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Abstract 

The EQ-5D is made up of health state dimensions and levels, where some combinations seem less 

“plausible” than others.  If “implausible” states are used in health state valuation exercises, then 
respondents may have difficulty imagining them, causing measurement error.  There is currently no 

standard solution: some valuation studies exclude such states, whilst others leave them in.  This study 

aims to address two gaps in the literature: (1) to propose an evidence-based set of the least prevalent 

two-way combinations of EQ-5D-5L dimension-levels; and (2) to quantify the impact of removing 

perceived implausible states from valuation designs. For the first aim, we use data from two waves of 

the English General Practitioner Patient Survey (n=1,639,453).  For the second aim, we re-model a 

secondary dataset of a Discrete Choice Experiment (DCE) with duration that valued EQ-5D-5L and 

compare across models that drop observations involving different health states: (i) implausible states as 

defined in the literature; (ii) the least prevalent states identified in stage (1); and (iii) randomly select 

states; alongside (iv) a model that does not drop any observations. The results indicate that two-way 

combinations previously thought to be implausible actually exist amongst the general population; there 

are other combinations that are rarer; and that removing implausible states from an experimental 

design of a DCE with duration leads to value sets with potentially different characteristics depending on 

the criterion of implausible states.  We advise against the routine removal of implausible states from 

health state valuation studies. 

[243wds] 
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1. Introduction  

 

Preference-based generic health instruments are used to operationalise the Quality Adjusted Life Year 

(QALY) for the economic evaluation of health care interventions. Typically, they take the form of a 

descriptive or classification system, made up of dimensions of health with differing levels of severity that 

describe different health states; and an accompanying value set, or tariff, which specifies the preference 

weights for each of the health states that the classification system describes on an interval scale with 1 

for full health and 0 for being dead.  Examples of such instruments include the EQ-5D-3L1 and EQ-5D-5L,2 

HUI3,3 SF-6D,4 and AQoL.5 For example, EQ-5D-3L has five dimensions: mobility (MO), self-care (SC), 

usual activities (UA), pain or discomfort (PD), and anxiety or depression (AD); with three severity levels 

across each (1 for no problems and 3 for the most severe), thus distinguishing 243 different health 

states.6 EQ-5D-5L is a later variant with five levels instead of three, distinguishing 3,125 different health 

states.7 

 

The value sets are typically estimated by health state valuation studies that survey members of the 

public for their preferences for stylised health state descriptions (often referred to as “hypothetical 
health states”) selected from the descriptive system. These valuation data are then modelled 

econometrically, to predict average preferences for all health states described by the classification 

system. One potential consideration in the selection of the stylised health states is their plausibility. The 

idea of “implausible states” can be broken down into two.  One is where some health states appear 

unlikely and more difficult for a typical general public respondent to imagine (difficult-to-imagine 

states).  The other is where some states are, as a matter of fact, much less prevalent than others (rare 

states).  The extreme case of the latter are states that will never be observed (impossible states), but 

since self-reporting of states involves error, it is futile to distinguish empirically between rare states and 

impossible states. A given health state may be both difficult-to-imagine and rare. However, for the 

purpose of selecting the stylised health states for valuation, what matters are the difficult-to-imagine 

states, as perceived by survey respondents.   

 

The Measurement and Valuation of Health (MVH) project is one of the earliest examples of a health 

state valuation study, and used the time trade-off (TTO) method to value EQ-5D-3L states.8 When 

selecting the 42 EQ-5D states that were valued, the researchers “wanted to exclude states which 

seemed prima facie implausible to respondents, so as to sustain motivation and credibility”.8 Thus, they 

excluded states that combine no problems in one dimension and an extreme problem in another 

(hereafter, “two-way contrasting combinations”), specifically, between no problems in usual activities 

and: extreme problems in mobility, described as being ‘confined to bed’ (UA1xMO3); or extreme 
problems in self-care (UA1xSC3).1  However, there was no empirical basis to select these combinations. 

