev and long-run cost dev, 

respectively), a set of variables proxying for industrial structure (N. of competitors 0-10, N. of 

competitors 10-25, N. of competitors>25 and Market share), a set of variables proxying for firm’s 
labour qualification (High Skill Labour and Med-Skill Labour) and two dummy variables 

capturing demand evolution (Expansive demand and Recessive demand).16 Finally, we include an 

R&D appropriability variable (Appropriability) to account for the tendency for sectors to vary 

systematically in their capacity for firms to capture the benefits of R&D investment. In 

estimation, to avoid simultaneity problems we lag one period all variables except the ownership 

structure variables as they are usually time invariant. Table A1 in the Appendix provides 

detailed information about these variables, Table A3 supplies descriptive statistics and 

correlations.17 

 

5.1 Sunk costs and direct effect of R&D experience  

Column 1 of Tables 3 and 4 shows the estimation results corresponding to a dynamic autoregressive model of R&D engagement, in which firms’ R&D decision in year t depends on 

the R&D decision in period t - 1 and on a vector of control variables (Model 1). This first 

estimation does not include any variable capturing possible R&D age effects. The estimate of the 

one-period lagged R&D decision is quite stable regardless of the method used to model 

 
16

 The expansive and recessive variables are subjective, but there is no readily available objective 

measures at the firm level. 

17 Nominal variables are deflated using industry specific deflators according to the 20 sectors of the 

NACE. Rev. 2 classification.  
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individual unobserved heterogeneity and ranges between 1.820 and 1.940 in WO and BL 

estimations, respectively. This estimated coefficient is interpreted usually as arising uniquely 

from sunk costs. 

 Columns 2 and 3 of Tables 3 and 4 present the estimation results obtained when 

including in estimation R&D age to capture direct effects of R&D experience. In column (2), 𝑔(𝐴𝑖,𝑡) is parametrized as a quadratic function (Model 2) and in column 3 as a logarithmic 

function (Model 3). In column 2, the positive and significant estimate for the linear term of the 

R&DAgeit (that ranges between 0.137 in BL and 0.155 WO) and, the negative and significant sign 

of the quadratic term ((R&DAgei.t)2) suggest that the probability of performing R&D increases 

with R&D age at decreasing rate. A possible interpretation in terms of learning would imply that 

direct learning effects associated with continuous R&D engagement are more intense in the first 

years performing R&D. The positive and significant estimate for log(R&D Agei,t) in column 3 

offers additional support for the existence of direct learning effects associated to the continuous 

engagement in R&D activities. This estimated coefficient remains quite stable regardless of the 

method used to capture unobserved individual effects (it is 0.304 and 0.246 in the WO and BL 

estimations, respectively).  

Nonetheless the specific functional form assumed for 𝑔(𝐴𝑖,𝑡), the consideration of R&D 

age effects results in a reduction of the estimated sunk-cost parameter. In the quadratic 

specification it is 1.540 and 1.658 in WO and BL, respectively; and, in the log specification it 

ranges from 1.482 to 1.650 (in WO and BL, respectively). Our preferred specification is the one 

that assumes a logarithmic specification for 𝑔(𝐴𝑖𝑡). As was shown in section 4, it permits the 

decomposition of state dependence into the effects of sunk costs and learning. Using this 

specification for R&D experience, we can observe that the estimate of the true effect of sunk 

costs in WO and BL are about a 18.5% and 15% lower, respectively, when one considers direct 

learning effects (column 3) than when no R&D experience effects are considered (column 1). 

Therefore, our results suggest that omitting the direct R&D experience mechanism leads to an 

overestimate of the effect of sunk costs.18 

 
18 Timoshenko (2015) shows that assuming a log specification for the number of years continuously 

performing R&D allows separating the state dependence effect into its two components. However, 

assuming a semiparametric specification (including Yi,t-1 and a set of dummies dj= for j=2,..,J, taking value 1 if firms’ R&D experience is equal to J years) does not allow this separate identification. Under the 

semiparametric specification, the estimate of Yit-1 includes both the sunk-cost effect and the effect of one-

year experience in R&D. See the estimation results from this semiparametric specification in Table C1 in 

the Appendix C. As expected, the estimated sunk costs parameters associated to 𝑌𝑖𝑡−1 are larger than 

those obtained when we assume a log specification for R&D experience: around 1.73 versus 1.48 in WO 

estimation, and around 1.74 versus 1.65 in the BL estimation. 
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Column 4 of Tables 3 and 4 presents the result of an estimation that allows for 

differences in sunk costs between large firms and SMEs but does not control for the existence of 

possible direct R&D experience effects (i.e. it does not include any function of R&D age). In 

comparison to the estimation in column 1, we include as additional regressors the dummy 

variable dL (it takes value 1 for large firms) and an interaction term between lagged R&D 

participation and this dummy variable (Yi,t-1*dL). The estimated coefficient of this interaction 

term is positive and significant (the estimated coefficients in BL and WO are 0.256 and 0.323, 

respectively). According to the traditional models of sunk costs, this should be interpreted as 

evidence of larger sunk costs effects for large firms. Mañez et al. (2009) find the same result in a 

similar estimation in which they also allow sunk costs to differ depending on the technological 

intensity of the industry in which firms operate. 

Finally, column 5 of Tables 3 and 4 shows the estimates of equation (7) in which we 

allow both sunk costs and direct effects of R&D experience to differ between large firms and 

SMEs. For this estimation, we widen the estimation in column 4 to include the variables log(R&D 

Agei.t) and log(R&D Agei.t)*dL. The positive and significant estimate for the variable Yi,t-1*dL in 

column 5 suggests that for large firms the true effect of sunk costs is larger than for SMEs. 

Further, this estimated coefficient is not much different in WO and BL (0.468 and 0.415, 

respectively). However, the negative and significant estimate for log(R&D Agei.t)*dL indicates 

that the scope for direct learning effects when performing R&D seems to be lower for large 

firms than for SMEs. The estimated coefficient for log(R&D Agei.t)*dL is quite similar regardless 

of the approach we follow to model the unobserved individual effect (it is -0.159 in WO and -

0.146 in BL).  

Furthermore, knowing that in this model the effect of one-year R&D experience in firm’s 
latent utility of engaging in R&D in period t is given by 𝛽𝑆𝐶 + 𝛽𝑎log(2), allows us to calculate 

which part of this effect should be attributed to sunk costs and which to the direct effect of R&D 

experience. For the SMEs, the total effect one-year experience in R&D can be attributed to sunk 

costs ranges between 84.1% and 87.9% (in WO and BL, respectively). For the large firms the 

relative importance of sunk cost is even larger, and ranges between 92.8% and 94.8% (in WO 

and BL, respectively). 

Following Mañez et al. (2009), we can argue that the higher sunk R&D costs faced by 

large firms could be due to the fact that part of the entry costs into R&D involve both exogenous 

and endogenous sunk costs. According to Sutton (1991), the minimal level of investments that 

an entrant to an industry must incur may be considered as an exogenous sunk cost. Astebro 
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(2004) translating this argument to R&D investments points out that the initial engagement in 

R&D requires a minimum setup cost related both to indivisibilities and to a minimum efficient 

scale to operate an R&D lab. Hence, up to some extent entry costs into R&D may be considered 

exogenous and independent of firm size in a given industry. Nevertheless, above this minimum 

setup level, R&D investments should also be considered as strategic actions aimed to maximize firm’s profit through increased market share and/or lower production costs. This type of 

outlays is referred as endogenous R&D costs (Dasgupta and Stiglitz, 1980; Sutton, 1991).  

Therefore, following Sutton (1991) one can consider that a fraction of both endogenous and 

exogenous R&D costs is sunk. 

Furthermore, in industries in which competition is through escalation in R&D 

investment (associated with endogenous sunk costs), SMEs need to maintain higher levels of 

R&D intensity to be able to compete with high R&D investments by large firms. As the intensity 

of this escalation mechanism increases, SMEs are less likely to be able to maintain high enough 

levels of R&D due to eroded profits. This can force SMEs to abandon a highly intensive R&D 

strategy. Thus, escalation in R&D investments may generate industries with a dual market 

structure where a group of large firms engaged in R&D coexist with a fringe of SMEs with 

reduced or no R&D expenditures (Sutton, 1991). This could explain our results suggesting that 

sunk R&D costs may be higher for large firms as these firms incur high endogenous R&D 

expenditures. 

Both large and small firms benefit from the direct effects of R&D experience. 

Nevertheless, our results suggest that direct effects of R&D experience are bigger for SMEs than 

for large firms. This is very likely related to the fact that SMEs start from a lower level of 

knowledge about the processes of doing R&D on a continuing basis, and so learn and catch-up 

rapidly: they learn about the process of performing R&D. 

