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Modified tetrapyrroles are large macrocyclic compounds, Modified tetrapyrroles play essential roles in a broad range of
consisting of diverse conjugation and metal chelation sys- essential biological processes. Their large macrocyclic struc-
tems and imparting an array of colors to the biological struc-  tures and diverse conjugation and metal chelation systems also
tures that contain them. Tetrapyrroles represent some of the  provide an array of colors, such that they have been dubbed the
most complex small molecules synthesized by cells and are epigments of lifeZ {). These life pigments include the hemes,
involved in many essential processes that are fundamental to  chlorophylls (Chls)? bilins, corrins (vitamin B,,), siroheme,
life on Earth, including photosynthesis, respiration, and andcoenzyme k., They are all made from a single, extensively
catalysis. These molecules are all derived from a common branched biosynthetic pathway and are based on the blueprint
template through a series of enzyme-mediated transforma- of a common biosynthetic primogenitor, uroporphyrinogen Il|
tions that alter the oxidation state of the macrocycle and also  (Fig. 1). These different modified tetrapyrroles vary in the
modify its size, its side-chain composition, and the nature of  nature of their peripheral side chains, the oxidation state of the
the centrally chelated metal ion. The different modified tet-  macrocycle itself, and the centrally chelated metal ion. Perhaps
rapyrroles include chlorophylls, hemes, siroheme, corrins the most distinctive of all is vitamin B, which contains a ring-
(including vitamin B ;,), coenzyme F,3,, hemed,, and bilins. ~ contracted macrocycle and also houses upper and lower ligands
After nearly a century of study, almost all of the more than 90  in order to provide the octahedral geometry to coordinate the

different enzymes that synthesize this family of compounds ~cobaltion.

are now known, and expression of reconstructed operons in The differences in the structures of these molecules are
heterologous hosts has confirmed that most pathways are reflected in diverse biological functions. Some of the modified
complete. Aside from the highly diverse nature of the chem-  tetrapyrroles are involved in very specific processes; for exam-
ical reactions catalyzed, an interesting aspect of comparative Ple, hemed, is required as a prosthetic group only for thed,
biochemistry is to see how different enzymes and even entire  Nitrite reductase @), whereas others, such as heme, are involved
pathways have evolved to perform alternative chemical reac- in a myriad of distinct biological roles, from sensing to catalysis
tions to produce the same end products in the presence and (3)- A brief description of the roles played by these molecules is
absence of oxygen. Although there is still much to learn, our outlined below.

current understanding of tetrapyrrole biogenesis represents ~ Chls and the related bacteriochlorophylls (BChls) are the

a remarkable biochemical milestone that is summarized in Molecules that not only give plants their green pigmentation
this review. but are intricately involved in the process of photosynthesig)(

Chls play two roles in photosynthesis: first, they act as antenna
molecules and harvest solar energy, and second, they transfer
this energy to the reaction centers, where photochemistry
occurs that results in the splitting of water or the production of

0202 ‘g aunc uo 1sanb Ag/B1o ogl-mmmy/:dnyuol) papeojumoq

The authors declare that they have no conflicts of interest with the contents

of this article. _ strong reductants for carbon dioxide fixation and ATP genera-
¢ AuthorOs Chol¥Einal version open access under the terms of the Creative tion. With only a few exceptions in which Zi#  replaces Mg ,
Commons CC-BY license. . . .
Chls are Mg -containing chlorins, and the electronic proper

1 Studies in this authorOs laboratory were supported by Photosynthetic Sys~ N T ’
tems Program, Division of Chemical Sciences, Geosciences, and Biosties of the chlorin ring allow for the efficient formation of a
ences (CSGB), Office of Basic Energy Sciences of the United States Depart-
ment of Energy Grant DE-FG02-94ER20137 and United States Nationat
Science Foundation Grant MCB-1613022. To whom correspondence ma$ The abbreviations used are: Chl, chlorophyll; BChl, bacteriochlorophyll; ALA,
be addressed. E-maittabl4@psu.edu aminolevulinic acid; GSA, glutamate semialdehyde; PBG, porphobilino-

