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Abstract

The anti-resorptive properties of bisphosphonates have been explored to manage several conditions that
traditionally have required a surgical solution. In osteonecrosis, their use is predicated on the principle that
bone collapse occurs during the revascularisation phase of the disease. If the associated resorptive activity
were modulated, the resultant preserved joint architecture may improve clinical outcome and reduce the need
for joint replacement. Pre-clinical and small-scale clinical studies have given non-conclusive support for this
principle. Adequately powered clinical trials with relevant long-term endpoints are still required to firmly
clarify the clinical efficacy of this treatment. Several clinical studies have shown that bisphosphonates can
reduce periprosthetic bone loss and, in some situations, enhance implant fixation in the early period after joint
replacement. This may be advantageous in settings where osseointegration is problematic. However, the
ultimate goals of their use in joint replacement has been to reduce the incidence of late periprosthetic
inflammatory osteolysis, the main cause of prosthesis failure. Population-based observational studies have
associated bisphosphonate use with a lower incidence of revision surgery, supported by pre-clinical data.
However, clinical trials have, to date, failed to demonstrate any efficacy for the human disease. The timing of
bisphosphonate administration for secondary prevention after acute osteoporotic fracture has been subject to
extensive investigation, with pre-clinical studies showing increased callus formation but decreased remodelling
and no effect on the restoration of mechanical integrity of bone. Meta-analysis of clinical trial data indicates
that early administration of bisphosphonate after acute fracture does not adversely affect fracture union, pain
or functional outcomes. Finally, bisphosphonates have also been explored as a treatment for complex regional
pain syndrome type-I. A recent meta-analysis has shown a beneficial effect on visual analogue scale pain
scores, but an increase in mild adverse events.
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1. Introduction

Bisphosphonates are potent bone anti-resorptive agents that have become the mainstay of
treatment for post-menopausal osteoporosis and other conditions associated with pathological bone
loss and increased bone turnover. The effect of bisphosphonates for inhibiting osteoclast activity has
also made them of interest as a possible solution for diseases that are usually treated by orthopaedic
surgery [1-5]. Their use has also been explored to treat conditions that arise as an adverse effect of
orthopaedic surgical intervention [6]. In this article, the rationale and current evidence base for the
use of bisphosphonates for orthopaedic surgical indications in common, benign, bone and joint
diseases is reviewed. The adverse effects of bisphosphonate use that may present to orthopaedic
surgeons, such as atypical femoral fractures, are not covered as they are addressed elsewhere in this
series.



2. Osteonecrosis

Osteonecrosis, also termed avascular necrosis, describes bone deformity or collapse due to bone cell
death that may result in pain, loss of function and joint degeneration (Figure 1). The hip is the most
commonly affected joint (followed by the shoulder and knee), with an incidence in UK adults of
approximately 3 per 100,000 [7]. Avascular necrosis of the femoral head is also relatively common in
the paediatric population, with an incidence of up to 29 per 100,000 in children under the age of 15
years [8]. Adult osteonecrosis may be broadly classified into traumatic (fracture-associated), in
which the condition follows disruption of the blood supply to the affected bone, and atraumatic
(non-fracture associated) aetiologies. The pathophysiology of atraumatic osteonecrosis remains
incompletely understood, but is thought to involve local vascular damage to bone resulting in
osteocyte death [9], and in the setting of glucocorticoid-induced osteonecrosis - primary osteocyte
apoptosis resulting in disrupted mechanosensing and architectural collapse [10]. Architectural
degradation occurs during the revasularisation phase of the disease and is characterised by
subchondral bone collapse and remodelling [11-13]. Risk factors for atraumatic osteonecrosis
include male sex, corticosteroid exposure, alcohol use, lipid storage disorders, connective tissue
diseases (Lupus), vasculitis, and some heritable haemoglobin and coagulopathies [7, 9, 14]. The
principle upon which bisphosphonates have been studied as a potential treatment for osteonecrosis
is that preservation of bone architecture during the revascularisation and remodelling phase may
prevent degeneration of the joint and the need for joint replacement.

Pre-clinical studies

Many pre-clinical studies have been conducted to test this principle. Astrand and Aspenberg [15],
using a bone chamber model in rats, showed that systemic treatment with alendronate resulted in
new bone formation upon a retained frozen structural bone graft template. In a rat model of
surgically induced osteonecrosis [16], Little et al found that animals treated with subcutaneous
zoledronate had a substantially lower incidence of femoral head asphericity (13% versus 71%,
p<0.05) and 34% higher (p<0.01) femoral head bone mineral density (BMD) versus saline-treated
animals. The zoledronate treated animals also had a higher trabecular number and bone volume but
a lower bone formation rate than the saline-treated animals (p<0.05, Figure 2). Other investigators
have since reported similar findings in other animal models using various bisphosphonates
(ibandronate, zoledronate, alendronate). In a meta-analysis of 16 animal studies published up to
January 2017 [17], Li et al found that the bisphosphonate treated animals showed a significant
improvement in epiphyseal quotient (ratio of femoral head height to width through head centre and
expressed as a percentage) with a mean difference of 15.32% (95% confidence interval (95% Cl) 9.25
to 21.39). Bisphosphonate-treated animals also had higher bone volume (standardised mean
difference (SMD) 1.57; 95% Cl 0.94 to 2.20), trabecular number (1.30; 0.80 to 1.79), trabecular
thickness (0.77; 0.10 to 1.43) and trabecular separation (-1.44; -1.70 to —0.58) versus the placebo-
treated animals.

Combination therapy of a bisphosphonate with an anabolic agent has also been explored as a
treatment for osteonecrosis. The rationale for use of bone morphogenetic proteins, and in particular
BMP-2, is the upregulation of NF-kB and TGF-f signalling leading to increased angio, chondro and
osteogenesis [18-20], whilst the bisphosphonate inhibits resorption of the necrotic bone template.
Kim et al [21], in a study of surgically-induced osteonecrosis of the femoral head in piglets,
demonstrated that intra-osseous local administration of BMP-2 and ibandronate to the
osteonecrotic femoral head resulted in increased (mean + standard deviation) bone volume versus
bisphosphonate only treatment (BV/TV% = 19.7+6.5 versus 11.8 £ 3.7, p=0.02). The combination



therapy group also had an increased trabecular number (2.3 £ 0.7 per versus 1.1 + 0.6, p<0.001), but
no difference in epiphyseal quotient.

Clinical studies

To date, several non-randomised cohort studies and randomised clinical trials of small sample size
have been conducted to explore the role of bisphosphonates in treating osteonecrosis. Two meta-
analyses of clinical trials conducted to date have also been published. Agarwala et al reported the
first use of alendronate in osteonecrosis in a case series of Indian patients with osteonecrosis of the
hip treated with oral alendronate 10mg/day plus calcium and vitamin D supplementation [22, 23]. In
2005 they reported the 3 month to 5 year results of this intervention in a series of 60 patients [24],
reporting improved pain and disability scores, and a stabilisation in radiographic severity of disease.
Subsequent to the reported success of early, uncontrolled patient series, several clinical trials of
bisphosphonate therapy have been conducted, together with 3 systematic reviews [25-27] and 2
meta-analyses [17, 28] of trials conducted to date. In the most recent meta-analysis Li et al [17]
examined 7 clinical trials reported between 2005 and 2016. Pooled results of pain score across 4
studies totalling 277 patients and Harris Hip Scores across 5 studies totalling 329 patients showed
that bisphosphonate (oral alendronate in all studies except 1 that used intravenous zoledronate)
resulted in a trend towards better scores that did not reach statistical significance (p=0.1 and 0.17,
respectively). Similarly, in pooled data totalling 420 subjects there was a trend towards a reduced
rate of progression towards head collapse (Relative Risk=0.55, 95% Cl 0.26 to 1.16, p=0.012), with a
similar non-significant trend towards reduced progression to joint replacement. Of note, although
the heterogeneity of the results was generally low for pain, that for head collapse indicated
significant heterogeneity between study outcomes in both random and fixed effects models
(1’=77%). To date, the outcomes of the systematic reviews and meta-analyses all conclude that there
is currently insufficient evidence to justify the use of bisphosphonates for this indication outside of
clinical trials. In the paediatric setting there is also a major ongoing effort to evaluate
bisphosphonate use, with clinical trials ongoing [29].

3. Joint replacement

The goal of bisphosphonate use in the setting of joint replacement is to extend the service life of the
prosthesis. The intended benefits are reduction in the rate of complications that are associated with
loss of periprosthetic bone, including osteolysis, implant loosening, and periprosthetic fracture.
Progress in exploring these potential applications are outlined under separate subheadings below.