 

The methodological literature on health state valuation since then has largely left this topic untouched, 

and studies have either excluded (or “backed off” from) health states considered to be implausible 
albeit without empirical support (e.g. Viney et al.9), or have included all possible combinations in the 

design development process (e.g. Mulhern et al.10). Where health states are selected through any 

experimental design procedure, simply dropping certain states may result in inefficiency (error) and/or 

inaccuracy (bias). However, if those states are difficult for respondents to imagine, then keeping them in 

the design may also result in measurement error introducing error and/or bias. The exception is the 

Australian EQ-5D-3L valuation study using a Discrete Choice Experiment (DCE), which included a 

simulation exercise where the effect of removing certain states was examined.11 A design with all 

possible EQ-5D-3L states was compared to a design that dropped 45 states judged to be implausible - 

this time defined as two-way contrasting combinations of the worst severity level in mobility with: 
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either no problems in usual activity (MO3xUA1), or with no problems in self-care (MO3xSC1)9. The 

findings suggested the variability in data was greater in the all-states design, but the statistical efficiency 

was lower in the design where these perceived implausible states were dropped. However, as the 

authors state, the exercise only examined the efficiency of designs, and not the measurement error 

attributable to the difficulty of imagining these states. In a separate study, Jakubczyk and Golicki12 

applied an experimental TTO design to examine the amount of imprecision around health preferences 

from a Polish student sample. The authors found that values of states with two-way contrasting 

combinations have higher imprecision and that imprecision is mostly driven by UA and AD. 

 

The aims of this study were to first analyse the prevalence of self-reported EQ-5D-5L states in a large 

sample of the general population, in order to propose an evidence-based set of the least prevalent EQ-

5D-5L states. Second, to re-model a rich secondary DCE-with-duration health state valuation dataset to 

quantify the impact of excluding choice sets that involve health states that we find the least prevalent.  

This is compared against models that remove health states considered implausible by existing literature 

and a model that does not drop any observations.  In order to distinguish between the effect of 

removing specific states and the effect of removing any states, we also have a series of models that 

remove choice sets at random. 

 

 

2. Methods 

 

2.1 Stage 1: Prevalence of EQ-5D-5L states in the general population 

For the first stage, self-reported EQ-5D-5L data from the General Practitioner (GP) Patient Survey were 

used.  This is a large cross-sectional survey conducted by NHS England, “designed to give patients the 
opportunity to feed back about their experiences of their GP practice”.13 The sample consists of 

individuals aged 18 or above with a valid National Health Service (NHS) number, who have been 

registered with a GP practice in England for 6 months or more.  The sample, in effect recruited from the 

general population, are asked a wide range of questions including self-reported EQ-5D-5L.  We used 

data from two years: 2013 (the first time EQ-5D-5L was included in the survey), and 2015 (the last year 

with data collection in the summer and winter).* 

The analysis was conducted at the level of EQ-5D-5L states. First, the states were ranked from the most 

frequently observed to those with no observations. Second, the ranks at which different levels of a given 

dimension first appeared were analysed. Third, the frequencies of all two-way contrasting and non-

contrasting combinations were cross-tabulated. Thus, we identify two kinds of two-way combinations 

that characterise prevalence-based implausibility: those that are the least frequently reported; and 

those that are the most common amongst states that are never observed.  These need not be 

contrasting combinations. 

 

2.2 Stage 2: Gauging the effect of different exclusion strategies in DCETTO  

 

In Stage 2, in order to explore the effect of removing rare state from a design, we re-modelled  EQ-5D-5L 

valuation data that used DCE-with-duration (DCETTO), by systematically excluding observations from 

                                                             
*EQ-5D-5L is coded as five different questions, and the publicly available version of the dataset does not allow 

building the EQ-5D-5L profile.  Therefore, for this analysis, access to the individual data was applied for to NHS 

England. 
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choice tasks that included health states of varying plausibility.  Secondary data from the ‘Further 
Exploration of DCE with duration to value EQ-5D-5L’ (FEDEV)14 project were used, which had included 

substantially more choice tasks than were required to estimate main effects, and enabled us to drop 

some tasks without compromising the integrity of the experimental design.    

 

The FEDEV study was conducted online with a representative sample of the UK general population. The 

valuation data in this study is a subset of the FEDEV dataset, based on DCETTO tasks that were designed 

using non-informative (zero) priors, and administered to 800 respondents. The design included 120 

health profile pairs, where each profile comprises an EQ-5D-5L state and one of six duration levels 

ranging from 0.5 to 10 years. The pairs were selected using a swapping algorithm implemented in the 

DCE design software Ngene,15 based on minimising the D-error. Each respondent completed 10 choice 

tasks from the underlying design.14  

 

The analysis re-estimated the DCETTO models based on conditional logit regressions, which estimate 

utility decrements for each severity level of each dimension.16 The coefficients on the latent scale were 

then anchored onto a scale with 1 for full health and 0 for being dead, producing unanchored and 

anchored sets of coefficients. This was repeated by excluding data generated from certain choice tasks.   

