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ABSTRACT  

Internal flow can be induced by the external flow around a droplet. In the present work, the 

three-dimensional flow pattern and dynamic characteristics of the internal vortex of adhered 

droplet were demonstrated firstly, and then the substance transfer behavior within the droplet 

dominated by the internal circulation was revealed by adopting two systems, namely 

fluorescence reaction and suspended particle capture, and combining with an interface reaction 

model developed. It was found that the internal circulation could not only transfer the reactants 

from the inside onto the surface of the droplet quickly, but also carry the particles captured on 
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the droplet surface into the vortex core rapidly in a vortex manner, which could improve the 

reaction rate and control the capture process. This work uniquely demonstrates fundamental 

insights into the internal flow pattern of adhered droplet and promotes an understanding of the 

multiphase droplet-based mass transfer mechanism and particle capture process. 

Keywords: droplet internal circulation; mass transfer; interface reaction; particle capture; 

vortex 

 

1. Introduction 

To disentangle the complexity of mass transfer and reaction processes in multiphase 

polydispersed systems, it is particularly useful to reduce the complexity of swarm systems to 

single droplets because droplets are the smallest mass transfer unit [1]. For this reason, droplet-

related research has always been an important research direction in the fields of chemical 

engineering, mechanical design, etc., especially in the processes of mixing, extraction, 

adsorption, evaporation, reaction, etc. In fact, a variety of phenomena in daily life are related 

to the internal flows of droplets, such as the internal vortex of free-falling raindrops generated 

by the drag of air hydrodynamics [1,2], and the well-known Marangoni flow in evaporating 

droplets caused by the surface tension gradient [3,4]. Fluid dynamics and mass transfer are 

inseparable. To understand and control the mass transfer mechanism of a droplet, it is necessary 

to first study the flow pattern inside the droplet. Based on microfluidic technology, extensive 

investigations, both experimental and numerical, have been conducted on the internal flow of 

a droplet during its formation and the subsequent moving stages in microchannels [5-8]. Micro-
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PIV (Particle Image Velocimetry) technology is the main experimental method used to explore 

the droplet’s internal flow field [6-13]; and numerical methods include the CFD method [14-

19], Lattice Boltzmann method [20,21], immersed-boundary [22], etc.; and the research 

systems include absorption [23], extraction [24-26], mixing [27,28], reaction [29,30], 

condensation [31], evaporation [32,33], functional materials [34,35] and double emulsion 

droplet [36], etc. These reported studies reveal the existence of vortices within the droplet are 

crucial for enhancing mixing and improving the mass transfer across the interface. There are 

also a lot of adhered droplets on the surface of the medium in multiphase flow and reaction 

systems, and the interior flow of these adhered droplets may be induced by the external flow. 

However, for an adhered droplet no comprehensive reports have been made so far on what the 

internal flow pattern is, how the external flow and droplet properties affect its internal flow, or 

how well the internal flow promotes the mass transfer performance. 

The motivation for the present work was to obtain a comprehensive understanding of the 

internal vortices of an adhered droplet, in order to further improve the understanding of the 

internal vortex’s effect on the mass transfer and particle capture processes, and to provide 

intuitive and visible test results and a quantitative characterization. Experimental tests were 

performed to visually demonstrate the internal flow behavior. Additionally, according to our 

previous research on the incipient motion condition of an adhered droplet [37], we designed a 

user-defined function (UDF_1) to avoid the deficiency of the existing CFD wall adhesion 

model, so that the simulated interior flow pattern was consistent with the experimental 

observation, and the effects of surface wettability, interface property and fluid property on the 

internal flow were studied by the numerical method. Furthermore, a fluorescence reaction 
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experiment was designed to demonstrate the intensification effect of the internal circulation on 

the droplet reaction, and we also developed an interface reaction model via the UDF_2 to reveal 

the influence of the internal circulation on the reaction process. In addition, we also designed 

a particle capture experiment, which showed the migration pattern and accumulation process 

of the captured particles controlled by the internal vortices. 