3.1 Prosthesis fixation

Stable prosthesis fixation to the adjacent bone is an essential prerequisite for the long-term survival
of the prosthesis [30]. Joint replacement implants may be fixed to the bone using bone cement
(cemented fixation) or through a press-fit with subsequent bone ongrowth to the implant surface
(cementless fixation). The process of new bone formation at the implant surface may be considered
analogous to that of callus formation. Studies using a technique called radiostereometric analysis
that cross references the position of the implant to that of defined landmark points on the bone
using simultaneous orthogonal radiographs has allowed measurement of implant migration with an
accuracy of within 0.1mm [31]. Use of this technique has shown that excessive early implant
migration (>1mm per year over the first 2 years) resulting from poor initial implant fixation is
associated with early prosthesis failure [32-36]. Other methods using digitised radiographs to
measure prosthesis migration are also described, the most common of which is EBRA, which
provides a planar representation of the 3-dimensional migration events [37, 38]. Although these



other methods are less sensitive than RSA, similar migration thresholds for predicting revision risk
are described [36-40]. More recent studies have given insights on more sensitive metrics for defining
migration risk thresholds appropriate to different classes of prosthesis through association of small
scale migration data with large scale prosthesis survivorship data [41, 42], large scale early migration
and late outcome data in the same patient populations required to establish causal threshold
inference is lacking. Nonetheless, these studies show that less migration is associated with better
survival for all prostheses, and that where the migration performance of a specific prosthesis brand
within its prosthesis class is greater than that expected, poorer prosthesis survival can be expected.

Whilst the underlying biological mechanisms that modulate early prosthesis migration remain to be
clarified, several investigators have explored the possible role of bisphosphonates in enhancing
prosthesis fixation, both for cemented and cementless methods. The principle behind both is to
prevent osteoclast-mediated bone resorption at the bone surface that occurs because of thermal or
mechanical surface damage and osteocyte death incurred as a result of the insertion process [43,
44]. This anti-resorptive activity is intended to maintain the integrity of the implant or cement - bone
interface whilst allowing bone modelling once microvascular integrity is restored.

Pre-clinical studies

Both systemic and local administration routes have been explored to examine the effects of
bisphosphonates on implant fixation. In one of the earliest studies, Mochida et al [45] demonstrated
that repeated dosing of oral alendronate over 26 weeks did not adversely affect early bone
apposition to hydroxyapatite-coated hip replacements in a randomised study of 12 dogs, concluding
no adverse effect of bisphosphonate therapy on histological implant fixation. Vohra et al [46], in
2014 systematically reviewed 15 animal studies examining the role of ibandronate, zoledronate or
alendronate on implant osseointegration in the long bones of ovariectomised animals and found
that in 12 of these studies systemic bisphosphonate delivery increased bone volume-trabecular
volume ratio and bone implant contact, in 2 studies no benefit was demonstrated, and in 1 the
effect was to reduce osseointegration. In a study of ovariectomised rats, Chen et al compared the
effects of systemically administered alendronate, zoledronate or strontium ranelate versus placebo
on the osseointegration of tibial implants over 12 weeks [47]. They found that all active treatments
improved peri-implant BMD, bone-implant contact, and implant push-out strength versus control,
and that zoledronate was more effective for these endpoints than either alendronate or strontium
ranelate.

In a meta-analysis of 18 animal studies with endpoints measured at up to 24 weeks, Kellesarian et al
[48] found that local alendronate administration, applied topically to the bone or implant surface,
enhanced bone implant contact, new bone formation, bone volume/trabecular volume ratio, and
biomechanical strength of the implant-bone interface. However, heterogeneity of responses was
identified between the studies that may be alendronate dose-related, with 2 studies that used the
highest dose reporting a negative effect of the drug.

Clinical studies

Hilding and Apenberg [49], in the first clinical trial in 50 cemented knee replacement patients
randomised to oral bisphosphonate found that daily oral clodronate (400mg/day) reduced
prosthetic migration from 0.40 to 0.29mm (p=0.01) over 6 months after surgery. In a study of similar
experimental design [50], they later showed that 1mg of ibandronate applied intra-operatively to
the local tibial bone surface reduced prosthesis migration from 0.45 to 0.32mm at 6 months, 0.47 to
0.36mm at 12 months, and 0.47 to 0.40mm at 24 months (repeated measures ANOVA p=0.006).



However, in a subsequent study [51], the same group found no effect of weekly oral alendronate
(70mg/wk) on cementless knee replacement implant migration measured over 2 years.

In the first clinical study of the effect of bisphosphonates on total hip replacement prosthesis
migration, Wilkinson et al [52] found no effect of a single dose of intravenous pamidronate (90mg)
on acetabular or femoral prosthesis migration over 2 years in a clinical trial of 50 subjects after
primary hybrid total hip replacement (cemented femoral implant, cementless acetabular implant).
Two further clinical trials have examined the effect of systemic risedronate[53] and zoledronate[54],
respectively on cementless femoral prosthesis migration measured by RSA and found no effect of
these drugs on prosthesis stability. Friedl et al [55] examined the effect of a single infusion of
zoledronate (4mg) on cementless hip replacement migration in a randomised study of similar sample
size and found that the drug reduced acetabular implant migration by approximately 4 fold (0.15mm
vertical migration versus 0.6mm, p<0.05), but did not influence femoral implant migration.
Subsequently, Schilcher et al [56] demonstrated that topical administration of ibandronate to the
acetabular bone surface immediately before implant cementation reduced implant migration from
0.43mm in the control group (n=30) to 0.20mm in the active treatment group (n=30, p=0.001).
Taken together, these studies suggest that bisphosphonate therapy can reduce early acetabular
prosthesis migration but probably not that of femoral prostheses.

3.2 Periprosthetic strain adaptive bone remodelling

Mechanosensing within bone is finely tuned to maintain homeostasis at approximately 0.1% strain
(1000uStrain) [57, 58]. The elastic moduli of cortical and cancellous bone are 15 and <1.0 GPa,
respectively, whilst that of the materials that are commonly used in femoral prostheses are 100
(titanium alloys) to 220 GPa (Cobalt Chrome alloys). Numerous longitudinal clinical studies have
demonstrated that a period of strain-adaptive remodelling follows insertion of a hip replacement
until a fresh equilibrium within the local strain environment is established. The pattern of local bone
loss varies with implant design (Figure 3), but is typically most severe in periprosthetic bone that lies
in the proximal medial region of the femur and least in the region adjacent to the tip of the
prosthesis, where a small gain in bone mass may occur. These remodelling changes usually occur
within the first 12 to 24 months following surgery and are accompanied by a transient rise in
biochemical markers of bone turnover. Following these early changes in bone mass, the typical
pattern of age related bone loss becomes re-established, resulting in a continued but lower rate of
decline in bone mass.

Periprosthetic bone loss is a risk factor for periprosthetic fracture, which has 2 epidemiological
peaks, the first in the early months following surgery and second late in the service life of the
prosthesis [59, 60]. Whilst there is no established direct causal relationship between early strain-
adaptive remodelling or late periprosthetic bone loss and the incidence of such fractures, these
events are temporally associated. Periprosthetic bone loss also causes reconstruction challenges at
revision surgery.

Numerous clinical studies have been conducted that explore the effect of bisphosphonate therapy
on early strain-adaptive bone loss after hip replacement. In the first of these clinical trials [61],
Wilkinson et al showed that a single dose of intravenous pamidronate (90mg given 5 days post-
operatively) substantially reduced the magnitude of early periprosthetic bone loss at both the
proximal femur and pelvis and was accompanied by a suppression in the transient increase in both
turnover markers observed in the control group (Figure 4). This effect was most marked in the most
proximal and medial periprosthetic bone of the femur, and the effect persisted at 2 years [62], but
was lost by 5 years post-operatively [63]. Many other clinical trials of similar design, examining the



effect of other systemically administered bisphosphonates in the setting of both cemented and
cementless hip replacement have been conducted since these initial reports. Several systematic
reviews and meta-analyses summarising these trials have also been reported [64-69]. Most recently,
Shi et al conducted a meta-analysis of 25 clinical trials totalling 1163 participants undergoing hip or
knee replacement and followed up to 10 years after surgery [70]. At both the hip and knee site,
bisphosphonate administration at doses ranging from once-only to 24 months duration resulted in a
higher periprosthetic BMD at up to 10 years post-operatively. The effect was greatest for second and
third generation agents and in periprosthetic regions that are most affected by strain-adaptive
remodelling. Similar effects on peri-prosthetic bone preservation have been reported recently in 2
clinical trials of RANKL inhibition using denosumab, with broadly similar, but short-lived, effects
given the dosing regimes used [71, 72].