Interestingly, the positive, significant coefficient of �̃�𝑖𝑡−2, and the non-significant 

coefficient of �̃�𝑖𝑡−3 , both in WO and BL estimations, suggest a rapid depreciation of R&D 

experience. Firms that are two years without performing R&D are more likely to restart 

performing R&D that firms that have never performed R&D before, but this is not so for firms 

that have been three or more years without performing R&D.  

 

5.2 Indirect effects of R&D experience 

Testing for the existence of indirect effects of R&D experience on the likelihood of R&D 

engagement requires first to check whether R&D experience has productivity enhancement 

effects; and, second, whether more productive firms are more likely to engage in R&D. In what 

follows, we explain in detail the method followed to test the first condition. Verification of the 
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second condition just implies to check whether the estimate of productivity in equations (6) and 

(7) is positive and significant.  

If we consider the recursive nature of the endogenous Markov process described by 

equation (11), we can parametrize firm’s productivity (𝑧𝑖𝑡) in (12) as a function of the log of 

R&D age (log(R&D ageit)), and the initial condition value for productivity (𝑧𝑖0). In addition, we control for other factors that may influence the evolution of firm’s productivity including a 
vector of observed firm characteristics (𝑋𝑖𝑡−1), year dummies (𝜆𝑡), industry dummies (𝜆𝑠) and 

firm level fixed effects (𝛼𝑖). Thus, we estimate the following specification for the Markov 

process in (11):19 𝑧𝑖𝑡 = 𝛿0 + 𝛿1 log(𝑅&𝐷 𝐴𝑔𝑒𝑖𝑡−1) + 𝑧𝑖0 + 𝛽𝑋𝑖𝑡−1 + 𝜆𝑡 + 𝜆𝑠 + 𝛼𝑖 + 𝜖𝑖𝑡   (12) 

 In the fixed effect panel data estimation of equation (12), the initial condition value of 

productivity (𝑧𝑖0) and 𝛼𝑖 collapse into a unique firm fixed effect. We interpret positive and 

significant estimates for (𝛿1) as evidence of positive returns of R&D experience in terms of 

productivity. In estimation, we proxy R&D experience by the log of R&D Age.20  

We show the results corresponding to the estimation of equation (12) in Table 5. The 

positive and significant estimate of log(R&D Ageit-1) in our baseline specification, column (1), 

suggest the existence of positive returns to R&D experience in terms of productivity. In column 

(2), we wide our baseline specification to allow possible differential effects of R&D experience 

for large firms and SMEs. In this estimation the estimated coefficient for log(R&D Ageit-1) should 

be interpreted as measuring the effect of R&D experience on TFP for SMEs, and the estimated 

coefficient for log(R&D Ageit-1)*dL as measuring the differential effect associated to large firms. 

Thus, the estimates corresponding to these variables in Table 5 suggest positive effects of R&D 

experience on TFP both for SMEs and large firms, but also suggest that the returns of R&D 

experience in terms of productivity are larger for large firms than for SMEs. This may be related 

to the fact that larger firms are in a better position to capture the productivity benefits of 

repeated and lengthy R&D activity because they have the absorptive capacity and mechanisms 

in place to capture and absorb such productivity effects, while smaller firms are less able to 

absorb these effects. 

At this point, it is necessary to recall that the test of the indirect effects of R&D 

experience on R&D persistence requires not only evidence of a positive effect of R&D experience 

on productivity, but also a positive effect of productivity on the likelihood of R&D engagement. 

The positive and significant estimates of productivity in columns 3 and 5 of Tables 3 (WO 

 
19

 Mañez et al (2020) follow a similar approach for export and import age. 

20 As in all estimations, our measure of R&D Age is the number of years continuous R&D engagement plus 

one. We use this transformation to avoid excluding from estimation firms with no R&D experience 
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estimation) and 4 (BL estimation), in which we allow both for sunk costs and direct learning 

effects of R&D experience, suggest that the second condition for indirect effects is also fulfilled. 

Therefore, our estimations suggest the existence of positive indirect effects of R&D experience 

on the likelihood of R&D engagement via productivity  

Further, the fact that in the estimation of equation (12) (see column 2 of Table 5) the 

effects of R&D experience on productivity are larger for large firms than for SMEs indicates that 

the indirect effects of R&D experience on the probability of performing R&D are more intense 

for large firms than for SMEs. 

All in all, our results on direct and indirect effects of R&D experience suggest that that 

large firms and SMEs learn in different ways from their history of R&D engagement.  Both large 

and small firms benefit from the direct and indirect (via productivity) effects of R&D experience, 

but in large firms this is more likely to be manifest through productivity improvements while in 

smaller firms the effect is more skewed towards a direct effect on R&D likelihood.  SMEs appear 

to learn a lot from doing R&D not because they start from a lower level of productivity but 

because they start from a lower level of knowledge about the processes of doing R&D on a 

continuing basis, and so learn and catch-up rapidly: they learn about the process of performing 

R&D.  By contrast, many large firms are more used to perform R&D, and therefore have less to 

learn directly from the process of repeatedly doing R&D in terms of future R&D.  Instead, large 

firms get more of a boost to productivity from their R&D activity. This may be because larger 

firms are in a better position to capture the productivity benefits of repeated and lengthy R&D 

activity because they have the absorptive capacity and mechanisms in place to capture and 

absorb such productivity effects, while smaller firms are less able to absorb these effects. 

 

5.3. Control variables and initial conditions 

The main results on the control variable suggest that larger and older firms, with a 

higher proportion of high and medium-skilled workers are more likely to perform R&D.21 

Furthermore, firms that declare to have a significant market share in its main market, and facing 

a low to medium number of competitors in its main market are also more prone to engage in 

R&D.22 As for the possible role of financial constraints, our results suggest that R&D investments 

are mainly financed using own-funds: whereas firms with larger cash-flow are more likely to perform R&D, firms’ borrowing costs do not seem to affect the probability of performing R&D. 

Furthermore, the BL estimations suggest that firms facing an expansive demand are more likely 

 
21

 The estimate corresponding to the High Skilled Workersit-1 variable is significant in all estimations 

expect in those of columns 2,3 and 5 of Table 3 (WO estimation). 

22
 In all estimations, the variables N. of competitors 0-10 and N. of competitors 10-25 are positive and 

significant. 
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to perform R&D what could interpreted as evidence in favor of demand-pull innovation. 

Nevertheless, this result is not confirmed by WO estimations.  

 As for the effects of the variables included in the estimation to capture unobserved 

heterogeneity it is worth remarking on two results. First, the estimate of initial condition Yi0 

(capturing whether the firm performed R&D the first time it is observed in the sample) is 

negative and significant in all WO estimations (see Table 3). One could expect that the estimate 

of the initial condition should be positive if it were catching the existence of unobserved 

permanent effects that affect the probability of performing R&D.23 However, in our sample of 

switchers firms ought to change R&D status at least once along the sample which can help to 

explain the negative sign. Furthermore, the estimate of Yipre (the pre-sample mean of the 

dependent variable) in the BL estimations, that could be catching a similar unobserved 

individual effect is non-significant once we consider the possibility of direct learning effects in 

our estimations (see columns 2, 3, and 5 of Table 4). 

 Second, the estimate of the within-sample mean of the age variable is positive and 

significant in WO estimations (see Table 3) as it is the pre-sample mean of the age variable in 

most of the BL estimations (see Table 4). This could be signaling the existence of an unobserved 

permanent fixed effect caught by firm age that affects the probability of exporting. This is 

unsurprising, given that firm age is associated with the ability to survive and is often related to 

efficiency.  

5.4 Quantifying the relative importance of sunk costs and direct learning effects 

With the aim of quantifying the relative importance of sunk costs and learning effects on 

the likelihood of performing R&D, we estimate how the probability of R&D engagement evolves 

with R&D age for three different scenarios: under scenario 1, we set sunk costs equal to zero 

and allow only for direct learning effects (i.e. 𝛽𝑠𝑐 = 0 and 𝛽𝑎 = 𝛽𝑎); under scenario 2, we set 

direct learning effects to zero and allow for sunk cost effects (i.e. 𝛽𝑠𝑐 = 𝛽𝑠𝑐  and 𝛽𝑎 = 0); and, 

under scenario 3, we allow both for sunk costs and learning effects (i.e. 𝛽𝑠𝑐 = 𝛽𝑠𝑐  and 𝛽𝑎 =𝛽𝑎).24 

 
23

 In fact, this is the case in an estimation in which we consider the full sample of firms and not just the 

sample of switchers. In the estimation of equations (6) and (7) with the full sample the estimate of Yi0 

ranges from 0.342 to 0.573. The results of these estimations are available upon request. 