2 Supported by Biotechnology and Biological Sciences Research Council (UK) gen; HMB, hydroxymethylbilane; ProtolX, protoporphyrin IX Chlide,
Grant BB/M000265/1. To whom correspondence may be addressed. chlorophyllide; PChlide, protochlorophyllide; BChlide, bacteriochlorophyl-
E-mail:c.n.hunter@sheffield.ac.uk lide; LPOR, NADPH:protochlorophyllide oxidoreductase; DPOR, dark-oper-

3 Supported by Biotechnology and Biological Sciences Research Council (UK) ative protochlorophyllide reductase; GSB, green sulfur bacteria; CAO&Chl
Grants BB/N00924X/1 and BB/S002197/1. To whom correspondence may oxygenase; FRL, far-red light; COR, Chlalexidoreductase; 3HE, 3-hy-
be addressed. E-maiM.J.Warren@kent.ac.uk droxyethyl; FDBR, ferredoxin-dependent bilin reductase.

6888 J.Biol. Cherf2020) 295(20) 68886925 SASBMB
© 2020 Bryant et al. Published by The American Society for Biochemistry and Molecular Biology, Inc.


https://orcid.org/0000-0003-2782-5988
https://orcid.org/0000-0003-2533-9783
https://orcid.org/0000-0002-6028-6456
mailto:dab14@psu.edu
mailto:c.n.hunter@sheffield.ac.uk
mailto:M.J.Warren@kent.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1074/jbc.REV120.006194&domain=pdf&date_stamp=2020-4-2
http://www.jbc.org/

JBC REVIEWSBIiosynthesis of modified tetrapyrroles
H,C

H3C

HyCr-

0=C
O-Phytol COOH COOH COOH
Chlorophyll ap Coenzyme Fy3q Siroheme
COOH
HaC CH,
CH,
HaC 7
HsC CHs
COOH COOH COOH COOH
Heme Uroporphyrinogen il

HOOC COOH

Cobalamin
(Vitamin By5)

COOH COOH Biliverdin X
Heme d,

Figure 1. Structures of the major modified tetrapyrroles outlined in this review and their structural relationship to the first macrocyclic primogenitor,
uroporphyrinogen Ill.  The major modified tetrapyrroles shown surrounding the central uroporphyrinogen Il include chlorophwl, coenzyme 5, siro
heme, cobalamin, biliverdin IX, hemed,, and hemeb. The asymmetrically arranged pyrrole rings in uroporphyrinogen Il are named ABD, with the D ring
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inverted with respect to the other rings. The numbering scheme for the macrocycle is shown for uroporphyrinogen, where positions 1, 2, 5, 7, 10, 12, 15, and&'

20 are highlighted. In Chis there is a fifth ring, termed ring E, and similarly inf; there are two extra rings that are termed E and F as shown. For cobalamin
(vitamin B,,), the side chains are designatedp}, and these ardabeled TheX abovethe cobalt is a cyanide group in vitamin B,; this position is occupied by
either a methyl or adenosyl group in the major biological forms of cobalamin. Thehaded boxesurrounding the names of these end-product compounds
coordinate with the colorsin other pathway figures and in the summary pathway depicted ifrig. 14

singlet excited state upon visible light absorption. In contrastto  The corrinoids, sometimes also referred to as cobamides,
the metal ions found in other modified tetrapyrroles, M§ is encompass cofactors and coenzymes that harbor cobalt-con-
not redox-active, and the metal does not play a direct role in the taining, ring-contracted corrin macrocycles. In biologically
light-trapping process. However, the metal does appear to helpactive corrinoids, the cobalt atom is generally found covalently
potentiate the chemistry of the chlorin ring to make energy linked to either a methyl or adenosyl group on the upper face of
transfer more efficient. the macrocycle. The corrin ring is also attached to a lower
Heme is technically an Fe-containing porphyrin. It has one nucleotide loop via one of its propionate side chains. The nature
more double bond in the macrocycle than Chls, and the extraof the base in this nucleotide loop varies among bacteria, and
conjugation helps produce the red color associated with theover 20 different bases are known to be incorporated into cor-
molecule. The central Fe ion is crucial to the functions for rinoids. The base is specifically dimethylbenzimidazole in vita-
which heme is used&). Iron exists in several oxidation states, min B, ,, and this specific corrinoid appears to be the only form
and, for this reason, heme has evolved a broad range of rolestilized by eukaryotes. Corrinoids appear to be involved in an
within biological systems, from acting as a one-electron carrierever-increasing number of roles). Methylcorrinoids act as the
in respiratory cytochromes to a sensing role for a range ofcoenzyme in methyl transfer reactions, such as those mediated
diatomic gases, including CO, NO, and © Heme also acts as by methionine synthase 7). Adenosylcorrinoids act as the
the prosthetic group in a range of enzymes, including catalases;oenzyme in a number of different rearrangement reactions
peroxidases, and cytochromes,E,, and is known to be associ- that are mediated by an adenosyl radical, formed from the
ated with certain transporters and transcription factors3). homolytic cleavage of the Co-adenosyl bond. These reactions