3.3 osteolysis and aseptic loosening

Despite advances in prosthetic materials that have improved their wear characteristics and
prosthesis survival [73], osteolysis leading to aseptic loosening remains the leading cause for
prosthesis failure in England and Wales (NJR 19" Annual report www.njrreports.org.uk). In this
process, particulate debris from the implant materials is phagocytosed by host innate immune cells
at the prosthesis-bone interface, resulting in proliferation of osteoclast precursors and activation of
mature osteoclasts [74]. This increased cytokine activity, in turn, leads to osteoclast differentiation
and activation at the interface membrane, resulting in focal periprosthetic osteolysis (Figure 5). This
osteolytic activity undermines prosthesis fixation, resulting in aseptic loosening of the prosthesis
and/or periprosthetic fracture, giving rise to pain and impaired function and necessitating
reoperation. At present there are no established non-surgical treatments for osteolysis. However,
given the anti-resorptive action of bisphosphonates, they have been a primary candidate
intervention in studies aimed at reducing the incidence of osteolysis and aseptic loosening.

Pre-clinical studies

Shanbhag et al [75], using a previously developed [76] canine model of periprosthetic osteolysis
around a cementless THA due to accelerated wear, demonstrated that 5mg daily oral alendronate
therapy substantially reduced the incidence of osteolysis (1 of 8 animals developing radiographic
osteolysis in the treatment group versus 7 of 8 in the control group). In this model, particles were
introduced directly into the prosthesis/bone interface at joint replacement surgery, and alendronate
therapy was commenced at day 7 until sacrifice at week 26. This design may not accurately
represent the human clinical setting in which debris gradually ingresses into the interface over many
years and in whom long-term oral dosing of bisphosphonate may not be appropriate. Millett et al
[77], in a study in which polyethylene particles were introduced into the rat knee joint cavity at 4, 6,
8, and 10 weeks after insertion of a loaded tibial hemiarthroplasty, showed that concomitant
alendronate infusion (0.01mg/kg/day) prevented particle induced bone loss, whilst later
introduction of alendronate treatment at 10 to 16 weeks reversed established bone loss. von Knoch
et al [78], in a mouse calvarial model of polyethylene particle-induced osteolysis showed that a
single dose of zoledronate at 25ug/kg given at day 4 post particle implantation reduced osteoclast
number and midline suture area by approximately 50% at the 14" post-operative day in treated
mice versus those that received particles alone (p<0.05).

Clinical studies

Several population based registry studies have examined the epidemiological association between
bisphosphonate use and the survival of joint replacement prostheses. In the first of these studies,



Thillemann et al [79] examined any bisphosphonate use in a study 16,145 osteoporotic patients with
from the Danish Hip Arthroplasty Register. They found that duration of bisphosphonates use up to
120 days, 120 and 240 days, and more than 240 days was associated with adjusted relative risks of
revision due to all causes of 2.77 (95% Cl; 1.65-4.64), 1.33 (95% Cl; 0.63-2.72), and 0.58 (95% ClI;
0.32-1.05) respectively. Subsequently, Prieto-Alhambra et al [80] in a retrospective cohort study of
primary care data from the United Kingdom found that the rate of hip or knee replacement revision
at a mean of 3.5 years follow up following primary surgery in 1912 bisphosphonate users (defined as
>six prescriptions or 2 6months of use) versus that of non-users (n=41,995) was 0.93% (95% ClI
0.52% to 1.68%) versus 1.96% (1.80% to 2.14%). Prieto-Alhambra et al used a similar study design in
a subsequent study using the Danish nationwide registries, matching 1.590 bisphosphonate user
with 8,966 non-bisphosphonate users and examined the rate of revision hip or knee replacement in
these groups. At a median follow up of 2.61 years following primary surgery 1.73% of the
bisphosphonate users versus 4.45% of the non-bisphosphonate users had undergone revision
surgery (Cox regression hazard ratio 0.41 [95% Cl 0.27 to 0.61]).

Whilst these population-based observational studies suggest an association between
bisphosphonate use and the rate of early revision surgery after hip or knee replacement, it remains
unclear what the signal may mean because of the issue of confounding by indication. Osteolysis
leading to aseptic loosening, is a late phenomenon after joint replacement surgery, and rarely occurs
within the first 5 years. It does not present within the timescale over which these studies were
conducted. Further, osteolysis development is a function of wear debris generation that has its
greatest incidence in the young and in males. Osteolysis and aseptic loosening have their lowest
natural incidence in post-menopausal females that are also the population in whom bisphosphonate
use is most prevalent. Further information on the reasons for revision surgery in these cohorts
would thus help clarify the mechanisms of the observed associations. Possible explanations might
include enhanced early osseointegration and preservation of periprosthetic bone mass resulting in a
lower incidence of early technical (mechanical) failure or periprosthetic fracture.

Few clinical trials of bisphosphonate therapy in the setting of clinically-relevant periprosthetic
osteolysis have been reported. Rubash et al [81], in a multi-centre study of 123 subjects with
osteolysis after hip replacement, found that daily oral administration of alendronate (35mg) did not
affect the progression of established osteolytic lesions over 18 months. In a small clinical trial, Holt
et al [82] randomised 10 patients scheduled for revision surgery for osteolysis to receive either
alendronate 70mg weekly or placebo over 8 weeks prior to surgery. Samples of the osteolytic
membrane taken at the time of revision surgery demonstrated no differences in pro-inflammatory
cytokine or RANK, RANKL, or OPG expression between treatment groups. However, no bone samples
were taken to examine osteoclast numbers between the treatment groups to determine a biological
effect on cell activity. Whilst this study did not examine for such a biological effect, other authors
have also observed a lack of efficacy of bisphosphonates in the setting of clinical inflammatory joint
disease progression [83-85]. Zhang et al [86] sought to explain the lack of effect of bisphosphonate
treatment for structural osteolytic lesions in tumour necrosis factor-transgenic mice that develop
erosive arthritis versus wild-type littermates. They found that the anti-apoptotic proteins Ets-2 and
Bcl-xl were substantially upregulated in the inflammatory osteolytic environment, and protected the
osteoclasts from alendronate-induced apoptosis. In summary, current data does not support the use
of bisphosphonates in the treatment or prevention of osteolysis. An alternate strategy, focussed
directly on the inhibition of RANKL signalling, is currently underway (NCT01358669) to determine
whether denosumab therapy reduces osteoclast activity within osteolytic lesions.



4. Fracture healing

The healing of an acute fracture is a complex process that may be divided into several discrete but
overlapping stages. In typical fracture healing by callus formation (indirect fracture healing), an initial
inflammatory stage (day 0 to ~day 7) is characterised by haematoma formation, necrosis of the bone
ends, soft tissue injury and platelet degranulation in an inflammatory cellular response that is
subsequently replaced by granulation tissue. In the repair phase (weeks to months) progenitor cells
in the periosteum and endosteum develop into osteoblasts, whilst capillary ingrowth facilitates the
chemotaxis of mesenchymal stem cells to the fracture site where they proliferate and differentiate
into fibroblasts and chondrocytes, creating a fibro-cartilaginous matrix of soft callus. As the stiffness
of the callus increases, it undergoes endochondral ossification to woven bone from the fracture
periphery inwards whilst periosteal and endosteal intramembranous ossification continues to form
hard callus. The final remodelling stage (months to years) begins once the fracture has united solidly
with woven bone. This is slowly replaced to lamellar bone by osteonal remodelling, with eventual
restoration of normal mature bone architecture and the medullary canal. In the setting of surgical
intervention by rigid internal fixation, the natural fracture haematoma and callus formation process
is disturbed and much of the healing process occurs through intramembranous ossification and
osteonal remodelling (direct fracture healing).

The timing of the introduction of treatment following osteoporotic fracture in the bisphosphonate-
naive patient has been controversial because of anxiety that inhibition of bone remodelling may
impact adversely upon fracture healing, particularly in the setting of surgical fracture fixation. These
concerns about the use of and timing of the introduction of bisphosphonates in the setting of acute
fracture has precipitated several studies, outlined in the following sections.