24
 To obtain these probabilities, we estimate equation (9) substituting the industry dummies by a set of 

three dummies capturing the technological regime of the industry in which the firm operates (High-tech, 

med-tech and low-tech. See Table A2 in Appendix A for the classification of the ESEE industries according 

to technological regime). We use the Wooldridge (2005) approach to proxy for unobserved 

heterogeneity. In particular, the estimated probabilities analysed in this section correspond to firms 
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Figures 4 and 5 show the predicted probabilities of engaging in R&D for each of these 

three scenarios for SMEs and large firms, respectively. Under scenario 2, in which we set direct 

learning effects to zero, the predicted probability of R&D engagement does not change with 

R&D age. In scenarios 1 and 3, the predicted probability of performing R&D is an increasing 

function of R&D age. Further, as one would expect the predicted probability of R&D engagement 

under scenario 3, in which we allow for sunk costs and learning effect is higher than under the 

two scenarios in which we allow just for one effect (except for the first period of engagement in 

R&D in which R&D experience is 0 and the predicted probabilities under scenarios 2 and 3 are 

identical). 

The predicted probabilities confirm three results already suggested by our estimates of 

equation (7). First, the sunk cost effect is higher for large firms than for SMEs: in the absence of 

learning effects, the predicted probability of R&D engagement in period t for a large firm 

undertaking R&D in period t-1 is 0.738 and for a SME it is 0.505 (see Only sunk cost lines in 

Figures 4 and 5). Second, learning effects are more intense for SMEs than for large firms, as 

suggested by the higher rate of growth of the predicted probability of R&D engagement for 

SMEs than for large firms when bypassing sunk costs effects (see Only learning lines in Figures 4 

and 5). Thus, for example, when accounting only for learning effects the increase in the 

predicted probability of R&D engagement after 15 years undertaking R&D is 0.283 for SMEs and 

0.158 for large firms. Finally, when accounting both for sunk costs and learning effects and 

regardless of firm R&D age, the predicted probability of R&D engagement is larger for large 

firms than for SMEs (Learning+sunk costs lines in Figures 4 and 5), with this difference mainly 

explained by the sunk cost effects. 

Calculus of the ratios between the predicted probabilities under the three scenarios 

defined above allow a sharper quantification of sunk costs and R&D effects. Hence, we calculate 

the ratio of the predicted probability under scenario 1 to that under scenario 2 (learning to sunk 

cost ratio); the ratio of the predicted probability under scenario 1 to that under scenario 3 

(learning-to-both ratio); and, the ratio of the predicted probability under scenario 2 to that 

under scenario 3 (sunk costs-to-both ratio). These three ratios are displayed in Figures 6 and 7 

for SMEs and large firms, respectively.  

The learning-to sunk costs ratio is useful to gain insight on the relative importance of 

sunk costs and direct learning effects. Since sunk costs effects do not depend on R&D age, the 

evolution of the learning-to-sunk costs ratio is necessarily increasing in R&D age. 

Notwithstanding, both for SMEs and large firms, even after 25 years of R&D experience the sunk 

costs effect is larger than the direct learning effect. Further, the difference between the sunk 

 
belonging to med-tech industries, the tech sector that represents a larger proportion of firms in our 

sample (47.59%). Probabilities are evaluated at means of the explanatory variables.  
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cost effect and the learning effect is greater for large firms than for SMEs. Thus, for SMEs with 5 

years of R&D experience the predicted probability of R&D engagement when accounting for 

direct learning effects costs but not for sunk costs effects (scenario 1) is 47.2% of the predicted 

probability when accounting for sunk costs effects but not for direct learning effects (scenario 

2). If R&D experience is 15 years this percentage is 75%, and if R&D experience is 25 year it is 

89.4%. For large firms, the corresponding percentages are much smaller: 29.2%, 39.1% and 

43.1% for R&D ages 5, 15 and 25 years, respectively 

Both the sunk costs-to-both ratio and the learning-to-both ratio offer relevant 

information on the relative importance of direct learning effects and sunk costs effects on the 

probability of engaging in R&D. Since the sunk costs effect does not change with R&D age and 

the direct learning effect increases with R&D age, the learning-to-both ratio is increasing with 

R&D age both for large firms and SMEs. However, it increases much slowly for large firms than 

for SMEs. Hence, for SMEs the predicted probability of R&D engagement after 5, 15 and 25 of 

R&D experience when accounting just for learning (scenario 1) is 32.8%, 44.9% and 51.1%, 

respectively, of that when accounting both for direct learning and sunk costs effects (scenario 

3). Nevertheless, for large firms, these percentages are much smaller 25.8%, 32.5% and 36% 

respectively. The sunk-to-both ratio, the other side of the coin, stays much higher for large firms 

than for SMEs and decreases at a lower rate: while for large firms with 25 years of R&D 

experience the predicted probability of engaging in R&D when accounting just for sunk costs is 

81.6% of that when accounting for both sunk cost and direct learning effects, for SMEs it is 

57.1%.  

All in all, our prediction exercise suggests that, both for large firms and SMEs, the sunk 

costs effect is more important than the direct learning effect in the determination of R&D 

persistence for quite a wide range of R&D ages. Furthermore, the superior effect of sunk costs is 

noticeably larger in the case of large firms. 

 

6. Concluding remarks  

             This paper highlights the extent to which persistence in R&D activities is linked to the 

existence of sunk costs and learning effects, as there is evidence that the persistence of R&D 

investment by firms is an important factor in achieving greater productivity growth and 

profitability.  We have attempted to unravel and quantify the importance of sunk costs and 

effects of learning as determinants of persistence in R&D, and whether the importance of these 

two factors differs among SMEs and large firms. In addition, we differentiate between the direct 

and indirect (via productivity) effects of R&D experience. 
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Our findings are consistent with the literature which identifies sunk costs as a key factor explaining firms’ persistence of R&D activities. Crucially, however, our results show that a non-

negligible part of the observed state dependence in R&D activities could be associated with the 

processes of learning that characterize continuous engagement in R&D activities. Furthermore, 

our results suggest that whereas sunk R&D costs are larger for large firms, the scope of direct 

learning associated to the continuous undertaking of R&D activities is greater for SMEs than for 

large firms. Our results also suggest that large and small firms learn in different ways from their 

previous R&D engagement. SMEs appear to benefit principally from a direct learning effect 

related to R&D activity. They start from a lower level of knowledge about the processes of doing 

R&D on a continuing basis, and so learn and catch-up rapidly: they learn about the process of 

performing R&D. Larger firms are more used to perform R&D, and therefore have less to learn about the process of ‘doing R&D’. However, their greater absorptive capacity puts them in a 
better position than SMEs to obtain a productivity boost from their R&D activity. 

There is often an implicit assumption that since R&D is predominantly an activity 

performed by large firms, and because small firms often have difficulty making the necessary 

investments for R&D, that public policy should be concentrated on the former (as long as the 

social returns to R&D outweigh the private returns). Given that initiating R&D activities is 

costly, and that a percentage of the investment is likely to be irrecoverable in the event of exit, 

this is understandable. However, if at least part of the public policy commitment to R&D and innovation is concerned with generating ‘dynamic returns to scale’, and assuming that 
encouraging persistence in R&D activities is one way of achieving this, our results do suggest 

some lessons for policy. The participation of companies in R&D activities is in part a self-

sustaining process. The present analysis suggests that measures to stimulate R&D policies can 

not only affect companies' current R&D activities but can also induce a lasting effect over time in 

promoting future R&D commitments. Given that the direct learning effect of continuous R&D is 

greater for small than for large firms, this may suggest that consideration of innovation support 

for small firms might allow for this possible positive effect, and that policy should favour 

measures addressed to ease continuous engagement in R&D activities once firms start 

performing R&D.  

The precise nature of any appropriate policy support is inevitably context specific. Spain 

provides a combination of R&D tax credits and direct public subsidy for R&D activities (Arqué-

Castells 2013; Busom et al. 2014).  R&D subsidies are heavily skewed towards persistent R&D 

performers, with 84% of subsidies during the period 1998-2009 going to firms performing R&D 

in the previous period (Arqué-Castells 2013).  In a study of the effect of subsidies versus tax 

credits in Spain, Arqué-Castells (2013) concludes that subsidies are more likely to reach young 
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firms and those with no previous history of R&D activity, while tax credits assist R&D-

performing firms to persist with, or increase their level of, R&D activity – regardless of firm size.  