SASBMB 3. Biol. Cherf2020) 295(20) 6888 D6926889
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include, among many others, methylmalonyl-CoA mutase, Biosynthesis of uroporphyrinogen Il

ribonucleotide reductase, and the diol dehydratasé§.(Adeno-  The common precursor metabolite for the synthesis of uro-
sylcobalamin has also recently been shown to be involved as gorphyrinogen Il is the amino ketone, 5-aminolevulinic acid
light sensor in a transcription factor §). Corrinoids withoutan  (5-ALA) (21). This C5 intermediate is uniquely used for the
upper ligand act as the catalytic center for reductive dehaloge-hiosynthesis of modified tetrapyrroles and is made by one of
nases, in which the cobalt ion is thought to form a direct bond two routes (Fig. 2. Some organisms make 5-ALA from a decar-
with the halide component of the substrate in order to mediate boxylating condensation between succinyl-CoA and glycine,
its abstraction Q). Finally, both methylcorrinoids and adenosyl- called the C4 or Shemin pathway, whereas others make 5-ALA
corrinoids also appear to be involved in a specific group of rad-from the intact carbon skeleton of glutamate, called the C5
ical SAM enzymes@); B, -radical SAM enzymes are the largest route. We will briefly review these two pathways and describe
group within this broad enzyme classl(). how 5-ALA is synthesized.

qunzyme Gy IS a nickel—coptaining tetrahydropor- The C4 pathway
phyrinogen and acts as a coenzyme in both forward and reverse ) , , )
methanogenesis 11). As a coenzyme within coenzyme M The C4 or Shemin route was discovered by Shemin and Rit-

reductase, the central nickel ion is able to mediate the reversibletenberg Q?), who h"’,‘d previously §hown that the nitrogen atqm
from glycine was incorporated into heme through labeling