 

The original FEDEV experimental design had 120 choice tasks, to enable exploration of interactions 

between duration and dimension severity level, and is substantially larger than the minimum number of 

choice tasks required for estimating the main effects required for this study, with 21 parameters. We 

were consequently confident that, while excluding some tasks would impact the precision of estimates 

(d-efficiency), it would not impact the statistical identification of unbiased parameter estimates, 

particularly using a design with zero (non-informative) priors where two-way combinations should 

appear a similar number of times. However, since there is a limit to the number or combination of tasks 

that could be removed, we checked the experimental design properties of each selection of tasks for 

important correlations and statistical properties using Ngene.15 

 

Building on the original experimental design, we developed four treatment datasets dropping 

observations from the source data depending on the definition of implausible states to be excluded. It 

would not be appropriate to compare these treatments directly to the full model, since that would 

confound the effect of removing specific observations with the effect of removing any observations.  

Therefore, we created comparator datasets that excluded similar combinations of levels at random over 

multiple draws to reduce bias in comparisons. Table 1 summarises the models used in Stage 2, 

consisting of four different treatments and three comparators. 

 

[PLEASE INSERT TABLE 1 HERE] 

 

The first two treatment models (T1 and T2) were generated based on criteria of perceived implausibility 

proposed for EQ-5D-3L by Dolan1 and Viney et al.9,11 We adapt their two-way contrasting combinations 

to the EQ-5D-5L and re-define them as one dimension with severe or extreme problems (level 4 or 5) 

combined with another dimension with no problems (level 1). For comparability, the third and fourth 

treatment models (T3 and T4) were based on data that excluded observations arising from the same 

number of two-way combinations as the previous models (i.e. four combinations), but based on 

combinations that were empirically identified as the least prevalent in Stage 1. T3 removed the four 

least prevalent two-way combinations amongst self-reported states, while T4 removed the four most 

common two-way combinations amongst never-reported states.   
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Comparator model 1 (C1avg) removed observations from the full dataset based on four randomly 

selected two-way combinations from the set of all possible two-way combinations. Given the random 

nature of the exercise, any result will be subject to random error. Therefore, 100 models were estimated 

based on random draws, and their parameter values averaged. Since treatment models 1 and 2 

removed observations involving two-way contrasting combinations, this may influence the experimental 

design in a systematically different way from comparator model 1.  Comparator models 2 (C2avg) 

excluded observations from the full dataset if they concerned at least one of four two-way combinations 

chosen randomly from the set of 40 two-way contrasting combinations.  This is repeated 100 times and 

the anchored parameter values are averaged. Comparator model 3 (C3) does not exclude any choice 

tasks, and produces a single comparator model using the full dataset. 

 

A total of four treatment models and 201 comparator models were estimated. Predicted values for the 

three most frequently self-reported states with problems in at least two dimensions were estimated 

from anchored parameters to each model, along with values for more plausible states across the range 

of severity (22222, 33333, 44444, and 55555).  A series of further descriptive analyses compare across 

the designs and the estimated parameters in order to distinguish between the effect of removing 

specific observations and that of removing random observations. 

 

 

 

3. Results 

 

3.1 Stage 1: Descriptive analysis 

The GP Patient Survey dataset included 1,639,453 individuals, distributed across 2,707 unique EQ-5D-5L 

health states.  This covers approximately 87% of all possible health states, leaving 418 health states that 

were not reported in our sample. About one third of the respondents reported being in the best health 

state (11111). The three most prevalent states (11111, 11121, 11112) cover just over 50%, and the 33 

most prevalent states cover just over 80% of the observations (see Table 2). Among the 33 most 

prevalent states only one includes SC2, while 27 include PD 2 or worse. None of the 33 most prevalent 

states includes levels 4 or 5. About half of the observed states are reported by less than 0.1% of the 

sample (<1,640).  

[PLEASE INSERT TABLE 2 HERE] 

Table 3 tabulates the overall frequencies of the different levels by dimension, with varying patterns 

across the dimensions. Problems in SC are the rarest, while problems in PD are the most prevalent.  

Furthermore, the prevalence of levels 4 or 5 in MO, UA and PD (ranging from 5.7-7.1%) is relatively 

higher than the prevalence of levels 4 or 5 in SC (2%) and AD (3%). 

[PLEASE INSERT TABLE 3 HERE] 

Table 4 shows select results of cross-tabulations of the frequencies of all two-way combinations (full 

results are in Appendix Section A). When one dimension is fixed at level 1 the prevalence of a particular 

two-way combination rapidly decreases with increasing severity of the other dimension. Hence, 

contrasting combinations of level 1 with levels 4 or 5 are less prevalent than non-contrasting 

combinations between levels 2 and 3. It also appears that non-contrasting combinations of closer levels 

are relatively more prevalent. Therefore, these results support the approach, to operationalise 

implausible states as two-way contrasting combinations between level 1 with levels 4 or 5. This insight 
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holds when we look at the distribution of two-way combinations amongst the 418 states that are never 

self-reported (Appendix Section B). 