Busom et al. (2014) agree that subsidies can work in inducing Spanish firms to enter R&D, but 

can also generate long-lasting persistence effects if the subsidy shares are large enough – 

possibly up to 50% in the case of SMEs, but lower (around 30%) in the case of larger firms.  To 

the extent that the policy objective is both to increase the proportion of SMEs performing R&D 

and to encourage persistence in R&D with its associated learning effects, this appears to suggest 

that direct public subsidies may have an important role to play, although the extent of such 

subsidies required to produce a permanent effect on R&D behaviour may be substantial. Note, 

however, that our analysis says nothing about the relative size or distribution of social versus 

private returns to R&D with respect to large and small firms, and so we cannot say definitively 

that any policy shift towards R&D support for smaller firms would be socially desirable. 
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TABLES 

 

Table 1: Firm classification according to R&D pattern over time 

 All firms SMEs Large firms 

 Number % Number % Number % 

Non- R&D 1284 47.70 1187 61.15 97 12.92 

Always R&D 348 12.93 114 5.87 234 31.16 

Switchers 1060 39.38 640 32.97 420 55.92 

Total 2692  1941  751  

 

Table 2. Number of R&D spell for R&D switchers 

 All firms SMEs Large firms 

Number of Spells Number % Number % Number % 

1 613 57.83 398 62.19 215 51.19 

2 350 33.02 185 28.91 165 39.29 

3 76 7.17 44 6.88 32 7.62 

4 19 1.79 12 1.88 7 1.67 

5 2 0.19 1 0.16 1 0.24 

Total N of firms 1060  640  420  

Total N of R&D spells 1627  953  674  
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Table 3: Determinants of R&D engagement. Switchers. Wooldridge estimation method 

Explanatory variables Model 1 Model 2 Model 3 Model 4 Model 5 

Yit-1 1.820*** 1.540*** 1.482*** 1.694*** 1.315*** 

 (0.0375) (0.0492) (0.0566) (0.0444) (0.0726) 

R&D Ageit  0.155***    

  (0.0184)    

(R&D Ageit)2  -0.00671***    

  (0.000978)    

log(R&D Ageit)   0.304***  0.359*** 

   (0.0382)  (0.0522) 

Yit-1*dL    0.323*** 0.468*** 

    (0.0610) (0.111) 

log(R&D Ageit)*dL     -0.159** 

     (0.0668) 

log(TFPit-1) 0.207*** 0.177*** 0.178*** 0.195*** 0.172*** 

 (0.0652) (0.0623) (0.0620) (0.0653) (0.0622) 

Foreign capital -0.0515 -0.0694 -0.0600 -0.0654 -0.0697 

 (0.0755) (0.0750) (0.0749) (0.0763) (0.0755) 

Limited liability 0.0972 0.0790 0.0902 0.0894 0.0791 

 (0.0868) (0.0855) (0.0855) (0.0871) (0.0858) 

log(Capital Stockit-1) 0.0777*** 0.0624** 0.0611** 0.0734** 0.0595** 

 (0.0294) (0.0291) (0.0291) (0.0294) (0.0292) 

log(Ageit-1) 0.117* 0.176*** 0.170*** 0.132** 0.187*** 

 (0.0661) (0.0643) (0.0643) (0.0661) (0.0645) 

High Skilled Labourit-1 0.00663* 0.00603 0.00604 0.00681* 0.00622 

 (0.00391) (0.00386) (0.00386) (0.00392) (0.00387) 

Med Skilled Labourit-1 0.00545** 0.00476** 0.00450* 0.00538** 0.00465** 

 (0.00235) (0.00233) (0.00233) (0.00234) (0.00233) 

N. of competitors 0-10 0.190*** 0.177*** 0.178*** 0.190*** 0.177*** 

 (0.0568) (0.0560) (0.0560) (0.0567) (0.0559) 

N. of competitors 10-25 0.141** 0.120* 0.125* 0.144** 0.128* 

 (0.0680) (0.0672) (0.0670) (0.0678) (0.0670) 

N. of competitors>25 0.122 0.0955 0.0986 0.122 0.0987 

 (0.0824) (0.0813) (0.0812) (0.0821) (0.0810) 

Cash Flow Devit-1 0.115* 0.111* 0.113* 0.117* 0.114* 

 (0.0601) (0.0596) (0.0595) (0.0609) (0.0603) 

Long Run Cost Devit-1 0.0147 0.0110 0.0109 0.0147 0.0127 

 (0.0139) (0.0136) (0.0136) (0.0139) (0.0137) 

Appropriabilityit-1 -0.00988 -0.0108 -0.00978 -0.00939 -0.0106 

 (0.0182) (0.0180) (0.0180) (0.0181) (0.0180) 

Market Shareit-1 0.134*** 0.129*** 0.126*** 0.133*** 0.125*** 

 (0.0364) (0.0346) (0.0344) (0.0365) (0.0345) 

Espansive demandit-1 0.0414 0.0444 0.0457 0.0432 0.0468 

 (0.0392) (0.0389) (0.0388) (0.0393) (0.0388) 

Recessive demandit-1 -0.00716 -0.0151 -0.0169 -0.00586 -0.0163 

 (0.0409) (0.0405) (0.0405) (0.0409) (0.0405) �̃�𝑖𝑡−2 0.211*** 0.271*** 0.273*** 0.219*** 0.277*** 

 (0.0557) (0.0553) (0.0553) (0.0556) (0.0552) �̃�𝑖𝑡−3 0.0154 0.0606 0.0611 0.0204 0.0625 

 (0.0685) (0.0675) (0.0675) (0.0684) (0.0674) 

dL    -0.0718 -0.0561 

    (0.0628) (0.0568) 
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Table 3 (cont’d): Determinants of R&D engagement. Switchers. Wooldridge estimation method.  

Initial Conditions Model 1 Model 2 Model 3 Model 4 Model 5 

Yit0 -0.133*** -0.151*** -0.149*** -0.140*** -0.153*** 

 (0.0369) (0.0329) (0.0326) (0.0370) (0.0329) 

log(TFP)imean -0.0322 -0.0352 -0.0332 -0.0289 -0.0315 

 (0.0517) (0.0503) (0.0502) (0.0515) (0.0501) 

Foreign capitalimean -0.0323 -0.0103 -0.0218 -0.0265 -0.0156 

 (0.0907) (0.0872) (0.0868) (0.0918) (0.0878) 

Limited liabilityimean -0.0778 -0.0635 -0.0751 -0.0647 -0.0616 

 (0.0953) (0.0920) (0.0918) (0.0956) (0.0922) 

log(Capital Stockit-1)imean -0.00925 0.00103 0.00159 -0.0163 -0.00500 

 (0.0323) (0.0313) (0.0313) (0.0330) (0.0320) 

log(Age)imean 0.124 0.178** 0.172** 0.140* 0.191** 

 (0.0768) (0.0740) (0.0739) (0.0768) (0.0741) 

High Skilled Labourimean -0.00429 -0.00379 -0.00367 -0.00349 -0.00332 

 (0.00517) (0.00489) (0.00487) (0.00519) (0.00489) 

Med Skilled Labourimean 0.00525 0.00448 0.00478 0.00531 0.00455 

 (0.00393) (0.00364) (0.00362) (0.00394) (0.00364) 

N. of competitors 0-10imean -0.195** -0.192** -0.190** -0.190** -0.184** 

 (0.0885) (0.0822) (0.0818) (0.0886) (0.0821) 

N. of competitors 10-25imean -0.0268 -0.0107 -0.0132 -0.0291 -0.0144 

 (0.116) (0.107) (0.106) (0.116) (0.106) 

N. of competitors>25imean -0.0944 -0.0596 -0.0637 -0.0800 -0.0541 

 (0.145) (0.133) (0.132) (0.144) (0.133) 

Cash Flow Devimean 0.0713 0.0591 0.0579 0.0759 0.0625 

 (0.0721) (0.0632) (0.0627) (0.0727) (0.0634) 

Long Run Cost Devimean -0.0946** -0.0855** -0.0813** -0.0729 -0.0677* 

 (0.0440) (0.0399) (0.0396) (0.0457) (0.0411) 

Appropriabilityimean -0.0443 -0.0336 -0.0335 -0.0409 -0.0298 

 (0.0675) (0.0620) (0.0617) (0.0674) (0.0617) 

Market Shareimean 0.211** 0.185** 0.182** 0.203** 0.184** 

 (0.0945) (0.0859) (0.0853) (0.0949) (0.0859) 

Espansive demandimean 0.0782 0.0735 0.0831 0.0755 0.0848 

 (0.101) (0.0920) (0.0914) (0.101) (0.0918) 

Recessive demandimean -2.498*** -2.427*** -2.277*** -2.311*** -2.158*** 

 (0.235) (0.212) (0.212) (0.255) (0.229) 

Constant -2.465*** -2.408*** -2.263*** -2.142*** -2.135*** 

 (0.234) (0.212) (0.211) (0.230) (0.228) 

Observations 12,433 12,433 12,433 12,433 12,433 

Number of firms 1,060 1,060 1,060 1,060 1,060 

Notes: 

1. Industry and year fixed effects included. 

2. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 4: Determinants of R&D engagement. Switchers. Blundell estimation method. 