2. Experimental and numerical methods 

2.1. Experimental procedure for internal circulation flow 

Water was used as the continuous phase shear fluid, a silicone oil droplet was used as the 

dispersed phase droplet adhered to the solid substrate surface, and the internal circulation 

behavior of the adhered oil droplet was studied. A micro-droplet of water was injected into the 

oil droplet, and the internal flow field of the oil droplet could be reflected by the movement of 

the micro-droplet, so the micro-droplet acted as a tracer particle. For more details on the 

experimental setup (Fig. S1(a)), materials, test video (Video S1), and image processing (Fig. 

S2), see the supplementary material.  

2.2. Numerical method for internal circulation flow 

The volume of fluid method (VOF) based on Computational Fluid Dynamics (CFD) was 

adopted to simulate the droplet’s internal flow. Since the existing VOF wall adhesion boundary 

could not impose an adhesion force to the droplet, we designed a UDF_1 to fix the droplet onto 

the surface, so that the simulation result was consistent with the experimental observation. For 

more details about the standard VOF method, the content and efficacy of the UDF_1 (Fig. S3), 
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computational domain (Fig. S4), variables (Table S1), and simulated video (Video S2), see the 

supplementary material. 

2.3. Experimental procedure for the fluorescence reaction  

The aqueous phase consisted of H2O2 and deionized water, while the oil phase consisted 

of CPPO, DBP and a fluorescent agent. The induction periods required for reaching a specific 

amount of reaction (the initial luminous time) were measured under various aqueous phase 

flow rates, and they could be used to characterize the average reaction rates under different 

internal circulation strengths. For more details on the experimental setup (Fig. S1(c)), materials, 

fluorescence mechanism, definition of initial luminous time, and video of the fluorescence 

process (Video S3), see the supplementary material. 

2.4. Numerical method for interface reaction 

The coupling method of VOF and Species Transport based on CFD was adopted to 

simulate the droplet interface reaction. We simplified the fluorescence reaction equation and 

assumed that the reaction only occurred at the interface, and the reaction rate was only related 

to the concentration of the reactants at the interfacial grid. Since the existing CFD model could 

not handle the interface reaction, we developed a UDF_2 to implement the interface reaction. 

For more details about the content of the UDF_2, simplification and assumption, and parameter 

setting (Table S2), see the supplementary material. 

2.5. Experimental procedure for particle capture 

A basic copper carbonate suspension formed by the reaction of copper sulfate and the 
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sodium hydrogen carbonate was prepared as the continuous phase suspension, and silicone oil 

droplets were used as the adhered droplets to capture the suspended particles. The phenomena 

of particle capture and migration under various droplet viscosities and flow rates were observed. 

For more details on the experimental setup, materials, and video of the particle capture process 

(Video S4), see the supplementary material. 

3. Results and discussion 

3.1 Internal circulation phenomenon within an adhered droplet 

Driven by external water flow, a steady, periodic, repeated rotational motion occurs within 

the oil droplet (Video S1). For a single micro-droplet rotation trajectory, the velocity near the 

windward side is relatively fast, while the velocity near the leeward side and the bottom is 

relatively slow, and the velocity declines along the rotating streamline (Fig. 1(c-h)). For 

multiple micro-droplet rotation trajectories at different streamline positions, they rotate around 

the same center; the closer to the center, the slower the movement (Fig. 1(b)), indicating that 

there is a low-velocity center of rotation, which can be considered as the vortex core. Therefore, 

on the whole, there are three low-velocity regions, namely, the vortex core region, the lower 

region of the leeward side, and the bottom region, while the velocity on the windward side is 

the fastest, then it declines along both the circumferential and the radial directions (Fig. 1(a-

b)). 

Causes of the vortex and its velocity distribution: there is a large velocity slip between the 

adhered droplet and the external flow, which induces the flow inside the droplet. Since the 

external flow field is stable and laminar, it has a stable and uniform shear driving action, thus 
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forming a stable internal circulation flow within the droplet. The rotation velocity inside the 

droplet is much less than the velocity of the external flow. For example (Fig. 1(g), the average 

velocity of the external flow was 0.054 m/s, which was about 143 times of the average velocity 

of the rotating micro-droplet (0.000377 m/s) within the oil droplet. The velocity gradient 

between the upper interface region of the windward and the external water flow is the largest, 

and the driving force comes from the shear force on this region between the two fluid phases. 