 

[PLEASE INSERT TABLE 4 HERE] 

In terms of the implausibility of the states, all 250 possible two-way combinations are observed in the 

dataset. Nevertheless, some of these are extremely rare: e.g. only 122 individuals self-report having SC4 

alongside UA1 (viz. less than 0.01% of the sample).  The two-way combinations excluded in Viney et al.9 

(MO4/5xUA1; MO4/5xSC1) are not the least frequent combinations. However, a two-way combination 

proposed by Dolan1 and adapted for the EQ-5D-5L (SC4/5xUA1) is one of the 10 least frequently self-

reported two-way combinations. Looking at the two-way combinations that make up the 418 

unobserved states, the same is true: SC4/5 with UA1 are among the 11 most common combinations of 

unobserved states. Furthermore, AD4/5xUA1 and PD5xUA1 are more common amongst the unobserved 

EQ-5D-5L profiles than the four combinations proposed by Viney et al.9 

These distributions informed the selection criteria for treatment models T3 and T4 in Stage 2. Treatment 

model T3 removes the least prevalent of the two-way combinations among all observed health states.  

These are: SC4xUA1, SC4xUA2, SC5xUA2 and SC3xUA1. Treatment model T4 removes the two-way 

combinations that appeared most often amongst those 418 health states that were never reported in 

the dataset. These are: SC4xUA1, PD5xUA1, AD5xUA1 and AD4xUA1.  Across the two approaches, only 

SC4xUA1 is included in both treatments (and T1).   

 

3.2 Stage 2: Re-modelling the DCETTO  dataset 

Excluding choice sets based on the Dolan1 criteria (T1) resulted in the removal of responses from 30 

choice sets (leaving responses from 90). The design properties were analysed, and the highest 

correlation between two-way combinations was below 0.3. The corresponding number of choice sets 

included for T2 (exclusion based on the Viney et al.9 criteria), T3 (exclusion based on observed states 

from Stage 1) and T4 (exclusion based on unobserved states from Stage 1) are 86, 84 and 90, and for all 

correlations remained low (below 0.3) and no other statistical issues in the designs are found. This 

indicates that the exclusion of the choice sets does not impact the robustness of consequent designs for 

the statistical identification of parameter estimates.  For further descriptive analyses of the designs and 

parameters, see Appendix Sections C to E. 

 

Figure 1 presents the anchored coefficients of the DCETTO models.  All the plots are expected to be non-

positive and downward sloping.  This is not always the case, however, and reversed orderings (with the 

implication that utility improves as severity increases) are observed, between levels 2 and 3: for MO (T1, 

T2, T4, C2avg), SC (T1, T4), PD (T3, C1avg, C2avg, C3), and AD (all models).  The coefficient decrements 

for the UA dimension are monotonic. 

[PLEASE INSERT FIGURE 1 HERE] 

Visual inspection of the plots suggest comparator models C1avg and C3 are consistently very close to 

each other - since C3 uses the full dataset while C1avg is based on a random subset of those 

observations, the gap between C1avg and C3 can be interpreted as the magnitude of the effect of 

randomly excluding tasks associated with four two-way combinations from the study design. Similarly, 

the gap between C2avg and C3 represents the effect of randomly excluding tasks associated with four 

two-way contrasting combinations. These three plots suggest that PD and AD are more robust than the 
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other dimensions. The other plots are consistently further away from C3, indicating that there is an 

excess effect beyond the gaps observed for C1avg and C2avg. The plots for T1 and T4 are close to each 

other and tend to be shallower than the others.  Across the models, it appears that UA is the most 

sensitive to the removal of different states, followed by AD.  For example, while the models have 

different anchored coefficients for MO5, SC5 and PD5, all models agree on their relative ranking – 

however, the models disagree on which of UA5 and AD5 is worse.  Across the dimensions and levels, 

there is no particular curve that is consistently above or below C1avg and C3.  For example, the curves 

for C1avg and C3 mostly below the others for MO, mostly above the others for UA, and mixed with the 

rest for SC, PD and AD.  This means that there will be no consistent patterns across the predicted values 

of the different models. 