Explanatory variables Model 1 Model 2 Model 3 Model 4 Model 5 

Yit-1 1.940*** 1.658*** 1.650*** 1.839*** 1.502*** 

 (0.0522) (0.0687) (0.0772) (0.0611) (0.0983) 

R&D Ageit  0.137***    

  (0.0216)    

(R&D Ageit)2  -0.00613***    

  (0.00111)    

log(R&D Ageit)   0.246***  0.297*** 

   (0.0482)  (0.0646) 

Yit-1*dL    0.256*** 0.415*** 

    (0.0779) (0.154) 

log(R&D Ageit)*dL     -0.146* 

     (0.0834) 

log(TFPit-1) 0.221*** 0.201*** 0.198*** 0.216*** 0.193*** 

 (0.0766) (0.0731) (0.0716) (0.0771) (0.0721) 

Foreign capital -0.0994 -0.106 -0.0934 -0.110 -0.0986 

 (0.0717) (0.0688) (0.0675) (0.0724) (0.0680) 

Limited liability 0.0235 0.00642 0.0151 0.0190 0.00835 

 (0.0816) (0.0774) (0.0759) (0.0820) (0.0763) 

log(Capital Stockit-1) 0.106*** 0.101*** 0.0946*** 0.103*** 0.0941*** 

 (0.0298) (0.0285) (0.0281) (0.0303) (0.0287) 

log(Ageit-1) 0.163 0.186* 0.210** 0.164 0.210** 

 (0.108) (0.104) (0.103) (0.108) (0.103) 

High Skilled Labourit-1 0.00803** 0.00781** 0.00775** 0.00831** 0.00791** 

 (0.00372) (0.00357) (0.00352) (0.00374) (0.00353) 

Med Skilled Labourit-1 0.00703*** 0.00660*** 0.00628*** 0.00687*** 0.00623*** 

 (0.00235) (0.00229) (0.00226) (0.00235) (0.00226) 

N. of competitors 0-10 0.107* 0.104* 0.104* 0.108* 0.104* 

 (0.0624) (0.0605) (0.0597) (0.0625) (0.0598) 

N. of competitors 10-25 0.178** 0.169** 0.175** 0.180** 0.176** 

 (0.0749) (0.0725) (0.0714) (0.0749) (0.0715) 

N. of competitors>25 0.0627 0.0491 0.0499 0.0659 0.0516 

 (0.0923) (0.0892) (0.0880) (0.0922) (0.0880) 

Cash Flow Devit-1 0.178* 0.169* 0.178* 0.178* 0.177* 

 (0.0957) (0.0950) (0.0956) (0.0967) (0.0965) 

Long Run Cost Devit-1 0.0136 0.0145 0.0141 0.0139 0.0142 

 (0.0214) (0.0212) (0.0210) (0.0215) (0.0210) 

Appropriabilityit-1 -0.00435 -0.00400 -0.00254 -0.00412 -0.00295 

 (0.0217) (0.0214) (0.0213) (0.0215) (0.0212) 

Market Shareit-1 0.132*** 0.128*** 0.123*** 0.130*** 0.122*** 

 (0.0489) (0.0473) (0.0466) (0.0490) (0.0467) 

Espansive demandit-1 0.0805* 0.0807* 0.0829* 0.0803* 0.0843* 

 (0.0462) (0.0453) (0.0448) (0.0464) (0.0450) 

Recessive demandit-1 0.00239 -0.00616 -0.00518 0.000950 -0.00610 

 (0.0484) (0.0476) (0.0472) (0.0485) (0.0472) �̃�𝑖𝑡−2 0.243*** 0.300*** 0.306*** 0.251*** 0.310*** 

 (0.0710) (0.0716) (0.0713) (0.0710) (0.0713) �̃�𝑖𝑡−3 0.0670 0.104 0.105 0.0703 0.107 

 (0.0817) (0.0810) (0.0807) (0.0817) (0.0807) 

dL    -0.0968 -0.0686 

    (0.0809) (0.0745) 

Leftcensor 0.176*** 0.0784 0.0598 0.174*** 0.0638 

 (0.0595) (0.0608) (0.0597) (0.0599) (0.0602) 

 

  



 38 

 

Table 4 (cont’d): Determinants of R&D engagement. Switchers. Blundell estimation method  

Initial Conditions Model 1 Model 2 Model 3 Model 4 Model 5 

Yipre -0.158** -0.0262 0.0727 -0.165** 0.0569 

 (0.0715) (0.183) (0.203) (0.0718) (0.204) 

R&D Ageipre  -0.105    

  (0.104)    

Log(R&D Age)ipre   -0.300  -0.283 

   (0.221)  (0.222) 

log(TFP)ipre 0.00977 0.00465 0.00666 0.0132 0.00861 

 (0.0487) (0.0462) (0.0454) (0.0487) (0.0455) 

Foreign capitalipre -0.0398 -0.0241 -0.0370 -0.0312 -0.0302 

 (0.0813) (0.0763) (0.0744) (0.0822) (0.0751) 

Limited liabilityipre 0.0165 0.0289 0.0154 0.0248 0.0222 

 (0.0967) (0.0909) (0.0888) (0.0970) (0.0891) 

log(Capital Stockit-1)ipre -0.0363 -0.0346 -0.0288 -0.0362 -0.0301 

 (0.0291) (0.0275) (0.0270) (0.0295) (0.0272) 

log(Age)ipre 0.120 0.137* 0.153** 0.123 0.154** 

 (0.0764) (0.0732) (0.0718) (0.0765) (0.0719) 

High Skilled Labouripre -0.00851 -0.00847 -0.00800 -0.00807 -0.00782 

 (0.00547) (0.00518) (0.00506) (0.00548) (0.00507) 

Med Skilled Labouripre 0.00229 0.00174 0.00172 0.00257 0.00174 

 (0.00395) (0.00368) (0.00357) (0.00397) (0.00360) 

N. of competitors 0-10ipre -0.246*** -0.229*** -0.218*** -0.245*** -0.216** 

 (0.0927) (0.0866) (0.0841) (0.0930) (0.0844) 

N. of competitors 10-25ipre -0.257** -0.214** -0.203** -0.256** -0.205** 

 (0.109) (0.102) (0.0993) (0.109) (0.0997) 

N. of competitors>25ipre -0.0896 -0.0774 -0.0818 -0.0873 -0.0835 

 (0.125) (0.116) (0.113) (0.125) (0.113) 

Cash Flow Devipre -0.180 -0.197* -0.203* -0.187 -0.205* 

 (0.126) (0.117) (0.114) (0.127) (0.115) 

Long Run Cost Devipre -0.0255 -0.0240 -0.0215 -0.0227 -0.0196 

 (0.0212) (0.0196) (0.0189) (0.0223) (0.0199) 

Appropriabilityi,pre -0.0766 -0.0683 -0.0677 -0.0774 -0.0683 

 (0.0611) (0.0573) (0.0559) (0.0611) (0.0560) 

Market Shareipre 0.105 0.0798 0.0685 0.105 0.0704 

 (0.0705) (0.0660) (0.0641) (0.0707) (0.0643) 

Espansive demandipre 0.102 0.0983 0.102 0.106 0.103 

 (0.0799) (0.0741) (0.0720) (0.0802) (0.0722) 

Recessive demandipre -0.0296 -0.0249 -0.0331 -0.0334 -0.0325 

 (0.0861) (0.0799) (0.0776) (0.0866) (0.0779) 

Constant -2.416*** -2.331*** -2.256*** -2.345*** -2.212*** 

 (0.310) (0.308) (0.286) (0.332) (0.305) 

Observations 8,511 8,511 8,511 8,511 8,511 

Number of firms 998 998 988 998 998 

Notes: 

3. Industry and year fixed effects included. 

4. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
 

 

 

 

  



 39 

Table 5: Total factor productivity and firm R&D experience  

 (1) (2) 

log(R&D Ageit-1) 0.0132*** 0.0062* 

 (0.0024) (0.0033) 

log(R&D Ageit-1)*dL  0.0238*** 

  (0.0047) 

log(Capital Stockit-1) 0.0315*** 0.0306*** 

 (0.0032) (0.0032) 

log(Ageit-1) 0.0104* 0.0112* 

 (0.0061) (0.0064) 

Constant 1.892*** 1.894*** 

 (0.104) (0.103) 

Observations 12,433 12,433 

Number of ordinal 1,060 1,060 

R-squared 0.752 0.754 
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Figures 

Figure 1: Kaplan-Meier survival estimate for SMEs and large firms 

 
 

 

 

Figure 2. Average log-R&D expenditure of surviving firms. Switchers. 
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Figure 3. Average of in-house R&D intensity (in %) by R&D Age. Switchers. 
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Figure 4: Predicted probability of engaging in R&D. SMEs 

 
 

Figure 5: Predicted probability of engaging in R&D. Large firms 
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Figure 6: Relative probability of engaging in R&D. Sunk costs and learning. SMEs 

 
 

 

Figure 7: Relative probability of engaging in R&D. Sunk costs and learning. Large firms 
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Appendix A: Variable definition and ESEE industries 

Table A1: Definitions of the explanatory variables  

Variable Definition 

Yit-1 Dummy that takes value 1 if the firm performs R&D in 

t – 1 and 0 otherwise 

R&D Age Discrete variable that captures the number of years a 

firm has been consecutively performing R&D. 