We simply consider that the shear force’s direction is tangent to the interface, which is the 

power source driving the internal flow within the droplet. Therefore, under the action of the 

shear force, tangential (circumferential) velocity is generated on the upper interface region of 

the windward side. Due to flow resistance, the velocity declines along the circumferential 

streamline direction towards the rear of the leeward side. In addition, from the interface to 

inside, in the radial direction perpendicular to the streamline, the inner layer of the adjacent 

fluid is subject to the laminar shear force of the outer layer, which also generates 

circumferential rotation velocity. The attenuation mode of velocity along the radial direction is 

laminar shear attenuation, which results in the formation of an inner low-velocity rotating 

vortex core.  

One way of accelerating the internal circulation is to raise the external driving force, and 

the other is to reduce the internal friction resistance within the droplet. When the external flow 

rate rises, the velocity gradient at the two-phase interface increases, resulting in an increase in 

the driving force. As the droplet viscosity decreases, the internal frictional resistance decreases, 

so the circulating flow inside the droplet is enhanced (Fig. 1(c-h)). For droplet viscosity_400 

cP, as the increase of the external flow rate from 0.027 m/s to 0.108 m/s, the average velocity 
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of the micro-droplets was 0.000092 m/s (Fig. 1(c)), 0.00017 m/s (Fig. 1(d)) and 0.000295 m/s 

(Fig. 1(e)), respectively. However, when the droplet viscosity decreased to 90 cP, the average 

velocity of the corresponding micro-droplets increased to 0.000205 m/s (Fig. 1(f)), 0.000377 

m/s (Fig. 1(g)) and 0.000788 m/s (Fig. 1(h)), respectively. 

 

Fig. 1. Internal circulation and velocity distribution. (a) The whole droplet is rotated, and the 

center of rotation is a low-velocity vortex core region. The velocity on the windward side is the 

fastest, and then it attenuates in both the circumferential and radial directions. (b) The velocity 

distribution at different streamline positions demonstrates the mode of velocity attenuation. 
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The trajectory and velocity distribution of the micro-droplet at three different streamline 

positions within one rotation period, one rotation period from inner to outer was 7.2 s, 8.6 s, 

and 15.8 s, under the test conditions: viscosity_90 cP, flow rate_0.054 m/s. (c-e) High viscosity 

and various flow rate. As the external flow rate increases, the micro-droplet’s rotation 

accelerates. (f-h) Low viscosity and various flow rate. Compared with (c-e), the viscosity is 

reduced and the micro-droplet rotation velocity is increased. 

3.2 Flow pattern and dynamic characteristics 

The experimental test can obtain only the motion trajectory of the micro-droplet on the 

projection plane, while the simulation method can be used to obtain the three-dimensional flow 

field within the oil droplet, such as the shape, position and velocity distribution of the entire 

vortex (Fig. 2). The average velocity of the external flow is much larger than the average 

velocity within the droplet (Fig. 2(b)), and the external flow has the maximum velocity gradient 

in the area close to the interface of the upper windward side (Fig. 2(a-b)), and the shear force 

from this area drives the rotation of the vortex. For the vortex, the velocity presents a circulation 

distribution of fast-slow-fast along the direction of rotation, and the velocity decreases toward 

the vortex core (Fig. 2(d)). The vortex core is almost stationary, acting like an arch bridge with 

the entire vortex rotates around it (Fig. 2(f)). The lower region of the leeward side is located 

outside the overall vortex (Fig. 2(e)), and it is also almost stationary. The flow pattern obtained 

by this method is consistent with the internal circulation phenomenon observed by experiment. 

Moreover, the relative velocity distribution on the streamline is also consistent with that on the 

rotation trajectory of the micro-droplet tested (In Fig. S5, the simulated and tested results of 
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velocity distribution were compared in detail). Therefore, this modified simulation method can 

be used to study the dynamics of circulation motion within the droplet. 

By slicing the droplet, the velocity distribution on different planes can be observed (Fig. 