Pre-clinical studies

In one early study [87], Peter et al studied the effect of daily oral alendronate (2mg/kg) on surgically-
induced mid-diaphyseal radial fracture healing in skeletally mature beagle dogs. They found that
callus volume at 16 weeks in alendronate treated dogs was greater than twice that in placebo
treated dog. Mechanical load at failure and flexural rigidity of the healing bone was unaffected by
alendronate, but callus remodelling was delayed. A subsequent study by Li et al [88], showed that
intravenous incadronate (10pug/kg or 100ug/kg) administered 3 times per week for 2 weeks prior to
mid femoral fracture and intramedullary wire fixation resulted in greater callus formation at 6 and
10 weeks that was associated with greater ultimate fracture callus strength, and that continuous
treatment post fracture at 100pug/kg augmented this effect but also delayed remodelling to lamellar
bone. Several subsequent pre-clinical studies using a variety of animal models have shown very
consistent findings of a larger fracture callus and remodelling delay, but without impairing the
strength of the healing bone [89-92]. These studies were performed across various bisphosphonates
and routes of systemic administration.

Clinical studies

Despite the broadly positive data from pre-clinical studies, concern has remained about the safety
and timing of the introduction of bisphosphonate therapy after osteoporotic fracture, particularly in
the setting of surgical repair of the fracture. Molvik and Khan [93], in a systematic review of 16
clinical studies, mostly retrospective case-control or cohort studies and 3 clinical trials, found that
time to fracture union was longer in patients with distal radius fracture but not in those with femoral
fractures versus control subjects with fractures at the same sites. No relationship the between
timing of bisphosphonate introduction and union time was identified. However, the analysis
included a heterogeneous group of studies, of which only 5 measured time to union in both a study



and control group (3 lower limb and 2 upper limb studies) and only 2 were formal clinical trials.
Conversely, in a meta-analysis of 8 clinical trials involving 2,508 patients published a year earlier [94],
Xue et al found no difference in either short-term (< 3 months) or long term (> 12 months) indirect
bone healing between bisphosphonate infused versus non-bisphosphonate-treated patients.
Further, in a systematic review and meta-analysis of 10 clinical trials including 2888 patients [95], Li
et al examined the timing of the initiation of bisphosphonates within 3 months after surgery for
fracture healing. Patients treated with bisphosphonates had no difference in radiological fracture
healing times compared with those in the control group (mean difference 0.47 [95% Cl -2.75 to
3.69), and no difference in the rate of delay or non-union of fracture healing (odds ratio 0.98 [0.64 to
1.50]. All of these analyses included many of the same original study populations, all with the
exception of 2 [96, 97] included fewer than 100 subjects, and in the largest (HORIZON Recurrent
Fracture Trial) [97] treatment was started =90 days post surgery, by which time fracture union would
be expected.

Most recently, Duckworth et al [98] reported a clinical trial of 421 bisphosphonate-naive men and
women aged >50 years with a radiographically confirmed d fracture of the distal radius and
randomized them in a 1:1 ratio to receive alendronate (70 mg/week) or placebo within 14 days of
the fracture. This sample size gave a power of 84% (at p=0.05) to detect a pre-specified 15%
difference in the proportion of patients who had a healed fracture at 4 weeks post-injury (the pre-
defined primary endpoint). Clinical care of the fractures was carried out according to normal clinical
practice, and included a similar number of operated versus non-operated (78% versus 22%) patients
in each randomisation arm. At 4 weeks, 48 of 202 (23.8%) fractures had united in the alendronate
group compared with 52 of 187 (27.8%) in the placebo group (absolute proportion difference 4.0%
[95% Cl —4.7 to 12.8], p=0.36). There were no differences in the proportion of fractures that had
united at any other time point over 6 months post-injury, and no differences in the Disabilities of the
Arm Shoulder and Hand questionnaire score, pain at the fracture site, grip strength, or any other
clinical outcome (Figure 6). The authors concluded that early administration of alendronate among
patients >50 years after acute distal radius fracture is safe and does not affect fracture union or the
clinical outcome.

The use of bisphosphonates in the setting of fracture fixation augmentation and in the management
of bone defects has been addressed in a previous review [6]. However, it is of interest to note that
pin tract problems overshadow the clinical use of external fixation devices in fracture fixation and in
their treatment with distraction osteogenesis. Two studies have examined the use of
bisphosphonates for this specific problem. Both support the use of bisphosphonate-coated external
fixator pins to enhance fixation, particularly at metaphyseal sites [99, 100].

5. Complex regional pain syndrome type 1

Complex regional pain syndrome type 1 (CRPS-1, also known as algodystrophy), is a

clinical syndrome of variable course and unknown cause characterised by pain, swelling, and
vasomotor dysfunction of an extremity [101]. The condition most commonly arises after upper limb
injury or surgery [101]. In a population-based study conducted in a rural county of Minnesota,
United States [102], Sandroni et al found an incidence rate of 5.5 per 100,000 person years at risk,
and a prevalence of 20.6 per 100,000. The female to male ratio was 4:1 with a median age of onset
of 46 years. Although most cases resolve without invasive treatment, the condition runs a protracted
course in a persistent minority, and may result in permanent disability [101, 102].

Although the underlying pathophysiology of CRPS-1 is thought to have its basis in autonomic
dysregulation [103, 104], early change in bone akin to a regional acceleratory phenomenon [105], is



thought to contribute [106, 107]. Given the increase in bone turnover and bone loss observed in
CRPS-1 [108, 109], several studies of bisphosphonate therapy have been conducted in an attempt to
alter the natural history of the disease.

Pre-clinical studies

Wang et al [110], exposed animals to placebo or bisphosphonates in a rat tibial fracture model of
CRPS. They found that alendronate (60ug/kg/day s.c.) or zoledronate (3mg/kg/day p.o.) for 28 days
and started at the time of fracture inhibited the development of hind paw allodynia and reduced
hind paw unweighting by 44 and 58%, respectively versus placebo treated animals, but did not
reduce paw temperature or oedema. Alendronate treatment also inhibited osteoclast and eroded
surface and increased bone volume/trabecular volume versus placebo treatment.

Clinical studies

A modest number of clinical trials of the effect of bisphosphonates on CRPS-1 have been conducted.
In a 2009 systematic review of 4 clinical trials involving 118 patients treated with alendronate (n=2
studies), pamidronate or clodronate versus placebo [111]; 2 of the studies showed improvement
over 3 months in joint mobility and 1 showed an improvement in SF-36 physical function score. In a
more recent systematic review and meta-analysis [112], Chevreau et al identified 4 clinical trials of
moderate to good quality comprising 181 patients randomised at 1:1 to receive either
bisphosphonate or placebo and in whom the outcome measures included visual analogue scale
(VAS) pain scores. They found that bisphosphonate therapy resulted in lower VAS pain scores over
30-40 days (SMD -2.5 [95% Cl 11.8 to -3.4, p<0.001)] and at up to 90 days (-2.5 [-1.8 to -3.4],
p<0.001). However, the heterogeneity of the results was large (1’=88%). Although clinical trials of
oral zoledronate (NCT02504008) and neridronate (EudraCT 2014 001156-28 and 2014-001915-37)
have been registered, results from the latter report no significant effect of 4 infusions of
neridronate (250mg) on the primary endpoint of pain intensity score over 12 weeks
(https://www.clinicaltrialsregister.eu/ctr-search/trial/2014-001915-37/results).

6. Conclusions

In summary, bisphosphonates have been explored as an alternative to surgery for many diseases
that are currently managed by orthopaedic surgeons. In osteonecrosis, pre-clinical data suggests a
role in preserving bone architecture, a finding that has been replicated in some cohort studies and
clinical trials. However, meta-analysis of the clinical trial data thus far does not conclusively support
their use. A large-scale, definitive clinical trial using an appropriately timed, pragmatic
bisphosphonate administration schedule and relevant mid-to long term clinical endpoints is still
required to confirm their use in this setting. Bisphosphonate treatment can reduce the early
migration of joint replacement prosthesis, with an effect that depends on the method of fixation,
the specific prosthesis component and context, appears greater with local versus systemic
administration and appears to be more effective for knee replacement than hip replacement.
Systemic bisphosphonate therapy also has a clear effect on reducing strain-adaptive bone loss that
occurs following surgery. The clinical impact of these effects in reducing revision surgery for
loosening and periprosthetic fracture remains unclear. Although epidemiological association studies
indicate lower joint replacement revision rates in patients receiving bisphosphonates, confounding
by indication limits the interpretation of these studies. The few clinical trials of bisphosphonates for
the treatment of established periprosthetic osteolysis have failed to demonstrate any benefit, a
finding akin to those of their use to prevent periarticular erosions in patients with inflammatory
arthritis. Studies in both animals and humans have explored timing of introduction of
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bisphosphonates for secondary fracture prevention. These studies show no adverse effect on acute
fracture healing, both for surgically and non-surgically treated fractures a various sites. Finally, given
bone involvement in CRPS-1, the small number of clinical trials reported to date collectively indicate
that bisphosphonate use reduces short and mid-term pain outcomes, although the precise
mechanism of action of this effect is unclear.