Figure 2 plots the predicted values of seven select states across the different models. Three of them are 

the most prevalent self-reported states with problems in at least two dimensions, identified in Step 1 

(11122 is the 4th, 21221 is the 5th, and 21231 is the 10th most prevalent state) and jointly cover 7.5% of 

all observations.  The remaining four are the states with the same level for each dimension (22222, 

33333, 44444 and 55555), which jointly cover 0.52% of all observations.  All anchored coefficients are 

taken at face value, including where they are disordered. The predicted values from all models are very 

similar to each other for state 11122, but less so for the other states. As would be expected from Figure 

1, the plots from the comparator models (C1avg, C2avg and C3) for the seven states are very similar to 

each other. Conversely, the treatment models deviate from these comparator models, but there seems 

to be no consistent pattern across the treatment models.  Predicted values from T3 and T4, both of 

which use evidence-based criteria of implausibility, are not similar to each other, and in fact, the 

predicted values from T4 are much more similar to those from T1, which uses a judgement-based 

criterion of implausibility.  

[PLEASE INSERT FIGURE 2 HERE] 

 

4. Discussion 

 

This paper has attempted to introduce some systematic evidence for the treatment of so-called 

implausible states into an area of health state valuation, where practice has been dominated by 

judgement (and precedents) with little empirical basis.  The analysis raises a number of questions that 

require further consideration. 

● What do we mean by the term “implausible”? 

In this paper, we have introduced a distinction between difficult-to-imagine states (a matter of 

perception or judgement of survey respondents) and rare states (a factual matter). We then explored 

the latter.  At a conceptual level, rare states encompass two further possibilities. One is that some states 

are extremely rare but if the sample size were large enough, all 3,125 EQ-5D-5L states would eventually 

be self-reported. This possibility cannot be ruled out since we observe all two-way combinations in the 

self-report data.  The second is that some extremely rare states involve combinations that are inherently 

not possible and no sample, however large, would include these states - unless self-reported in error.  

However, this scope for error, where people misreport their own health, makes these two possibilities 

practically non-distinguishable.  For example, in our dataset of 1.6 million respondents, there are 274 

states with just one respondent reporting that state, and some of these may be due to measurement 

error; but we cannot say for certain. We do, however, suggest that future research in this area does not 

conflate these concepts and propose to distinguish between: states that are difficult to imagine 

(independently of their actual prevalence); states that are very rare (which may or may not be observed 
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in a sample of finite observations); and states that are physiologically impossible (but which may still be 

self-reported in error).  Using this terminology, this study reports on an empirically identified set of rare 

EQ-5D-5L states, and contrasts this with the perceived implausible states established in the established 

literature. 

 

● Why not ask survey respondents which states are difficult to imagine? 

The ideal prospective study to decide which states are difficult to imagine would ask general public 

respondents to score all 3,125 states on how difficult it is for them to imagine the health state. In the 

absence of this data, researchers have traditionally avoided using certain states in valuation studies 

based on their own judgement.  The two main disadvantages of this approach are: first, different people 

may find different states difficult to imagine, and there is no guarantee that the remaining states are 

accepted as imaginable by all respondents; and second, the effect of avoiding those states from the 

valuation is not known.  

 

Recently, Yang et al.17 asked medical students to indicate the perceived plausibility of each of the 3,125 

possible EQ-5D-5L states but did not provide an explicit definition of implausibility. One of their findings 

was that, while variation in levels across dimensions of a state increased perceived implausibility, there 

was little agreement over which states were perceived as the least plausible. 

 

However, a different possibility that this paper contributes to might be to examine how prevalent 

different states actually are, remove those from the design, and explain to respondents that while some 

states in the design may seem unlikely, all those states have been self-reported by a general public 

sample.  Furthermore, since the effect of removing various states from valuation designs are not known, 

we compare the effects of two of the most established sets of implausible states in the literature, and 

our evidence-based sets of rare states. 

 

● Why use general population datasets for Stage 1? 

This analysis used a dataset with self-reported health of the general population. One may question 

whether general population datasets cover a narrower range of EQ-5D-5L states than some patient 

datasets arising from trials or observational studies would.  For example, Devlin et al (2010)18 has 

analysed a heterogeneous patient and general public dataset and found that 161 of the 243 EQ-5D-3L 

states were not self-reported. The justification for carrying out this analysis on a general population 

dataset is that when members of the public are surveyed in health state valuation studies, the range of 

health states that they can typically imagine is more likely to come from their community (which 

includes people who are ill). While general population datasets can claim to represent health states in 

the general community, patient datasets cannot. Moreover, since the dataset used in this analysis is 

very large, and it is likely it includes individuals who would be eligible in various patient surveys and trial 

studies. 