S6(a-c)). The area-weighted average of the velocity on the planes will gradually decrease as 

the planes move away from the symmetry plane (Fig. S7(a)). From the perspective of the 

swirling strength (its value represents the strength of the swirling motion around the local center, 

which is related to the change in the velocity gradient), only the region between the upper area 

of the windward side and the vortex core has a relatively large vortex strength (Fig. S6(d-e)), 

and it is this region that drives the motion of the entire vortex. The swirling strengths in the 

remaining regions are quite small, indicating that the velocity gradient changes in the remaining 

regions are quite small. The effects of various parameters on the strength of the internal 

circulation are quantitatively compared (Fig. S7(b-d)), characterized by the volume-weighted 

average values of the velocity and swirling strength. The results show that the droplet viscosity 

has the most obvious effect on the strength of the internal circulation, while the interfacial 

tension and droplet volume have little effect. The increase in both the contact angle and external 

flow rate can make the droplet obtain a more external shear force, which then strengthens the 

internal flow. For example, the volume-weighted average velocity under the control group 

condition (viscosity_100 cP, flow rate_0.054 m/s) was 0.000595 m/s; for the effect of viscosity, 

when the viscosity decreased to 10 cP, it rose to 0.00449 m/s (7.55 times), while when the 

viscosity increased to 500 cP, it decreased to 0.000166 m/s (0.28 times); for the effect of the 

external flow rate, when the external flow rate decreased to 0.027 m/s, it decreased to 0.00023 

m/s (0.39 times), while when the external flow rate increased to 0.108 m/s, it rose to 0.00147 
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m/s (2.47 times). 

 

Fig. 2. Comprehensive flow pattern. (a) Overall external flow field in the channel. In the 

channel, the external flow field is laminar, and the adhered droplet acts as an obstacle. When 

the external fluid passes around the droplet, it has the maximum velocity gradient (streamlines 

are the densest) in the area close to the upper part of the windward side, while it is almost 

stationary in the area behind the leeward side of the droplet. (b) The velocity distribution on a 

vertical line (the yellow line from (a)) passing through the droplet. The length and direction of 

the line represent the relative magnitude and direction of the velocity. The external flow 

velocity has a parabolic distribution, and it drops sharply when approaching the droplet 

interface. Compared with the external flow velocity, the velocity within the droplet is too small, 

so that the velocity line inside the droplet is barely visible. (c) Local relative velocity 

distribution inside the droplet. Local magnification of the droplet (from (b)) shows the local 



12 

 

relative velocity distribution inside the droplet. Along the vertical yellow line, the velocity 

distribution is as follows: the maximum at the interface decays downward to zero at the center 

of the vortex, then in a reversed direction it increases first and then decreases, and finally 

declines to zero at the bottom surface. (d) Three-dimensional local velocity vector. The three-

dimensional velocity vector in half of the droplet shows the overall position of the entire vortex 

and the relative velocity distribution. (e) Low-velocity regions. The blue region is the low-

velocity region where the velocity value is no more than 0.0002 m/s, including the vortex core 

region, bottom adhered region, and lower region of the leeward side, which are almost 

stationary. (f) Velocity profile combined (d) and (e). (Data from the simulation under control 

group conditions, Table S1)  

3.3 Enhance droplet reaction 

How does the internal circulation affect the droplet reaction? We designed the 

fluorescence reaction system to reveal this from both experimental test and the theoretical 

mechanism. The above two parts of the study show that when the physical properties of the oil 

droplet remain unchanged, the strength of the internal circulation can be raised by increasing 

the external flow rate. Therefore, we test the induction periods (time period required for 

reaching a specific amount of reaction, Fig. 3(a)) under various aqueous phase flow rates, and 

consider that they reflect the average reaction rate under different internal circulation strengths. 

When the aqueous phase flow rate was 0 m/s (stationary state), it was believed that there was 

no internal circulation in this case and the reaction was only promoted by diffusion (ignoring 

the convection caused by the reaction itself), so the induction period required 65 min. During 



13 

 

the aqueous phase flow, the internal circulation occurs and the reaction rate is accelerated under 

the dual action of the internal circulation and diffusion. The larger the strength of the internal 

circulation, the faster the reaction rate is, so it requires shorter time to reach the initial 

luminance. Tests (Fig. 3(c)) showed that it took 15.5 min when the flow rate was 0.035 m/s 

(corresponding to the volume-weight average velocity of internal circulation was about 

0.00256 m/s), and the average reaction rate is 4.2 times that of the stationary state, while it only 

took 6 min when the flow rate reached 0.108 m/s (corresponding to the volume-weight average 

velocity of internal circulation was about 0.011 m/s), and the average reaction rate was 10.8 

times that of the stationary state. Therefore, the fluorescence experiment effectively confirmed 

the enhanced effect of the internal circulation on the droplet reaction. 