(R&D)^2 R&D age squared. 

log(R&D age) Logarithm of R&D age 

dL Dummy variable for size that takes value one if firm is 

large and 0 if it is an SME 

Yi,t-1*dL Interaction between Yi,t-1 and dL 

log(R&D age) * dL Interaction between the log of R&D age and dL 

ln(TFP) Logarithm of productivity or TFP (Total Factor 

Productivity). See Appendix B for calculation method. 

Limited liability Dummy variable that takes value 1 if the firm is a 

Limited Liability Corporation) and 0 otherwise. 

Foreign capital Dummy variable that takes value 1 if there is foreign 

participation in the capital of the firm 

ln(Capital_stock ) Logarithm of Capital Stock. 

ln(Age) Logarithm of the age of the firm 

High skill labour Proportion of graduates and engineers in the firm’s 
labour force 

Med skill labour Proportion of technical engineers, experts and quality 

assistants in the firm labour force 

N. of competitors 0-10 Dummy variable taking value 1 if the firm asserts to 

have less (or equal to) 10 competitors with significant 

market share in its main market. 

N. of competitors 10-25 Dummy variable taking value 1 if the firm asserts to 

have more than 10 and less than 25 (or equal to) 

competitors with significant market share in its main 

market. 

N. of competitors>25 Dummy variable taking value 1 if the firm asserts to 

have more than 25 (or equal to) competitors with 

significant market share in its main market. 

Atomistic market Reference category for the previous ones in 

estimation. Dummy variable taking value 1 if the firm 

asserts to be in a market where no firm has significant 

market share. 
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Table A1: Definitions of the explanatory variables (cont’d) 
Market share Dummy taking value 1 if the firm declares to have a 

significant market share in its main market 

Appropriabiity Ratio of the total number of patents over the total 

number of firms that assert to have achieved innovations in the firms’ industry (20 industries of the 
two-digit NACE-93 classification) (in %).  

Cash flow dev Deviation of firms’ cash-flow with respect the 

industry-year average cash-flow. Positive values of this variable imply that firm’s cash-flow is larger than the 

corresponding year-industry-average. 

Long run cost dev Deviation of firms’ cost of new long-term debt with 

respect to the industry-year average cost of new long-

term debt (see Beneito et al. 2014 for further details). Positive values of this variable imply that firm’s cost of 
new long-term debt is higher than the corresponding 

industry-year average. 

Stable demand Reference category. Dummy variable taking value 1 if 

the firm declares a stable demand. 

Expansive demand Dummy variable taking value 1 if the firm declares an 

expansive demand 

Recessive demand Dummy variable taking value 1 if the firm declares a 

recessive demand �̃�𝑖𝑡−2 Dummy variable taking value 1 if the last time the firm 

performed R&D was in t - 2 �̃�𝑖𝑡−3 Dummy variable taking value 1 if the last time the firm 

performed R&D was in t - 3 

Leftcensor Dummy that takes value 1 for firms already engaged in 

R&D the first year they are in the sample (left-

censored R&D spells) 
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Table A2. Industry classification according to technological intensity 

Low technology industries 

Meat products 

Food and tobacco 

Beverages 

Textile and clothing 

Leather, fur and footwear 

Timber 

Paper 

Printing products 

Furniture 

Other manufacturing industries 

Medium technology industries 

Plastic and rubber products 

Non-metallic minerals 

Ferrous and non-ferrous metals 

Metallic products 

Industry and agricultural machinery 

Electric materials and accessories 

Motors and vehicles 

Other transport equipment 

High technology industries 

Chemicals  

Electronics and data processing 
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Table A3. Descriptive statistics (N=12,433)* 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 Yit-1 1.00               

2 log(R&D Ageit) 0.89 1.00              

3 log(TFPit-1) 0.06 0.06 1.00             

4 Foreign capital 0.13 0.15 0.07 1.00            

5 Limited liability 0.12 0.12 0.05 0.20 1.00           

6 log(Capital Stockit-1) 0.24 0.28 0.16 0.39 0.32 1.00          

7 log(Ageit-1) 0.10 0.13 0.11 0.15 0.24 0.39 1.00         

8 High Skilled Labourit 0.11 0.13 0.04 0.14 0.07 0.15 0.14 1.00        

9 Med Skilled Laboutit- 0.13 0.14 0.06 0.09 0.03 0.08 0.01 0.29 1.00       

10 N. of competitors 0-100.08 0.08 0.12 0.15 0.07 0.21 0.13 0.09 0.05 1.00      

11 N. of competitors 10- 0.01 0.01 -0.05 -0.06 -0.02 -0.06 -0.02 -0.04 -0.04 -0.50 1.00     

12 N. of competitors>25 -0.04 -0.04 -0.03 -0.05 -0.05 -0.10 -0.05 -0.02 0.01 -0.35 -0.11 1.00    

13 Cash Flow Devit-1 0.00 0.00 0.00 -0.01 0.03 0.04 0.01 0.00 0.00 0.02 -0.01 -0.03 1.00   

14 Long Run Cost Devit-1 -0.07 -0.07 -0.08 -0.07 -0.09 -0.18 -0.09 -0.01 -0.02 -0.04 0.02 0.04 -0.01 1.00  

15 Appropriabilityit-1 0.03 0.02 -0.06 0.03 -0.03 -0.04 0.01 0.06 0.03 0.01 -0.01 0.01 -0.02 0.02 1.00 

16 Market shareit-1 0.14 0.14 0.09 0.19 0.18 0.30 0.15 0.08 0.02 0.39 -0.05 -0.15 0.04 -0.07 -0.00 

17 Expansive demandit-1 0.03 0.01 -0.00 0.04 0.05 0.01 -0.07 -0.01 -0.03 0.01 0.01 -0.00 0.04 -0.01 -0.02 

18 Recessive demandit-1 0.00 0.02 -0.02 -0.04 -0.04 -0.01 0.06 -0.01 -0.02 -0.02 -0.01 0.02 -0.05 0.02 0.03 

19 dL 0.21 0.25 0.10 0.36 0.26 0.71 0.30 0.06 0.04 0.15 -0.04 -0.11 0.01 -0.21 -0.04 

20 �̃�𝑖.𝑡−2 -0.26 -0.23 -0.00 -0.02 -0.01 -0.04 -0.02 -0.01 0.00 0.01 -0.03 0.02 0.01 0.01 0.00 

21 �̃�𝑖𝑡−3 -0.23 -0.20 -0.00 -0.02 -0.02 -0.04 -0.03 -0.01 -0.01 -0.02 0.01 -0.00 -0.00 0.01 -0.00 

22 Leftcensor 0.45 0.49 0.05 0.17 0.10 0.23 0.09 0.11 0.10 0.08 -0.01 -0.03 -0.00 -0.05 0.03 

 Mean 0.45 0.68 5.75 0.26 0.72 15.62 3.22 5.74 7.13 0.61 0.14 0.08 0.03 -0.08 0.65 

 S.D. 0.50 0.87 1.58 0.44 0.45 2.06 0.81 6.95 8.78 0.49 0.35 0.27 0.25 1.12 0.90 

 Minimum 0.00 0.00 1.05 0.00 0.00 2.48 0.00 0.00 0.00 0.00 0.00 0.00 -11.06 -14.46 0.00 

 Maximum 1.00 3.14 11.85 1.00 1.00 21.34 5.19 77.60 100.00 1.00 1.00 1.00 4.68 26.00 18.64 

* Estimation sample when using Wooldridge (2005) approach to model unobserved heterogeneity 
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Table A3 (cont’d). Descriptive statistics (N=12,433) 