 

Furthermore, the analysis using general population data has another use for designing “experience-

utility based value sets”19–21 - studies where members of the public are asked to report and value their 

own current health state. The data are then econometrically modelled, as in conventional health state 

valuation studies, to generate a population value set. One technical challenge associated with such an 

exercise is the inefficiency associated with the highly skewed distribution of health states observed 

amongst the general population.  Across different countries, about a third of the general population self-

report full health using EQ-5D-5L22–24 and around a half self-report full health in EQ-5D-3L.25,26 The 

prevalence of health states in the general population reported in this study can inform the design of 

such studies, to predict the number of people necessary either to be screened or recruited in order to 
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observe a sufficient range of health states to make these models valid. 

 

● Why operationalise implausibility in terms of two-way contrasting combinations? 

The health state valuation literature since MVH8 and Dolan1 to Viney et al.9,11 has operationalised 

perceived implausible states in terms of two-way contrasting combinations (also see Jakubczyk and 

Golicki,12 Lim et al.27 or Bagust28).  However, there are three things to note. First, the dataset used in 

Stage 1 includes all 250 two-way combinations, so arguably none of these are impossible. Second, 

notwithstanding this, around 13% (423) of all possible EQ-5D-5L states remain unobserved and thus 

potentially impossible after 1.6 million individuals being surveyed. Third, the least prevalent two-way 

combinations are not necessarily contrasting combinations.  These suggest that if the aim is to remove 

rare states from health state valuation, dropping a handful of two-way contrasting combinations is 

unlikely to be the most efficient way.  On the other hand, we have operationalised rare/impossible 

states in terms of two-way combinations in two approaches based on evidence: the four least prevalent 

two-way combinations amongst self-reported states (T3) and the four most common two-way 

combinations amongst never-reported states (T4).  Unlike the combinations used in the previous 

literature, some of these are non-contrasting combinations.  We show that these two approaches result 

in different combinations, and they have different effects on predicted health state values.   

 

● How to select the choice tasks to remove? 

Using Dolan1 and Viney et al.9 as templates, we used selection criteria based on four two-way 

combinations in EQ-5D-5L.  However, this does not control for the number of choice tasks for which 

observations are removed from the re-estimation process.  For example, while T2 excludes 34 of the 120 

choice sets and the conditional logit regression model has 5,874 observations, T3 excludes 24 choice 

sets and the model has 6,396 observations. Furthermore, C3 uses the full sample, with 120 choice sets 

and 8,020 observations. Two alternatives might have been either (a) to control for the number of choice 

tasks to remove from the re-estimation; or (b) to control for the number of states to be removed.  While 

these would allow a more like for like comparison of the re-estimation results, the generation of the 

comparator models would be substantially more complex.  Furthermore, since C1avg and C3 have very 

similar results, the estimates appear to be driven largely by what is dropped from the models rather 

than the volume of what is dropped. 

 

● What should health state valuation studies do about difficult-to-imagine states? 

Health state valuation studies have either identified perceived implausible states based on judgement 

and removed or avoided them from the study design, or ignored the matter altogether.  Our findings 

suggest that removing different states from a DCETTO health state valuation design because of 

judgement-based or evidence-based implausibility will result in different tariff values.  An unexpected 

finding is that the two evidence-based criteria for rare states (T3 and T4) have different effects. Results 

from the further analyses reported in the Appendix suggests that some of the change in parameter 

estimates may be due to the exclusions from the initial designs itself. However, there appears to be an 

excess effect attributable to the exclusion of health states that are rare and/or perceived implausible. 

Given this, and the findings from Yang et al.,17 that there is little agreement across medical students on 

the imagined plausibility of different EQ-5D states, we believe that it is premature to exclude two-way 

combinations from choice designs to address the concern that respondents may feel some states are 

difficult to imagine.  Instead, research might focus on (1) the main factors that make stylised states 

difficult for members of the public to imagine and (2) how best to inform respondents that all states 

used in the survey have been self-reported by the general population, however unlikely they may 

appear. 
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● What are strengths and limitations of this study? 

To our knowledge, this is the first study to examine the prevalence of different EQ-5D-5L health states in 

the general population, putting forward an evidence-based set of rare states. In order to achieve the 

large self-report dataset necessary for this exercise, we pooled two structurally equivalent waves of the 

GPPS comprising 1.6 million observations. However, the great majority of respondents (80%) 

concentrated in only 33 health states significantly limits the sample size available for the analysis 

conducted in stage 1. 