Furthermore, we developed the interface reaction model to reveal the action mechanism 

of internal circulation on enhancing droplet reaction process. It is believed that the reaction 

only occurs at the interface, so both diffusion caused by the concentration gradient and 

convection caused by the internal circulation bring the reactants inside the droplet to the 

interface to sustain the reaction. The overall reaction rate can be characterized by the reduction 

rate of the reactant CPPO. The area average mass fraction of CPPO decreases with the reaction 

time. Compared with the stationary state (aqueous phase flow rate 0 m/s), the mass fraction of 

CPPO decreased faster in the case of 0. 1 m/s, and the difference between the two reduction 

rate curves was the effect of the internal circulation (Fig. 3(d)). CPPO inside the droplet was 

rapidly carried to the interface by the internal circulation to supplement the CPPO consumed 

by the interface reaction, and the internal circulation reduced the concentration gradient from 

the center to the interface and brought the CPPO concentration within the entire droplet evenly 
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(Fig. 3(f)). It could be seen from the CPPO mass fraction contour (Fig. 3(d-f)): in the case of 0 

m/s, the CPPO mass transfer was controlled by the radial diffusion driven by the concentration 

gradient, where the highest concentration was located in the droplet center (bottom center) and 

spread outward in the radial direction, and the mass transfer rate was relatively low. However, 

in the case of 0.1 m/s, the CPPO mass transfer was controlled by the coupling of diffusion and 

the internal circulation, and appeared to be dominated by the internal circulation, where the 

highest concentration migrated from the droplet center to the vortex center, and the mass 

transfer rate was relatively high.  

 

Fig. 3. Influence of the internal circulation on mass transfer. (a) Schematic diagram of the 

fluorescence process. In the beginning, the entire scene is dark, and the droplet contour cannot 

be observed. As the reaction progresses, the droplet contour gradually emerges and becomes 
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brighter. We define the time at which the vague contour of the droplet just emerges (vague 

contour emerges, only when the total amount of the reaction accumulates to a certain amount 

can the vague contour of the droplet emerge) as the initial luminous time, and the interval 

between the beginning and the initial luminous time is the induction period. Note that we do 

not consider the subsequent changes after the induction period here. (b) Image capture of the 

fluorescence process (Video S3). Images captured at different times during the experiment 

corresponding to the schematic diagram in (a), where the vague contour of the droplet emerged 

at 12 min. (c) Experimental test of the induction period under various aqueous phase flow rates. 

(d) The change of CPPO concentration (mass fraction) and CPPO reduction rate obtained 

through the interface reaction model. The area average mass fraction of CPPO decreased with 

time in the cases of the aqueous phase flow rate of 0 m/s and 0.1 m/s (velocity-inlet boundary 

condition). The reduction rate curve is the derivative of the mass fraction fitting curve (single 

exponential attenuation fitting curve, R2=0.999). The difference between the two reduction rate 

curves is the effect caused by the internal circulation. (e) Diffusion. CPPO mass fraction 

contour at 30 s in the case of 0 m/s. (f) Diffusion coupled convection. CPPO mass fraction 

contour together with velocity vector at 30 s in the case of 0.1 m/s. 

3.4 Vortex migration on particle capture.  

To understand the role of the internal circulation in particle capture, we prepared a basic 

copper carbonate suspension to observe the process of particle capture by the droplet. A very 

interesting phenomenon of the vortex particle migration and accumulation process was 

demonstrated (Video S4). There are two symmetric vortices inside the droplet (Fig. 4(a)) and 
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the center of each vortex is a low-velocity rotating vortex core, so the macroscopic motion 

phenomenon of captured particles observed is consistent with the flow field obtained by the 

above study (Fig. 2(f)). For each vortex, the particles captured from the droplet surface or the 

vortex edge will be continuously carried into the vortex core by internal circulation, and all 

captured particles will gradually converge inward to the vortex core region and rotate around 

the vortex center (Fig. 4(b-d)). The total amount of captured particles increases with the flow 

time, and the area occupied by the particles gradually expands radially outward from the vortex 

center to the entire droplet. Eventually, when the entire surface of the droplet is wrapped by the 

particles (Fig. 4(e-g)), it seems that the droplet is saturated with particles, which prevents 

contact between the droplet surface and the external fluid. From observation, the internal 

rotation of the droplet seems to have stopped. The results show that the internal circulation 

controls the migration and accumulation of particles in the process of particle capture. 