  16 17 18 19 20 21 22 

1 Yit-1        

2 log(R&D Ageit)        

3 log(TFPit-1)        

4 Foreign capital        

5 Limited liability        

6 log(Capital Stockit-1)        

7 log(Ageit-1)        

8 High Skilled Labourit        

9 Med Skilled Laboutit-        

10 N. of competitors 0-10        

11 N. of competitors 10-        

12 N. of competitors>25        

13 Cash Flow Devit-1        

14 Long Run Cost Devit-1        

15 Appropriabilityit-1        

16 Market shareit-1 1.00       

17 Expansive demandit-1 0.08 1.00      

18 Recessive demandit-1 -0.05 -0.34 1.00     

19 dL 0.26 0.05 -0.04 1.00    

20 �̃�𝑖𝑡−2 0.01 0.01 0.01 -0.03 1.00   

21 �̃�𝑖𝑡−3 -0.01 -0.01 0.01 -0.04 -0.08 1.00  

22 Leftcensor 0.10 -0.01 0.01 0.23 0.01 -0.04 1.00 

 Mean 0.52 0.27 0.26 0.39 0.08 0.06 0.43 

 S.D. 0.50 0.44 0.44 0.49 0.27 0.23 0.50 

 Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 Maximum 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Appendix B: Productivity estimation 

We assume that firms produce using a Cobb-Douglas technology: 𝑦𝑖𝑡 = 𝛽0 + 𝛽𝑙𝑙𝑖𝑡 + 𝛽𝑚𝑚𝑖𝑡 + 𝛽𝑘𝑘𝑖𝑡 + 𝑧𝑖𝑡 + 𝜂𝑖𝑡      (B.1) 

where 𝑦𝑖𝑡is the natural log of production of firm i at time t, 𝑙𝑖𝑡is the natural log of labour 

measured as the number of effective hours worked), 𝑚𝑖𝑡 is the log of intermediate materials, 

and 𝑘𝑖𝑡is the log of capital (adjusted for capital utilization). As for the unobservables, 𝑧𝑖𝑡 is 

productivity (not observed by the econometrician but observable or predictable by the firm) 

and 𝜂𝑖𝑡  is a standard i.i.d. error term that is neither observable nor predictable by the firm. 

Further, we assume that capital is a state variable, whereas labour and materials are variable 

non-dynamic inputs that can be adjusted whenever the firm faces a productivity shock. 

 We follow Wooldridge (2009) to get consistent estimates of input elasticities and 

estimates of TFP residuals. According to Wooldridge (2009), the semiparametric control 

function approaches proposed by Olley and Pakes (1996) and Levinsohn and Petrin (2003) can 

be reconsidered as consisting of two equations that can be jointly estimated by GMM using the 

appropriate instruments. The first equation deals with the problem of endogeneity of labour 

and materials. The second equation tackles the issue of the law of motion of productivity.  

To solve the problem of endogeneity of labour and materials, we follow Levinsohn and 

Petrin (2003) and use the demand of materials to proxy for “unobserved” productivity. This 
demand of materials function, 𝑚𝑖𝑡(⋅) is assumed to have a unique unobservable among its 

arguments (scalar unobservable assumption) and to be strictly monotonic on unobserved 

productivity. Hence, given that in equilibrium the demand of materials only depends on state 

variables, we can write this demand as 𝑚𝑖𝑡 = 𝑚𝑡(𝑘𝑖𝑡 , 𝑧𝑖𝑡). Under the scalar unobservable and the 

monotonicity assumption, the demand of materials can be inverted to generate, 𝑧𝑖𝑡 =𝑚𝑖𝑡−1(𝑘𝑖𝑡, 𝑚𝑖𝑡) = ℎ𝑡(𝑘𝑖𝑡 , 𝑚𝑖𝑡). Then substituting into the production function (B.1) we get our 

first estimation equation.  

 𝑦𝑖𝑡 = 𝛽0 + 𝛽𝑙𝑙𝑖𝑡 + 𝛽𝑚𝑚𝑖𝑡 + 𝛽𝑘𝑘𝑖𝑡 + ℎ𝑡(𝑘𝑖𝑡 , 𝑚𝑖𝑡) + 𝜂𝑖𝑡     (B.2) 

 Since ℎ𝑡(⋅) is proxied by a third degree polynomial in its arguments, 𝛽0, 𝛽𝑚 and 𝛽𝑘 are 

not identified from equation (B.2). Olley and Pakes (1996) and Levinsohn and Petrin (2003) get 

identification of these parameters adding a second equation in the GMM system that deals with 

the law of motion of productivity: 𝑧𝑖𝑡 = 𝑓(𝑧𝑖𝑡−1) + 𝜈𝑖𝑡        (B.3) 

where 𝑓(⋅) is a function that relates productivity in t to productivity in t-1, and 𝜈𝑖𝑡is an 

innovation term uncorrelated by definition with kit. 
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Nevertheless, this exogenous Markov process, also assumed in Timoshenko (2015), does 

not consider the possibility of past R&D experience to affect productivity, and so it precludes the 

identification of a possible indirect effect of R&D experience on the likelihood of performing 

R&D channeled through increased productivity. In order, to explicitly allow past R&D 

experience to affect current productivity, we consider a more general (endogenous Markov 

process) in which R&D experience enters the Markov process (see Doraszelski and Jaumandreu, 

2013 and DeLoecker, 2007, 2013 for similar approaches for R&D and exports, respectively): 𝑧𝑖𝑡 = 𝑓(𝑧𝑖𝑡−1, 𝑅&𝐷 𝐴𝑔𝑒𝑖𝑡−1) + 𝜈𝑖𝑡       (B.4) 

Using that 𝑧𝑖𝑡 = ℎ𝑡(𝑘𝑖𝑡, 𝑚𝑖𝑡) we can rewrite equation (B.4) as 𝑧𝑖𝑡 = 𝑓(𝑧𝑖𝑡−1, 𝑅&𝐷 𝐴𝑔𝑒𝑖𝑡−1) + 𝜈𝑖𝑡 = 𝑓(ℎ𝑡(𝑘𝑖𝑡−1, 𝑚𝑖𝑡−1), 𝑅&𝐷 𝐴𝑔𝑒𝑖𝑡−1) + 𝜈𝑖𝑡 =𝑔𝑡(𝑘𝑖𝑡−1, 𝑚𝑖𝑡−1, 𝑅&𝐷 𝐴𝑔𝑒𝑖𝑡−1) + 𝜈𝑖𝑡        (B.5) 

Finally plugging equation (B.5) in the production function (B.1), we get our second 

estimation equation: 𝑦𝑖𝑡 = 𝛽0 + 𝛽𝑙𝑙𝑖𝑡 + 𝛽𝑚𝑚𝑖𝑡 + 𝛽𝑘𝑘𝑖𝑡 + 𝑔𝑡(𝑘𝑖𝑡−1, 𝑚𝑖𝑡−1, 𝑅&𝐷 𝐴𝑔𝑒𝑖𝑡−1) + 𝜉𝑖𝑡  (B.6) 

where 𝑔𝑡(⋅) is an unknown function proxied by a third degree polynomial in its arguments and 𝜉𝑖𝑡 = 𝜂𝑖𝑡 + 𝜈𝑖𝑡  is a composed error term. 

 Wooldridge (2009) proposes to estimate jointly (B.2) and (B.6) by GMM using the 

appropriate instruments for each equation. The production function is estimated for each of the 

twenty sectors of the ESEE, and firm specific productivity is estimated as a residual . The 

industry specific input elasticities are shown in Table B1 of this appendix. 
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Table B1: Estimated industry specific input elasticities from Cobb-Douglas production function 

 Labour  Materials  Capital  

1. Meat products 0.152*** (0.007) 0.542*** (0.057) 0.036* (0.020) 

2. Food and tobacco 0.161*** (0.004) 0.300** (0.121) 0.102*** (0.018) 

3. Beverages 0.178*** (0.015) 0.495*** (0.133) 0.100** (0.051) 

4. Textiles and clothing 0.328*** (0.005) 0.459*** (0.110) 0.093*** (0.025) 

5. Leather, fur and footwear 0.236*** (0.009) 0.507*** (0.078) 0.039* (0.022) 

6. Timber 0.295*** (0.011) 0.493*** (0.109) 0.068* (0.035) 

7. Paper 0.292*** (0.012) 0.488*** (0.140) 0.038* (0.021) 

8. Printing products 0.288*** (0.010) 0.494*** (0.106) 0.040* (0.021) 

9. Chemical 0.157*** (0.005) 0.649*** (0.126) 0.046* (0.025) 

10.Plastic and rubber products 0.251*** (0.008) 0.486*** (0.109) 0.111*** (0.031) 