References

[1] S.A. Lozano-Calderon, M.W. Colman, K.A. Raskin, F.J. Hornicek, M. Gebhardt, Use of
bisphosphonates in orthopedic surgery: pearls and pitfalls, Orthop Clin North Am 45(3) (2014) 403-
16.

[2] J.P. Cattalini, A.R. Boccaccini, S. Lucangioli, V. Mourino, Bisphosphonate-based strategies for
bone tissue engineering and orthopedic implants, Tissue Eng Part B Rev 18(5) (2012) 323-40.

[3] S. Sabharwal, Enhancement of bone formation during distraction osteogenesis: pediatric
applications, J Am Acad Orthop Surg 19(2) (2011) 101-11.

[4] T. Wirth, The orthopaedic management of long bone deformities in genetically and acquired
generalized bone weakening conditions, J Child Orthop 13(1) (2019) 12-21.

[5] Z. Wu, J. Lu, Advances in treatment of metastatic breast cancer with bone metastasis, Chin Clin
Oncol 7(3) (2018) 31.

[6] J.M. Wilkinson, D.G. Little, Bisphosphonates in orthopedic applications, Bone 49(1) (2011) 95-
102.

[7] C. Cooper, M. Steinbuch, R. Stevenson, R. Miday, N.B. Watts, The epidemiology of osteonecrosis:
findings from the GPRD and THIN databases in the UK, Osteoporos Int 21(4) (2010) 569-77.

[8] R.T. Loder, E.N. Skopelja, The epidemiology and demographics of legg-calve-perthes' disease,
ISRN Orthop 2011 (2011) 504393.

[9] H.J. Mankin, Nontraumatic necrosis of bone (osteonecrosis), N Engl J Med 326(22) (1992) 1473-9.
[10] R.S. Weinstein, Glucocorticoid-induced osteonecrosis, Endocrine 41(2) (2012) 183-90.

[11] M.J. Glimcher, J.E. Kenzora, Nicolas Andry award. The biology of osteonecrosis of the human
femoral head and its clinical implications: 1. Tissue biology, Clin Orthop Relat Res (138) (1979) 284-
309.

[12] M.J. Glimcher, J.E. Kenzora, The biology of osteonecrosis of the human femoral head and its
clinical implications: Il. The pathological changes in the femoral head as an organ and in the hip joint,
Clin Orthop Relat Res (139) (1979) 283-312.

[13] K.N. Shah, J. Racine, L.C. Jones, R.K. Aaron, Pathophysiology and risk factors for osteonecrosis,
Curr Rev Musculoskelet Med 8(3) (2015) 201-9.

[14] M.A. Mont, M.G. Zywiel, D.R. Marker, M.S. McGrath, R.E. Delanois, The natural history of
untreated asymptomatic osteonecrosis of the femoral head: a systematic literature review, J Bone
Joint Surg Am 92(12) (2010) 2165-70.

[15] J. Astrand, P. Aspenberg, Systemic alendronate prevents resorption of necrotic bone during
revascularization. A bone chamber study in rats, BMC Musculoskelet Disord 3 (2002) 19.

[16] D.G. Little, R.A. Peat, A. McEvoy, P.R. Williams, E.J. Smith, P.A. Baldock, Zoledronic acid
treatment results in retention of femoral head structure after traumatic osteonecrosis in young
Wistar rats, J Bone Miner Res 18(11) (2003) 2016-22.

[17] D. Li, Z. Yang, Z. Wei, P. Kang, Efficacy of bisphosphonates in the treatment of femoral head
osteonecrosis: A PRISMA-compliant meta-analysis of animal studies and clinical trials, Sci Rep 8(1)
(2018) 1450.

[18] J.M. Wozney, V. Rosen, A.J. Celeste, L.M. Mitsock, M.J. Whitters, R.W. Kriz, R.M. Hewick, E.A.
Wang, Novel regulators of bone formation: molecular clones and activities, Science 242(4885) (1988)
1528-34.

[19] P.A. Lucas, Chemotactic response of osteoblast-like cells to transforming growth factor beta,
Bone 10(6) (1989) 459-63.

11



[20] A.B. Roberts, M.B. Sporn, R.K. Assoian, J.M. Smith, N.S. Roche, L.M. Wakefield, U.l. Heine, L.A.
Liotta, V. Falanga, J.H. Kehrl, et al., Transforming growth factor type beta: rapid induction of fibrosis
and angiogenesis in vivo and stimulation of collagen formation in vitro, Proc Natl Acad Sci U S A
83(12) (1986) 4167-71.

[21] H.K. Kim, O. Aruwajoye, J. Du, N. Kamiya, Local administration of bone morphogenetic protein-2
and bisphosphonate during non-weight-bearing treatment of ischemic osteonecrosis of the femoral
head: an experimental investigation in immature pigs, ) Bone Joint Surg Am 96(18) (2014) 1515-24.
[22] S. Agarwala, A. Sule, B.U. Pai, V.R. Joshi, Study of alendronate in avascular necrosis of bone, J
Assoc Physicians India 49 (2001) 949-50.

[23] S. Agarwala, A. Sule, B.U. Pai, V.R. Joshi, Alendronate in the treatment of avascular necrosis of
the hip, Rheumatology (Oxford) 41(3) (2002) 346-7.

[24] S. Agarwala, D. Jain, V.R. Joshi, A. Sule, Efficacy of alendronate, a bisphosphonate, in the
treatment of AVN of the hip. A prospective open-label study, Rheumatology (Oxford) 44(3) (2005)
352-9.

[25] J.C. Villa, S. Husain, J.P. van der List, A. Gianakos, J.M. Lane, Treatment of Pre-Collapse Stages of
Osteonecrosis of the Femoral Head: a Systematic Review of Randomized Control Trials, HSS J 12(3)
(2016) 261-271.

[26] J.B. Cardozo, D.M. Andrade, M.B. Santiago, The use of bisphosphonate in the treatment of
avascular necrosis: a systematic review, Clin Rheumatol 27(6) (2008) 685-8.

[27] R.B. Luo, T. Lin, H.M. Zhong, S.G. Yan, J.A. Wang, Evidence for using alendronate to treat adult
avascular necrosis of the femoral head: a systematic review, Med Sci Monit 20 (2014) 2439-47.

[28] H.F. Yuan, C.A. Guo, Z.Q. Yan, The use of bisphosphonate in the treatment of osteonecrosis of
the femoral head: a meta-analysis of randomized control trials, Osteoporos Int 27(1) (2016) 295-9.
[29] K. Jamil, M. Zacharin, B. Foster, G. Donald, T. Hassall, A. Siafarikas, M. Johnson, E. Tham, C.
Whitewood, V. Gebski, C.T. Cowell, D.G. Little, C.F. Munns, Protocol for a randomised control trial of
bisphosphonate (zoledronic acid) treatment in childhood femoral head avascular necrosis due to
Perthes disease, BMJ Paediatr Open 1(1) (2017) e000084.

[30] B. Mjoberg, J. Brismar, L.I. Hansson, H. Pettersson, G. Selvik, R. Onnerfalt, Definition of
endoprosthetic loosening. Comparison of arthrography, scintigraphy and roentgen
stereophotogrammetry in prosthetic hips, Acta Orthopedica Scandinavica 56 (1985) 469-473.

[31] G. Selvik, Roentgen stereophotogrammetry. A method for the study of the kinematics of the
skeletal system, Acta Orthopedica Scandinavica Supplementum. 232 (1989) 1-51.

[32] J. Karrholm, H. Malchau, F. Snorrason, P. Herberts, Micromotion of femoral stems in total hip
arthroplasty. A randomized study of cemented, hydroxyapatite-coated, and porous-coated stems
with roentgen stereophotogrammetric analysis, Journal of Bone and Joint Surgery 76-A(11) (1994)
1692-1705.