reduction/oxidation of a methyl group to produce methane in . .
both the processes of methanogenesis and anaerobic methar%tUd'es' Subsequently, Shgmm s laboratory and thaF of Albert
A - . . euberger demonstrated independently that succinyl-CoA
oxidation. In some respects, the binding of nickel in coenzyme . . . .
. - . ; . - condensed with glycine to give 5-ALAZ3, 24. The C4 route is
F,somirrors the binding of cobalt in corrins, reflecting similar- . ; . o .
ities in thei i talvii tvities in formi tal mediated by a single enzyme called 5-aminolevulinic acid syn-
[ |ei in belrdresHpec ive catalytic activities in E”I“'”g MEtAF thase (AlaS) Fig. 2. This enzyme is found in some -proteo-
carbon bonds. HOwever, in coenzyme4§0, nicke Promotes jacteria and most eukaryotic organisms apart from higher
methyl group reduction, whereas in corrinoid-dependent plants. As well as utilizing both succinyl-CoA and glycine as
methyltransferasgs, the pobalt promotes methyl group tranSfersubstrates, the enzyme also employs pyridoxal phosphate as a
(12). Demonstrating the importance of these tetrapyrrole cata- cofactor. The reaction proceeds through the binding of glycine
lysts, the process of methanogenesis is responsible for the ovegy the pyridoxal phosphate, forming a Schiff base within the
all production of around 1 billion tons of methane gas per year active site. Proton abstraction, followed by attachment of the
12. succinyl-CoA, generates 2-amino-3-ketoadipate as a transient
The final two modified cyclic tetrapyrroles are siroheme and intermediate. Loss of CoA and CQthen leads to release of
hemed,. Siroheme is the simplest of the modified tetrapyrroles, 5-ALA from the enzyme. The structure of AlaS fronRhodobac-
and is an Fe-containing isobacteriochlorinl@). It is found ter capsulatuswas the first to be solved, confirming that the
mainly in sulfite reductases but also some assimilatory nitrite enzyme is a homodimer Z5). The structure provided many
reductases. The prosthetic group assists in the 6-electrormolecular details concerning the active-site residues and their
reduction of both sulfite and nitrite to allow their incorporation  roles in catalysis.
into biological systems at the level of sulfide and ammonia. It
. . The C5 pathway
has been suggested that siroheme, in preference to heme, allows ] ] ] ]
amore direct charge transfer route to the active center of these | N€ detection of AlaS in mammalian and some bacterial sys-
enzymes during the catalytic cyclel@)). In contrast, hemed,, temsledtoahunt forthe_enzyme in otherorgamsm_s and higher
which like siroheme is not a heme but a dioxo-isobacteriochlo- Plants. H(f)wev<|ar, nl(') activity could ?19 f<|)und, and it tool|< sorr;]e
rin, is only utilized by one enzyme, a dissimilatory nitrite reduc- years before labeling studies with glutamate revealed that
plants make 5-ALA from glutamate 26). It was subsequently
tase called cytochromed,. hown, through a number of elegant riments, that glut
Most bilins are derived from heme by oxidative cleavage of>10Wn, through a number of €legant experiments, that gluta-

the macrocycle to produce biliverdin with release of CQL, mate is converted into glutamate semialdehyde (GSA) and then

16). Ferredoxin-dependent bilin reductases as well as isomerinto 5-ALA (27). The conversion of glutamate into GSA was
X P : e ~. 7 shown to involve several steps. In fact, it is not glutamate itself
ases then lead to the production of four principal bilin pig-

thatis converted into GSA, but rather glutamyl-tRNA, the same
ments: phycocyanobilin, phycoerythrobilin, phycoviolobilin g y

A _' species that is used for mRNA translation. The involvement of
and phycourobilin. Bilins form the chromophores of phycobili- glutamyl-tRNA represents one of the few examples in which a

proteins (17, 1§ or the light-sensing photosensors of SensorpNA species is used in a process other than protein synthesis.
histidine kinases, including phytochromes or cyanobacterio- The enzyme that catalyzes the transformation of glutamyl-
chromes (9, 20. tRNA into GSA is called glutamyl-tRNA reductase, which is
As stated earlier, all of these modified tetrapyrroles are syn-now known as GtrR. The enzyme requires NADPH and medi-
thesized along a branched biochemical pathway from the ﬁrStateS the Synthesis of the a|dehyde_ The structure of tMetha-
and only common macrocyclic intermediate, uroporphyrino- nopyrus kandlerienzyme reveals that the homodimeric protein
gen lll. In this review, we will deal with the biogenesis of uro- forms a large asymmetric V-shaped molecule, with a number of
porphyrinogen Il and then detail how this macrocycle is con- distinct domains located along a large heli28). An active-site
verted into the various metallo-prosthetic groups that make up cysteine residue in the catalytic domain attacks the glutamate-
this unique but ubiquitous family of essential life pigments.  tRNA bond to form an enzyme thioester with the release of the

6890 J. Biol. Cherf2020) 295(20) 688856925 SASBMB
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Figure 2. The two routes for the biosynthesis of 5-ALA and the subsequent biosynthesis of uroporphyrinogenlll.  The Shemin, or C4, route involves the

condensation of glycine and succinyl-CoA and is mediated by the enzyme 5-aminolevulinic acid synthase. The C5 pathway acquires the intact carbon skeletol
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from glutamate and utilizes glutamyl-tRNA as an intermediate. The glutamyl-tRNA undergoes a reduction by glutamyl-tRNA reductase to give GSA. The finaE.
step involves the enzyme GsaM, which rearranges the GSA into 5-ALA. Then two molecules of 5-ALA are condensed into PBG by the action of the enzynie
porphobilinogen synthase. Next, four molecules of PBG are deaminated and linked together to give a linear bilane called HMB in a reaction catalyzed by HMER

synthase. The final step involves the cyclization and inversion of the terminal D ring to give uroporphyrinogen Ill. §heey boxfor uroporphyrinogen Il also
identifies this central intermediate inFigs. 3and 14.