11. Non-metallic minerals 0.277*** (0.006) 0.589*** (0.088) 0.074** (0.032) 

12. Ferrous and non-ferrous metal  0.175*** (0.009) 0.616*** (0.114) 0.074** (0.032) 

13 Metallic products 0.284*** (0.006) 0.546*** (0.085) 0.045* (0.025) 

14. Ind. and agric. machinery  0.205*** (0.007) 0.531*** (0.060) 0.058*** (0.020) 

15. Electronics and data process. 0.331*** (0.013) 0.568*** (0.099) 0.029* (0.017) 

16. Electrical mat. and access. 0.330*** (0.009) 0.529*** (0.086) 0.028 (0.022) 

17. Motors and vehicles 0.192*** (0.009) 0.645*** (0.079) 0.037* (0.021) 

18. Other transport equipment 0.195*** (0.012) 0.640*** (0.106) 0.029* (0.018) 

19. Furniture 0.347*** (0.010) 0.542*** (0.129) 0.039* (0.022) 

20. Other manufact. industries 0.286*** (0.010) 0.709*** (0.127) 0.053* (0.028) 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Appendix C: Non-parametric learning experience estimation 

Table C1: Determinants of R&D engagement. Switchers. Non-parametric learning function  

Explanatory variables Woldridge Init. Cond.  Blundell Init. Cond. 

Yit-1 1.731***  1.742*** 
 (0.0604)  (0.0677) 

d2= Yit-1 Yit-2 0.187**  0.164* 
 (0.0830)  (0.0911) 

d3=Yit-1 Yit-2 Yit-3 0.175*  0.172* 
 (0.0991)  (0.010) 

d4= Yit-1 Yit-2 Yit-3 Yit-4 0.0811  0.0846 
 (0.0835)  (0.0909) 

log(TFPit-1) 0.178**  0.200*** 

 (0.0751)  (0.0727) 

Foreign capital -0.149  -0.101 

 (0.0919)  (0.0685) 

Limited liability 0.0419  0.0121 

 (0.107)  (0.0772) 

log(Capital Stockit-1) 0.0858**  0.0961*** 

 (0.0398)  (0.0284) 

log(Ageit-1) 0.212*  0.178* 

 (0.123)  (0.104) 

High Skilled Labourit-1 0.00829*  0.00772** 

 (0.00448)  (0.00357) 

Med Skilled Labourit-1 0.00501*  0.00638*** 

 (0.00267)  (0.00228) 

N. of competitors 0-10 0.178***  0.103* 

 (0.0685)  (0.0603) 

N. of competitors 10-25 0.180**  0.173** 

 (0.0822)  (0.0723) 

N. of competitors>25 0.129  0.0497 

 (0.101)  (0.0890) 

Cash Flow Devit-1 0.155**  0.174* 

 (0.0690)  (0.0955) 

Long Run Cost Devit-1 0.0225  0.0134 

 (0.0202)  (0.0212) 

Appropriabilityit-1 -0.00970  -0.00323 
 (0.0213)  (0.0214) 

Market Shareit-1 0.138**  0.125*** 
 (0.0549)  (0.0471) 

Espansive demandit-1 0.0359  0.0841* 
 (0.0461)  (0.0452) 

Recessive demandit-1 -0.0246  -0.00406 
 (0.0485)  (0.0475) �̃�𝑖𝑡−2 0.312***  0.306*** 

 (0.0629)  (0.0710) �̃�𝑖𝑡−3 0.0611  0.106 
 (0.0751)  (0.0808) 

Leftcensor   0.0890 
   (0.0571) 
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Table C1 (cont’ed): Determinants of R&D engagement. Switchers. Non-parametric learning function  

Initial Conditions 

Wooldridge Inital Cond.  Blundell Initial. Cond  

Yit0 -0.143*** Yi,pre -0.184*** 

 (0.0390)  (0.0665) 

log(TFP)i,mean -0.0195 log(TFP)i,pre 0.00519 

 (0.0588)  (0.0461) 

Foreign capitali,mean 0.0689 Foreign capitali,pre -0.0336 

 (0.108)  (0.0759) 

Limited liabilityi,mean -0.0103 Limited liabilityi,pre 0.0241 

 (0.118)  (0.0905) 

log(Capital Stockit-1)i,mean -0.0202 log(Capital Stockit-1)i,pre -0.0298 

 (0.0422)  (0.0273) 

log(Age)i,mean 0.210* log(Age)i,pre 0.129* 

 (0.123)  (0.0726) 

High Skilled Labouri,mean -0.00918 High Skilled Labouri,pre -0.00850* 

 (0.00597)  (0.00516) 

Med Skilled Labouri,mean 0.00576 Med Skilled Labouri,pre 0.00203 

 (0.00448)  (0.00365) 

N. of competitors 0-10i,mean -0.223** N. of competitors 0-10i,pre -0.225*** 

 (0.111)  (0.0860) 

N. of competitors 10-25i,mean -0.0191 N. of competitors 10-25i,pre -0.213** 

 (0.135)  (0.101) 

N. of competitors>25i,mean -0.108 N. of competitors>25i,pre -0.0791 

 (0.168)  (0.115) 

Cash Flow Devi,mean 0.0375 Cash Flow Devi,pre -0.190 

 (0.0706)  (0.116) 

Long Run Cost Devi,mean -0.104** Long Run Cost Devi,pre -0.0247 

 (0.0490)  (0.0194) 

Appropriabilityi,mean -0.0203 Appropriabilityi,pre -0.0690 
 (0.0815)  (0.0571) 

Market Shareimean -0.0311 Market Shareipre 0.0821 
 (0.0853)  (0.0654) 

Espansive demandimean 0.257** Espansive demandipre 0.0946 
 (0.106)  (0.0738) 

Recessive demandimean 0.00908 Recessive demandipre -0.0301 
 (0.118)  (0.0795) 
Constant -2.714*** Constant -2.304*** 
 (0.260)  (0.291) 

Observations 12,433  8,511 

Number of firms 1.060  998 

Notes: 

1. Industry and year fixed effects included. 

2. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Appendix D: Firm age robustness analysis  

 

In this appendix, with the aim of checking the robustness of our estimation results to different firms’ ages, we estimate equation (7), using Wooldridge (2005) approach to model unobserved heterogeneity, dividing the sample in four quartiles according to firm’s age distribution. Results 
of these estimations for the main variables of interest (Yit-1, log(R&D Ageit), TFPit-1 and log(Ageit-

1)) are shown in Figure D1. In this figure, we show along with the point estimates of these 

variables, the 90% and 95% confidence intervals (thick and thin lines respectively). In this 

figure, we refer to the estimates corresponding to first, second, third and fourth age quartiles as 

WO1, WO2, WO3 and WO4, respectively. 

 For the full sample, the point estimate of Yit-1, traditionally associated to sunk costs, is 

1.482 (see column 3 of Table 3). In panel A of Figure D1, it is possible to observe that the 

estimated coefficient of Yit-1 , which range from 1.17 to 1.70, increases as we move to higher age 

quartiles. Hence, this suggests that the importance of sunk costs is increasing in firm age. In any 

case, estimates for the full sample do not differ much from the estimates for the different age 

quartiles. 

 The estimated coefficient of the variable associated to direct learning effects, log(R&D 

Age), for the full sample is 0.304 (see column 3 of Table 3). As shown in panel B of Figure D1, in the estimations by firms’ age quartiles it ranges from 0.27 (for the fourth quartile) to 0.40 (for 
the second quartile).  

The estimates of the coefficient for TFP, which in the full sample is 0.178 (see third 

column of Table 3), show an increasing pattern as we move from quartile 1 to quartile 4 of the firms’ age distribution (see panel C of Figure D1). The TFP estimate in the first quartile is non-

significantly different from zero, and estimates for the second, third and fourth quartile are 0.21, 

0.28 and 0.32, respectively (the estimates corresponding to the second and third quartiles are 

significant only at 10% level).  

 Finally, once we split our estimation sample in quartiles according to firms’ age, the 
estimate for the age variables is only significant at 10% level for age quartiles first and third.  
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Figure D1. Estimates by firms’ age group 

(A) 𝑌𝑖𝑡−1 Estimates 

 
(B) log (R&G Ageit) estimates 
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Figure D1 (cont’ed). Estimates by firms’ age group 

(C) 𝑇𝐹𝑃𝑖𝑡−1 estimates 

 
(D) log (ageit-1) estimates 

 
 

 
Note: WO1, WO2, WO3 and WO4 correspond to the estimations of the first quartile, second quartile, third quartile and fourth quartile of the firms’ age distribution, respectively.  