[33] J. Karrholm, B. Borssen, G. Lowenhielm, F. Snorrason, Does early micromotion of femoral stem
prostheses matter? 4-7 year stereoradiographic follow-up of 84 cemented prostheses, Journal of
Bone and Joint Surgery 76-B(6) (1994) 912-917.

[34] J. Karrholm, P. Herberts, P. Hultmark, H. Malchau, B. Nivbrant, J. Thanner, Radiostereometry of
hip prostheses. Review of methodology and clinical results, Clinical Orthopaedics and Related
Research 344 (1997) 94-110.

[35] M.A. Freeman, P. Plante-Bordeneuve, Early migration and late aseptic failure of proximal
femoral prostheses, Journal of Bone and Joint Surgery 76-B(3) (1994) 432-438.

[36] M. Krismer, B. Stockl, M. Fischer, R. Bauer, P. Mayrhofer, M. Ogon, Early migration predicts late
aseptic failure of hip sockets, Journal of Bone and Joint Surgery 78-B(3) (1996) 422-426.

[37] M. Krismer, R. Bauer, J. Tschupik, P. Mayrhofer, EBRA: a method to measure migration of
acetabular components, J Biomech 28(10) (1995) 1225-1236.

[38] R. Biedermann, M. Krismer, B. Stockl, P. Mayrhofer, E. Ornstein, H. Franzen, Accuracy of EBRA-
FCA in the measurement of migration of femoral components of total hip replacement, Journal of
Bone and Joint Surgery 81-B(2) (1999) 266-272.

12



[39] J.M. Wilkinson, N.F.A. Peel, |. Stockley, R. Eastell, Precision of migration measurement using
digitised radiographic analysis following total hip arthroplasty, Bone 23(5) (1998) S545.

[40] M. Krismer, R. Beidermann, B. Stockl, M. Fischer, R. Bauer, C. Haid, The prediction of failure of
the stem in THR by measurement of early migration using EBRA-FCA, Journal of Bone and Joint
Surgery 81-B(2) (1999) 273-280.

[41] B.G. Pijls, M.J. Nieuwenhuijse, M. Fiocco, J.W. Plevier, S. Middeldorp, R.G. Nelissen, E.R. Valstar,
Early proximal migration of cups is associated with late revision in THA: a systematic review and
meta-analysis of 26 RSA studies and 49 survivalstudies, Acta Orthop 83(6) (2012) 583-91.

[42] P. van der Voort, B.G. Pijls, M.J. Nieuwenhuijse, J. Jasper, M. Fiocco, J.W. Plevier, S. Middeldorp,
E.R. Valstar, R.G. Nelissen, Early subsidence of shape-closed hip arthroplasty stems is associated with
late revision. A systematic review and meta-analysis of 24 RSA studies and 56 survival studies, Acta
Orthop 86(5) (2015) 575-85.

[43] F.W. Rhinelander, C.L. Nelson, R.D. Stewart, C.L. Stewart, Experimental reaming of the proximal
femur and acrylic cement implantation: vascular and histologic effects, Clinical Orthopaedics and
Related Research 141 (1979) 74-89.

[44] A.T. Berman, J.S. Reid, D.R. Yanicko, Jr., G.C. Sih, M.R. Zimmerman, Thermally induced bone
necrosis in rabbits. Relation to implant failure in humans, Clinical Orthopaedics and Related Research
186 (1984) 284-292.

[45] Y. Mochida, T.W. Bauer, T. Akisue, P.R. Brown, Alendronate does not inhibit early bone
apposition to hydroxyapatite-coated total joint implants: a preliminary study, J Bone Joint Surg Am
84(2) (2002) 226-35.

[46] F. Vohra, M.Q. Al-Rifaiy, K. Almas, F. Javed, Efficacy of systemic bisphosphonate delivery on
osseointegration of implants under osteoporotic conditions: lessons from animal studies, Arch Oral
Biol 59(9) (2014) 912-20.

[47] B. Chen, Y. Li, X. Yang, H. Xu, D. Xie, Zoledronic acid enhances bone-implant osseointegration
more than alendronate and strontium ranelate in ovariectomized rats, Osteoporos Int 24(7) (2013)
2115-21.

[48] S.V. Kellesarian, T. Abduljabbar, F. Vohra, V.R. Malignaggi, H. Malmstrom, G.E. Romanos, F.
Javed, Role of local alendronate delivery on the osseointegration of implants: a systematic review
and meta-analysis, Int J Oral Maxillofac Surg 46(7) (2017) 912-921.

[49] M. Hilding, L. Ryd, S. Toksvig-Larsen, P. Aspenberg, Clodronate prevents prosthetic migration: a
randomized radiostereometric study of 50 total knee patients, Acta Orthopedica Scandinavica 71(6)
(2000) 553-557.

[50] M. Hilding, P. Aspenberg, Local peroperative treatment with a bisphosphonate improves the
fixation of total knee prostheses: a randomized, double-blind radiostereometric study of 50 patients,
Acta Orthop 78(6) (2007) 795-799.

[51] U. Hansson, S. Toksvig-Larsen, L. Ryd, P. Aspenberg, Once-weekly oral medication with
alendronate does not prevent migration of knee prostheses: A double-blind randomized RSA study,
Acta Orthop 80(1) (2009) 41-45.

[52] J.M. Wilkinson, A.C. Eagleton, I. Stockley, N.F. Peel, A.J. Hamer, R. Eastell, Effect of pamidronate
on bone turnover and implant migration after total hip arthroplasty: a randomized trial, J Orthop Res
23(1) (2005) 1-8.

[53] O.G. Skoldenberg, M.O. Salemyr, H.S. Boden, T.E. Ahl, P.Y. Adolphson, The effect of weekly
risedronate on periprosthetic bone resorption following total hip arthroplasty: a randomized,
double-blind, placebo-controlled trial, J Bone Joint Surg Am 93(20) (2011) 1857-64.

[54] E. Aro, N. Moritz, K. Mattila, H.T. Aro, A long-lasting bisphosphonate partially protects
periprosthetic bone, but does not enhance initial stability of uncemented femoral stems: A
randomized placebo-controlled trial of women undergoing total hip arthroplasty, J Biomech 75
(2018) 35-45.

13



[55] G. Friedl, R. Radl, C. Stihsen, P. Rehak, R. Aigner, R. Windhager, The effect of a single infusion of
zoledronic acid on early implant migration in total hip arthroplasty. A randomized, double-blind,
controlled trial, J Bone Joint Surg Am 91(2) (2009) 274-281.

[56] J. Schilcher, L. Palm, I. Ivarsson, P. Aspenberg, Local bisphosphonate reduces migration and
formation of radiolucent lines adjacent to cemented acetabular components, Bone Joint J 99-B(3)
(2017) 317-324.

[57] H.M. Frost, Perspectives on artificial joint design, Journal of Long-Term Effects of Medical
Implants 2(1) (1992) 9-35.

[58] H.M. Frost, From Wolff's law to the Utah paradigm: insights about bone physiology and its
clinical applications, Anat Rec 262(4) (2001) 398-419.

[59] M.P. Abdel, C.D. Watts, M.T. Houdek, D.G. Lewallen, D.J. Berry, Epidemiology of periprosthetic
fracture of the femur in 32 644 primary total hip arthroplasties: a 40-year experience, Bone Joint J
98-B(4) (2016) 461-7.

[60] W. National Joint Registry for England, Northern Ireland and the Isle of Man, 16th Annual
Report, in: N.E. Board (Ed.) www.njrreports.org.uk, 2019.

[61] J.M. Wilkinson, I. Stockley, N.F.A. Peel, A.J. Hamer, R.A. Elson, N.A. Barrington, R. Eastell, Effect
of pamidronate in preventing local bone loss after total hip arthroplasty: A randomized, double-
blind, controlled trial, ] Bone Miner Res 16(3) (2001) 556-564.

[62] J.M. Wilkinson, I. Stockley, A.J. Hamer, R. Eastell, Effect of pamidronate on periprosthetic bone
turnover and implant stability after total hip arthroplasty, Journal of Bone and Mineral Research 17
(2002) 1328.

[63] N. Shetty, A.J. Hamer, I. Stockley, R. Eastell, J.M. Willkinson, Clinical and radiological outcome of
total hip replacement five years after pamidronate therapy. A trial extension, Journal of Bone and
Joint Surgery 88-B(10) (2006) 1309-1315.