 

To explore the effects of excluding implausible states of varying definitions on the modelling of DCETTO 

tariffs we exploited a secondary health state valuation dataset. Ideally, a future study may address this 

topic prospectively, focussing on comparative experimental designs, which include and exclude (by 

varying definitions) implausible states, while preserving important design features. However, for the 

time being, re-analysing existing data is an efficient use of resources to first explore this topic. 

 

5. Conclusion 

 

This paper challenges the existing literature on health states that are considered “implausible” in the 
context of health state valuation.  The literature has operationalised implausible states in terms of two-

way contrasting combinations for EQ-5D. However, we find that all 250 two-way combinations of EQ-

5D-5L are actually observed in a large self-report dataset of the general population, and therefore there 

appears to be no physiologically impossible combinations. We also identify health states that have not 

previously been discussed as implausible but are rarer than those that have, some of which are non-

contrasting combinations. Importantly, we find that removing different health states from a valuation 

study may lead to value sets with potentially different characteristics, but that this will depend on the 

criterion of implausible states. Without empirical evidence of difficult-to-imagine states, we recommend 

that valuation studies of EQ-5D do not routinely remove health states from DCETTO designs. Research 

should also focus on how best to communicate with study participants about valuing difficult-to-imagine 

states. 
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TABLES 

 

Table 1:  Summary of models 

 Criterion Which four 2-way interactions 

to drop 

Dropped interactions Number of 

choice tasks 

used in Stage 2 

T1 Dolan As specified in Dolan (1997) MO4/5 x UA1;  

SC4/5 x UA1 

90 

T2 Viney As specified in Viney et al (2011) MO4/5 x UA1;  

MO4/5 x SC1 

86 

T3 Empirically 

reported 

Four least prevalent in reported 

health states in Stage 1 

SC4 x UA1;  

SC4 x UA2;  

SC5 x UA2;  

SC3 x UA1 

84 

T4 Empirically 

unreported 

Four most common in 

unreported health states in 

Stage 1 

SC4 x UA1;  

PD5 x UA1;  

AD5 x UA1;  

AD4 x UA1  

90 

C1 Random Random four from all possible 

interactions 

Average of 100 draws Mean approx. 

91 

C2 Random/40 Random four from the 40 

contrasting interactions 

Average of 100 draws Mean approx. 

92 

C3 Do nothing Do not drop anything n/a 120 

Note: M - Mobility; SC - Self-Care; UA - Usual Activities; PD - Pain/Discomfort; AD - Anxiety/Depression; 

The attached number per dimension refers to the corresponding severity level in that dimension; e.g. 

MO4 x UA1 refers to a health state with severe mobility problems and no problems in usual activities. 
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Table 2:  Frequencies of the 33 most prevalent EQ-5D-5L states 

EQ State Rank Observed 

prevalence 

Share Cumulative 

share 

11111 1 593,664 36.21% 36.21% 

11121 2 201,238 12.27% 48.49% 

11112 3 85,526 5.22% 53.70% 

11122 4 66,014 4.03% 57.73% 

21221 5 38,339 2.34% 60.07% 

21121 6 37,814 2.31% 62.37% 

11131 7 31,711 1.93% 64.31% 

11221 8 27,031 1.65% 65.96% 

11113 9 25,692 1.57% 67.52% 

21231 10 18,345 1.12% 68.64% 

21222 11 17,006 1.04% 69.68% 

11123 12 15,078 0.92% 70.60% 

11222 13 13,940 0.85% 71.45% 

31331 14 13,347 0.81% 72.26% 

11132 15 11,228 0.68% 72.95% 

21122 16 10,577 0.65% 73.59% 

31231 17 10,334 0.63% 74.23% 

21232 18 10,093 0.62% 74.84% 

21131 19 9,468 0.58% 75.42% 

21111 20 8,776 0.54% 75.95% 

11231 21 8,765 0.53% 76.49% 

31221 22 6,877 0.42% 76.91% 

31332 23 6,819 0.42% 77.32% 

11211 24 6,415 0.39% 77.71% 

11133 25 5,785 0.35% 78.07% 

11232 26 5,077 0.31% 78.38% 
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31232 27 4,880 0.30% 78.67% 

11223 28 4,493 0.27% 78.95% 

21211 29 4,317 0.26% 79.21% 

21223 30 4,296 0.26% 79.47% 

31131 31 4,267 0.26% 79.73% 

31333 32 4,209 0.26% 79.99% 

32332 33 4,180 0.25% 80.25% 
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Table 3:  Overall frequencies of levels by dimensions 

Dimensions and levels Freq. Percent Cum. 