 

Fig. 4. Influence of internal circulation on particle capture process. (a) Symmetric vortex. There 

are two symmetric vortices inside the droplet, so it can be assumed that the droplet could be 

divided into two symmetric parts. (b) Particle migration. The particles captured from the vortex 

edge will be continuously carried into the vortex core by internal circulation. (c-e) 
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Accumulation. The accumulation of particles in the droplet gradually increases with the flow 

time until reaching saturation. (f) Saturation. After reaching the saturated state, from a visual 

observation the droplet is completely wrapped by the captured particles, and the interior 

vortices seem to have stopped. (g) Images of particle accumulation process with flow time. 

(under the test condition: viscosity_90 cP, flow rate_0.081 m/s, volume_6 µL) 

4. Conclusions 

In summary, the interesting phenomenon of the internal circulation and the basic pattern 

of the three-dimensional vortex within the adhered droplet have been demonstrated intuitively, 

and the important role of the internal circulation in the mass transfer and particle capture 

process has been revealed. The internal circulation can not only transfer the reactants from the 

inside onto the surface of the droplet quickly, but also carry the particles captured on the droplet 

surface into the vortex core rapidly in a vortex manner, which can improve the reaction rate 

and control the capture process. We envision that the results and insights obtained from the 

present work will be useful in understanding other processes involving droplets, especially 

when systems with significant liquid-solid adhesion are involved. 
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Supplementary Figure Captions 

Fig. S1. Experimental setup and image capture. (a) Flow diagram for the internal circulation 

test. Pump provides the fluid loop power, and the valves and flowmeter control and display 

flow rate, respectively; transparent channel (inner size 400 mm*7.5 mm*7.5 mm) with pasted 

substrate (400 mm*5 mm*1 mm) is used for the shooting channel; the syringe injects the oil 

droplets, which adhere to the substrate surface, and then the micro-droplet of water for the 

tracer function is injected into the oil droplet; black and white cameras and a light source are 

used for shooting. (b) Image capture of the internal circulation. Images are captured at a 

frequency of 5 fps, and the continuous images show the periodic circular motion of the micro-

droplet in the oil droplet. (c) Flow diagram for the fluorescence reaction and particle capture 

test. Manually loop the aqueous phase liquid from the low tank to the high tank, and the 

gravitational potential energy supports the fluid flow. A color camera and dark field are used 

to capture the fluorescent droplet. (d) Image capture of fluorescence process. At the beginning, 

the entire scene is dark, and the droplet contour cannot be observed. As the reaction progresses, 

the droplet contour gradually emerges and becomes brighter. Only when the total amount of 

the reaction accumulates to a certain amount can the vague contour of the droplet emerge, and 

the corresponding time is the initial luminous time. (e) Image capture of particle capture. It is 

observed that there are two symmetric vortices inside the droplet, and the particles captured 

from the surface gradually migrate towards the center of the vortex. With an increase in the 

flow time, the accumulation of particles in the droplet gradually increases until becoming 

saturated. 

Fig. S2. Experimental procedure for internal circulation flow – Image processing. (a) Motion 
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trajectory and velocity distribution of the micro-droplet within one rotating period (the data 

comes from one period of subgraph(b)). The interval between adjacent locations is 0.2 s, and 6 

s is required for one rotation period. On the whole, the velocity of the micro-droplet on the 

windward side is faster, while those on the leeward side and at the bottom are slower. The oil 

droplet outline comes from the coordinates of the outline position in the image. (b) The central 

position coordinates of the micro-droplet and its velocity at each moment during the test time 

(20 seconds here). The central position of the micro-droplet is read and interpolated with the 

positions at the adjacent moments to obtain the velocity at the position. Subgraph (a) can be 

made by taking one period from a few of continuous cycles in subgraph(b). (c) A sequence of 

images at intervals of 0.2 s within one rotating period, corresponding to subgraph(a) and 1.8 s-

7.8 s of subgraph(b). We can see that the micro-droplet is rotating, and its position of 7.8 s 

backs to that of 1.8 s, continuously rotating. (under test conditions: viscosity_90 cP, static 

contact angle_111o, volume_6 µL, flow rate_0.108 m/s) 

Fig. S3. Qualitative differences between adding and not adding the UDF_1. (a) Not adding the 

UDF_1, the velocity vector and streamlines move forward. Because the existing wall adhesion 

boundary cannot impose adhesion force to the droplet, the droplet slides forward without 

internal circulation, even under a small external flow rate. (b) Adding the UDF_1, the velocity 

vector and streamlines rotate. This phenomenon is consistent with experimental observation: 

when the external flow rate is below the critical flow rate required for the initial motion, the 

adhered droplet does not slide and internal circulation occurs. 