[64] M. Bhandari, S. Bajammal, G.H. Guyatt, L. Griffith, J.W. Busse, H. Schunemann, T.A. Einhorn,
Effect of bisphosphonates on periprosthetic bone mineral density after total joint arthroplasty. A
meta-analysis, J Bone Joint Surg Am 87(2) (2005) 293-301.

[65] Y. Zeng, O. Lai, B. Shen, J. Yang, Z. Zhou, P. Kang, F. Pei, A systematic review assessing the
effectiveness of alendronate in reducing periprosthetic bone loss after cementless primary THA,
Orthopedics 34(4) (2011).

[66] T. Lin, S.G. Yan, X.Z. Cai, Z.M. Ying, Bisphosphonates for periprosthetic bone loss after joint
arthroplasty: a meta-analysis of 14 randomized controlled trials, Osteoporos Int (2011).

[67] T. Lin, S.G. Yan, X.Z. Cai, Z.M. Ying, Bisphosphonates for periprosthetic bone loss after joint
arthroplasty: a meta-analysis of 14 randomized controlled trials, Osteoporos Int 23(6) (2012) 1823-
34,

[68] L. Zhu, W. Zheng, F.C. Zhao, Y. Guo, B.Y. Meng, H.T. Liu, K.J. Guo, A meta-analysis of
bisphosphonates for periprosthetic bone loss after total joint arthroplasty, J Orthop Sci 18(5) (2013)
762-73.

[69] A.R. Knusten, E. Ebramzadeh, D.B. Longjohn, S.N. Sangiorgio, Systematic analysis of
bisphosphonate intervention on periprosthetic BMD as a function of stem design, J Arthroplasty
29(6) (2014) 1292-7.

[70] M. Shi, L. Chen, Z. Xin, Y. Wang, W. Wang, S. Yan, Bisphosphonates for the preservation of
periprosthetic bone mineral density after total joint arthroplasty: a meta-analysis of 25 randomized
controlled trials, Osteoporos Int 29(7) (2018) 1525-1537.

[71] H.T. Aro, S. Nazari-Farsani, M. Vuopio, E. Loyttyniemi, K. Mattila, Effect of Denosumab on
Femoral Periprosthetic BMD and Early Femoral Stem Subsidence in Postmenopausal Women
Undergoing Cementless Total Hip Arthroplasty, JBMR Plus 3(10) (2019) e10217.

[72] A. Nystrom, D. Kiritopoulos, G. Ullmark, J. Sorensen, M. Petren-Mallmin, J. Milbrink, N.P. Hailer,
H. Mallmin, Denosumab Prevents Early Periprosthetic Bone Loss After Uncemented Total Hip
Arthroplasty: Results from a Randomized Placebo-Controlled Clinical Trial, ] Bone Miner Res 35(2)
(2020) 239-247.

14


file:///G:/My%20Drive/Projects%20current/Bisphosphonates%20orthopaedics/Bone/Revision/www.njrreports.org.uk

[73] R.H. Hopper, Jr., H. Ho, S. Sritulanondha, A.C. Williams, C.A. Engh, Jr., Otto Aufranc Award:
Crosslinking Reduces THA Wear, Osteolysis, and Revision Rates at 15-year Followup Compared With
Noncrosslinked Polyethylene, Clin Orthop Relat Res 476(2) (2018) 279-290.

[74] R.S. Tuan, F.Y. Lee, T. Konttinen, J.M. Wilkinson, R.L. Smith, What are the local and systemic
biologic reactions and mediators to wear debris, and what host factors determine or modulate the
biologic response to wear particles?, ] Am Acad.Orthop Surg 16 Suppl 1 (2008) S42-548.

[75] A.S. Shanbhag, C.T. Hasselman, H.E. Rubash, Inhibition of wear debris mediated osteolysis in a
canine total hip arthroplasty model, Clinical Orthopaedics and Related Research 344 (1997) 33-43.
[76] J.E. Dowd, L.J. Schwendeman, W. Macaulay, J.S. Doyle, A.S. Shanbhag, S. Wilson, J.H. Herndon,
H.E. Rubash, Aseptic loosening in uncemented total hip arthroplasty in a canine model, Clinical
Orthopaedics & Related Research (319) (1995) 106-21.

[77] P.J. Millett, M.J. Allen, M.P. Bostrom, Effects of alendronate on particle-induced osteolysis in a
rat model, Journal of Bone and Joint Surgery 84-A(2) (2002) 236-249.

[78] M. von Knoch, C. Wedemeyer, A. Pingsmann, F. von Knoch, G. Hilken, C. Sprecher, F. Henschke,
B. Barden, F. Loer, The decrease of particle-induced osteolysis after a single dose of bisphosphonate,
Biomaterials 26(14) (2005) 1803-1808.

[79] T.M. Thillemann, A.B. Pedersen, F. Mehnert, S.P. Johnsen, K. Soballe, Postoperative use of
bisphosphonates and risk of revision after primary total hip arthroplasty: a nationwide population-
based study, Bone 46(4) (2010) 946-51.

[80] D. Prieto-Alhambra, M.K. Javaid, A. Judge, D. Murray, A. Carr, C. Cooper, N.K. Arden, Association
between bisphosphonate use and implant survival after primary total arthroplasty of the knee or
hip: population based retrospective cohort study, BMJ 343 (2011) d7222.

[81] H.E. Rubash, L.D. Dorr, J. Jacobs, W.J. Maloney, K.G. Saag, W. Malbecq, A. Leung, Does
alendronate inhibit the progression of periprosthetic osteolysis?, Trans ORS 29 (2004) 1492.

[82] G. Holt, J. Reilly, R.M. Meek, Effect of alendronate on pseudomembrane cytokine expression in
patients with aseptic osteolysis, J Arthroplasty 25(6) (2010) 958-63.

[83] T.W. Jensen, M.S. Hansen, K. Horslev-Petersen, L. Hyldstrup, B. Abrahamsen, B. Langdahl, B.
Zerahn, J. Podenphant, K. Stengaard-Petersen, P. Junker, M. Ostergaard, T. Lottenburger, T.
Ellingsen, L.S. Andersen, I. Hansen, H. Skjodt, J.K. Pedersen, U.B. Lauridsen, A.J. Svendsen, U. Tarp, H.
Lindegaard, A.G. Jurik, A. Vestergaard, M.L. Hetland, g. Cimestra study, Periarticular and generalised
bone loss in patients with early rheumatoid arthritis: influence of alendronate and intra-articular
glucocorticoid treatment. Post hoc analyses from the CIMESTRA trial, Ann Rheum Dis 73(6) (2014)
1123-9.

[84] H. Valleala, L. Laasonen, M.K. Koivula, J. Mandelin, C. Friman, J. Risteli, Y.T. Konttinen, Two year
randomized controlled trial of etidronate in rheumatoid arthritis: changes in serum aminoterminal
telopeptides correlate with radiographic progression of disease, ] Rheumatol 30(3) (2003) 468-73.
[85] H. Valleala, L. Laasonen, M.K. Koivula, J. Risteli, Y.T. Konttinen, Effect of oral clodronate on
structural damage and bone turnover in rheumatoid arthritis, Clin Exp Rheumatol 30(1) (2012) 114-
7.

[86] Q. Zhang, I.R. Badell, E.M. Schwarz, K.E. Boulukos, Z. Yao, B.F. Boyce, L. Xing, Tumor necrosis
factor prevents alendronate-induced osteoclast apoptosis in vivo by stimulating Bcl-xL expression
through Ets-2, Arthritis Rheum 52(9) (2005) 2708-2718.

[87] C.P. Peter, W.O. Cook, D.M. Nunamaker, M.T. Provost, J.G. Seedor, G.A. Rodan, Effect of
alendronate on fracture healing and bone remodeling in dogs, J Orthop Res 14(1) (1996) 74-9.

[88] J. Li, S. Mori, Y. Kaji, T. Mashiba, J. Kawanishi, H. Norimatsu, Effect of bisphosphonate
(incadronate) on fracture healing of long bones in rats, ] Bone Miner Res 14(6) (1999) 969-79.

[89] F. Bauss, R.K. Schenk, S. Hort, B. Muller-Beckmann, G. Sponer, New model for simulation of
fracture repair in full-grown beagle dogs: model characterization and results from a long-term study
with ibandronate, J Pharmacol Toxicol Methods 50(1) (2004) 25-34.

15



[90] N. Amanat, R. Brown, L.E. Bilston, D.G. Little, A single systemic dose of pamidronate improves
bone mineral content and accelerates restoration of strength in a rat model of fracture repair, J
Orthop Res 23(5) (2005) 1029-34.