Mobility  1 1,153,397 70.35 70.35 

2 227,757 13.89 84.24 

3 150,365 9.17 93.42 

4 95,655 5.83 99.25 

5 12,279 0.75 100 

Self-care 1 1,454,836 88.74 88.74 

2 84,281 5.14 93.88 

3 66,839 4.08 97.96 

4 23,118 1.41 99.37 

5 10,379 0.63 100 

Usual Activities 1 1,144,815 69.83 69.83 

2 254,141 15.5 85.33 

3 146,500 8.94 94.27 

4 64,210 3.92 98.18 

5 29,787 1.82 100 

Pain/Discomfort  1 760,823 46.41 46.41 

2 503,078 30.69 77.09 

3 259,870 15.85 92.94 

4 94,738 5.78 98.72 

5 20,944 1.28 100 

Anxiety/Depression 1 1,124,379 68.58 68.58 

2 323,255 19.72 88.3 

3 142,460 8.69 96.99 

4 33,631 2.05 99.04 

5 15,728 0.96 100 
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Table 4(a):  Cross-tab of frequencies of respondents at different levels of mobility and self-care. 

Self-Care 

 

Mobility 

1 2 3 4 5 Total 

1 1,143,228 6,911 2,244 505 509 1,153,397 

2 199,003 23,619 3,937 629 569 227,757 

3 88,432 33,159 25,962 2,048 764 150,365 

4 22,108 19,600 33,063 17,934 2,950 95,655 

5 2,065 992 1,633 2,002 5,587 12,279 

Total 1,454,836 84,281 66,839 23,118 10,379 1,639,453 
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Table 4(b):  Cross-tab of frequencies of respondents at different levels of mobility and usual activities.  

Usual Activities  

 

Mobility 

1 2 3 4 5 Total 

1 1,049,134 83,060 16,438 3,210 1,555 1,153,397 

2 78,436 120,365 23,754 3,302 1,900 227,757 

3 13,932 43,595 76,110 12,317 4,411 150,365 

4 1,924 6,565 29,154 43,260 14,752 95,655 

5 1,389 556 1,044 2,121 7,169 12,279 

Total 1,144,815 254,141 146,500 64,210 29,787 1,639,453 

 



 

 

20 

Table 4(c):  Cross-tab of frequencies of respondents at different levels of self-care and usual activities. 

Usual Activities 

 

Self-Care 

1 2 3 4 5 Total 

1 1,141,250 219,602 76,849 12,395 4,740 1,454,836 

2 2,452 30,931 34,628 12,296 3,974 84,281 

3 433 3,001 32,689 23,853 6,863 66,839 

4 122 226 1,827 14,354 6,589 23,118 

5 558 381 507 1,312 7,621 10,379 

Total 1,144,815 254,141 146,500 64,210 29,787 1,639,453 
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Table 4(d):  Cross-tab of frequencies of respondents at different levels of usual activities and 

pain/discomfort. 

Pain/Discomfort 

 

Usual Activities 

1 2 3 4 5 Total 

1 723,413 342,443 71,433 6,710 816 1,144,815 

2 24,167 131,627 83,765 13,470 1,112 254,141 

3 8,428 21,204 79,700 34,045 3,123 146,500 

4 2,414 4,001 16,308 31,927 9,560 64,210 

5 2,401 3,803 8,664 8,586 6,333 29,787 

Total 760,823 503,078 259,870 94,738 20,944 1,639,453 
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Figures 

 

Figure 1: Comparison of (mean) anchored coefficients. 

 

- T1: Treatment model 1 (exclusion based on the Dolan criteria) 

- T2: Treatment model 2 (exclusion based on the Viney et al criteria) 

- T3: Treatment model 3 (exclusion based on observed states from Stage 1) 

- T4: Treatment model 4 (exclusion based on unobserved states from Stage 1) 

- C1avg: average anchored coefficients from the 100 comparator models (random exclusion) 

- C2avg: average anchored coefficients from the 100 comparator models (random exclusion of 

contrasting interactions), and  

- C3: Comparator model 3 (the full model).
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Figure 2: Comparison of (mean) predicted values of select states. 

 

- T1: Treatment model 1 (exclusion based on the Dolan criteria) 

- T2: Treatment model 2 (exclusion based on the Viney et al criteria) 

- T3: Treatment model 3 (exclusion based on observed states from Stage 1) 

- T4: Treatment model 4 (exclusion based on unobserved states from Stage 1) 

- C1avg: average anchored coefficients from the 100 comparator models (random exclusion) 

- C2avg: average anchored coefficients from the 100 comparator models (random exclusion of 

contrasting interactions), and  

- C3: Comparator model 3 (the full model). 

 

 