Fig. S4. computational domain. (a) Geometry for numerical simulation. Except for the length, 
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the shape and size are the same as the experimental channel. The inner section of the channel 

is 7.5 mm*7.5 mm, and a substrate of 5*1 mm is attached onto the channel. The droplets adhere 

to the surface of the substrate. To reduce the computational cost, only the channel of 6 mm in 

length is considered. (b) Computational domain and grid. Due to the symmetry of the channel 

and droplet, half of the channel is taken as the computational domain. (c) Boundary conditions.  

Fig. S5. Comparison between simulation and experiment. (a) or (Fig. 1(b)) Test under a low 

viscosity system. The trajectory and velocity distribution of the micro-droplet at three different 

streamline positions, under the test condition: viscosity_90 cP, flow rate_0.054 m/s, static 

contact angle_111o, droplet volume_6 µL. (b) The simulation result corresponding to the 

conditions of test (a). The velocity distribution on the three corresponding streamlines on the 

plane P_3.25 obtained by simulation. (c) or (Fig. 1(d)) Test under a high viscosity system. The 

trajectory and velocity distribution of the micro-droplet, under the test conditions: 

viscosity_400 cP, flow rate_0.054 m/s, static contact angle_133o, droplet volume_6 µL. (d) 

Simulation results corresponding to the conditions of test (c). The velocity distribution on the 

corresponding streamline on the plane P_3.25 obtained by simulation. 

Fig. S6. Velocity and swirling strength distribution on planes. (a) Positions of the five planes. 

The leftmost plane is the symmetry plane, and these five parallel planes offset each other by 

0.25 mm. (b) The local velocity distribution and the velocity vector on the five planes. (c) A 

magnified view of the streamline and local velocity vector on the P_3.25 plane. The vortex 

region is mainly above the black line. (d) The purple region is where the swirling strength is 

equal or more than 1 s-1. The swirling strength is the imaginary part of the complex eigenvalues 
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of the velocity gradient tensor, and its value represents the strength of the swirling motion 

around the local center. The swirling strength is related to the change in the velocity gradient, 

which indicates that the change of the velocity gradient in the pink areas is large, while it is 

small in the blue area. (e) The local swirling strength distribution on the five planes. Only the 

region between the upper area of the windward side and the vortex core has a relatively large 

vortex strength. The maximum swirling strength appears at the upper area of windward side. 

(simulation under the control group conditions) 

Fig. S7. Effects of various parameters on the strength of internal circulation. (a) The area-

weighted average of the velocity on the planes. The area-weighted average of velocity on the 

plane will gradually decrease as the plane moves away from the symmetry. (b) The volume-

weighted average of velocity. (c) The area-weighted average of swirling strength on planes. As 

the plane is far away from the symmetry, the average swirling strength of the plane first 

increases and then decreases. (d) The volume-weighted average of the swirling strength. The 

effects of various parameters on the volume-weighted average of the swirling strength and 

velocity show the same trend. On the whole, the interfacial tension and droplet volume have 

little effect on the weighted average of the swirling strength and velocity of the droplet, while 

the viscosity has the most obvious effect on them. Meanwhile, the increase in the contact angle 

and flow rate will also enhance the internal flow. (simulation under the conditions of Table S1) 

Video S1. Internal circulation test _ two times 

Video S2. Simulation animation of internal circulation 

Video S3. Fluorescence reaction process _ eight times 
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Video S4. Particle capture process _ two times 
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 Analyzed the fluid dynamics of droplet internal circulation 

 Revealed the substance transfer behavior controlled by internal circulation 

 Developed numerical methods for droplet internal circulation and interface reaction 

 

 



28 

 

 

 

 



29 

 

 