[91] M.A. Matos, F.P. Araujo, F.B. Paixao, The effect of zoledronate on bone remodeling during the
healing process, Acta Cir Bras 22(2) (2007) 115-9.

[92] M.A. Matos, U. Tannuri, R. Guarniero, The effect of zoledronate during bone healing, J Orthop
Traumatol 11(1) (2010) 7-12.

[93] H. Molvik, W. Khan, Bisphosphonates and their influence on fracture healing: a systematic
review, Osteoporos Int 26(4) (2015) 1251-60.

[94] D. Xue, F. Li, G. Chen, S. Yan, Z. Pan, Do bisphosphonates affect bone healing? A meta-analysis
of randomized controlled trials, J Orthop Surg Res 9 (2014) 45.

[95] Y.T. Li, H.F. Cai, Z.L. Zhang, Timing of the initiation of bisphosphonates after surgery for fracture
healing: a systematic review and meta-analysis of randomized controlled trials, Osteoporos Int 26(2)
(2015) 431-41.

[96] D. Cecilia, E. Jodar, C. Fernandez, C. Resines, F. Hawkins, Effect of alendronate in elderly patients
after low trauma hip fracture repair, Osteoporos Int 20(6) (2009) 903-10.

[97] C. Colon-Emeric, L. Nordsletten, S. Olson, N. Major, S. Boonen, P. Haentjens, P. Mesenbrink, J.
Magaziner, J. Adachi, K.W. Lyles, L. Hyldstrup, C. Bucci-Rechtweg, C. Recknor, H.R.F. Trial, Association
between timing of zoledronic acid infusion and hip fracture healing, Osteoporos Int 22(8) (2011)
2329-36.

[98] A.D. Duckworth, M.M. McQueen, C.E. Tuck, J.H. Tobias, J.M. Wilkinson, L.C. Biant, E.C. Pulford,
S. Aldridge, C. Edwards, C.P. Roberts, M. Ramachandran, A.R. McAndrew, K.C. Cheng, P. Johnston,
N.H. Shah, P. Mathew, J. Harvie, B.C. Hanusch, R. Harkess, A. Rodriguez, G.D. Murray, S.H. Ralston,
Effect of Alendronic Acid on Fracture Healing: A Multicenter Randomized Placebo-Controlled Trial, J
Bone Miner Res 34(6) (2019) 1025-1032.

[99] A.K. Harding, S. Toksvig-Larsen, M. Tagil, W.D. A, A single dose zoledronic acid enhances pin
fixation in high tibial osteotomy using the hemicallotasis technique. A double-blind placebo
controlled randomized study in 46 patients, Bone 46(3) (2010) 649-54.

[100] S. Toksvig-Larsen, P. Aspenberg, Bisphosphonate-coated external fixation pins appear similar
to hydroxyapatite-coated pins in the tibial metaphysis and to uncoated pins in the shaft, Acta Orthop
84(3) (2013) 314-8.

[101] P.B. Petersen, K.L. Mikkelsen, J.B. Lauritzen, M.R. Krogsgaard, Risk Factors for Post-treatment
Complex Regional Pain Syndrome (CRPS): An Analysis of 647 Cases of CRPS from the Danish Patient
Compensation Association, Pain Pract 18(3) (2018) 341-349.

[102] P. Sandroni, L.M. Benrud-Larson, R.L. McClelland, P.A. Low, Complex regional pain syndrome
type I: incidence and prevalence in Olmsted county, a population-based study, Pain 103(1-2) (2003)
199-207.

[103] W. Janig, R. Baron, Complex regional pain syndrome: mystery explained?, Lancet Neurol 2(11)
(2003) 687-97.

[104] R.J. Schwartzman, G.M. Alexander, J. Grothusen, Pathophysiology of complex regional pain
syndrome, Expert Rev Neurother 6(5) (2006) 669-81.

[105] H.M. Frost, The regional acceleratory phenomenon: a review, Henry Ford Hospital Medical
Journal 31(1) (1983) 3-9.

[106] M. Varenna, C. Crotti, Bisphosphonates in the treatment of complex regional pain syndrome: is
bone the main player at early stage of the disease?, Rheumatol Int 38(11) (2018) 1959-1962.

[107] M. de Mos, M.C. Sturkenboom, F.J. Huygen, Current understandings on complex regional pain
syndrome, Pain Pract 9(2) (2009) 86-99.

[108] D.R. Bickerstaff, D. Charlesworth, J.A. Kanis, Changes in cortical and trabecular bone in
algodystrophy, Br J Rheumatol 32(1) (1993) 46-51.

16



[109] H. Narimatsu, T. Nakahara, S. Kodama, H. Hisazumi, S. Tominaga, K. Ohkuma, M. Jinzaki, Bone
SPECT/CT Localizes Increased Bone Metabolism and Subsequent Bone Resorption in Reflex
Sympathetic Dystrophy, Clin Nucl Med 42(10) (2017) 784-786.

[110] L. Wang, T.Z. Guo, S. Hou, T. Wei, W.W. Li, X. Shi, J.D. Clark, W.S. Kingery, Bisphosphonates
Inhibit Pain, Bone Loss, and Inflammation in a Rat Tibia Fracture Model of Complex Regional Pain
Syndrome, Anesth Analg 123(4) (2016) 1033-45.

[111] F. Brunner, A. Schmid, R. Kissling, U. Held, L.M. Bachmann, Biphosphonates for the therapy of
complex regional pain syndrome I--systematic review, Eur J Pain 13(1) (2009) 17-21.

[112] M. Chevreau, X. Romand, P. Gaudin, R. Juvin, A. Baillet, Bisphosphonates for treatment of
Complex Regional Pain Syndrome type 1: A systematic literature review and meta-analysis of
randomized controlled trials versus placebo, Joint Bone Spine 84(4) (2017) 393-399.

17



Figures
Figure 1. Plain anteroposterior Radiograph of a skeletally mature pelvis showing late-stage
osteonecrosis of the left femoral head (arrow).

Figure 2. Representative histological sections of the femoral head from a study of zoledronate
treatment of surgically-induced osteonecrosis [16]. A) Saline non-operated, B) saline operated, C)
Zoledronate post, and D) Zoledronate pre-post. Th.N. and BV/TV are reduced in the B) saline-
operated femoral heads compared with the C) Zoledronate post and D) Zoledronate pre-post
groups. 5um undecalcified sections stained with 1% von Kossa stain, original magnification x25.

Figure 3. Longitudinal mean pixel bone mineral density change over 2 years around 5 different
femoral prosthesis designs measured by Dual-energy X-ray Absorptiometry-Region Free Analysis.
The mean distribution of pixel BMD change after 24 months is shown for (a) composite-beam
(Charnley), (b) double-taper (Exeter), (c) triple-taper (C-stem), (d) Bi-metric total hip replacement,
and (e) ASR hip resurfacing prosthesis designs, respectively.

Figure 4. Action of bisphosphonates on the remodelling transient and measured BMD change after
hip replacement. The prosthesis induces a transient increase in the activation frequency of bone
remodelling units. The resulting transient expansion of the remodelling space is measured by DXA as
a biphasic BMD change response following completion of the remodelling transient.

Figure 5. Overview of the biological response to wear debris. Recruitment and activation of
osteoclasts may occur directly through the production of RANKL by fibroblasts, or indirectly through
the production of pro-inflammatory cytokines that stimulate the production of RANKL by the
osteoblast. TNF may stimulate osteoclast differentiation and activation though both routes.

Figure 6. Clinical outcomes in a clinical trial of alendronate versus placebo on distal radial fracture
healing [98]. A) Proportion of subjects with a healed fracture in the alendronate versus placebo
group (P>0.05 all time points), B) Effect of treatment on the DASH score (mean + 95% confidence
interval, P>0.05 at all time points).
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Highlights

Bisphosphonates have potential application to several conditions that currently challenge
orthopaedic management

In osteonecrosis, bisphosphonates may preserve bone architecture during revascularisation,
and may reduce the incidence of secondary osteoarthritis. Definitive studies are ongoing.
In joint replacement, early administration of bisphosphonates reduces peri-prosthetic bone
loss and can enhance early osseointegration, but a causal role in reducing late osteolysis is
not established

Bisphosphonate initiation after acute fracture does not adversely affect clinical fracture
union, pain or functional outcomes

In complex regional pain syndrome type-I, bisphosphonate use can improve pain scores,
although further studies are required to define their role and timing in the disease
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