tRNA moiety. Reduction of the thioester bond by NADPH gen- propionate side chain of the product and that the second
erates GSA29). The shape of the enzyme permits an interac- incoming molecule is incorporated into the acetic acid side of
tion with the next enzyme in the pathway, the GSA aminomu- the molecule @4). The structures of a number of PbgS enzymes
tase, GsaM 80). The interaction between GtrR and GsaM have been determined by protein crystallization and X-ray dif-
allows for channeling of the relatively unstable GSA from onefraction studies. The yeast enzyme was the first to be deter-
active site to the next. GsaM is also a member of the amino-mined, and the structure revealed that the enzyme exists as a
transferase family and is similar to AlaS3(). The protein uti-  homooctamer @5). Two important lysine residues occur at the
lizes pyridoxamine-5-phosphate as a cofactor to facilitate the gctive site of the enzyme and bind the two incoming 5-ALA

rearrangement of the amino group to the CS position of the ,q1ecyles to form Schiff base$@). The yeast enzyme contains
molt_acul_e. The GSA b"?ds to the pyridoxamine to genera_tetwo Zn? ions; one of these is catalytically active, whereas the
5 -dlamlnqvalerate, which after rearrangement resuits in second appears to play a structural role. In other systems, #g
the formation of 5-ALA (32). plays a catalytic role, suggesting that the enzymes utilize the
Conversion of 5-ALA into uroporphyrinogen Il metals to act as Lewis acids within the reactior36).

The transformation of 5-ALA into uroporphyrinogen i Four molecules of PBG are next polymerized into a linear

involves the actions of three enzymesig. 2. These steps are Pilane Fig. 2, called hydroxymethylbilane (HMB), which
common to all organisms that make modified tetrapyrroles, !nvolves the dgamlnanon of eqch of.the substrates pnprto their
and no alternative route for the synthesis of uroporphyrinogen incorporation into the productin a highly ordered fashion%1).

Il has been described. Initially, 5-ALA is acted upon by an The enzyme is known as either HMB synthase (HmbS) or PBG
enzyme commonly called porphobilinogen synthase (PbgS)deaminase. Itis a monomeric enzyme with a molecular mass of
but it is also known as ALA dehydratase. The enzyme overseedround 35 kDa. It was the first enzyme involved in tetrapyrrole
a Knorr-type condensation reaction, in which two molecules of biosynthesis to be crystallized and to have its structure deter-
ALA are condensed to give the pyrrole porphobilinogen (PBG) mined (37). The enzyme contains a very unusual cofactor, a
(39). A significant amount of mechanistic work has shown that dipyrromethane cofactor, which is also constructed from PBG
the first ALA molecule to bind to the enzyme gives rise to the (38, 39 and which is unique to tetrapyrrole biosynthesis. The

SASBMB 3. Biol. Cherf2020) 295(20) 6888 6926891
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Figure 3. The biosynthesis of siroheme from uroporphyrinogen lll.  Initially, uroporphyrinogen is methylated at positions C2 and C7 to give precorrin-2 and

then undergoes dehydrogenation to give sirohydrochlorin and finally ferrochelation to yield siroheme. The reactions are either mediated by three indepen-
dent enzymes, such as SirA, -C, and -B, or by two enzymes, such as a uroporphyrinogen methyltransferase (CobA or Metlp)) and a bifunctional dehydrog
nase/chelatase (Met8p), or by a single multifunctional enzyme, CysG. $haded boxesurrounding the names of compounds coordinate with other pathway
figures and the summary depiction irFig. 14

umoqa

cofactor is attached to cysteine 242 of th&scherichia coli lactam analog of this intermediate was shown to act as a strong
enzyme through a thioether linkage40). The free position of competitive inhibitor (42). This evidence suggests that the reac-
the cofactor acts as the elongation site for HMB synthesi#l). tion does indeed proceed via a spiro intermediate en route to
The first PBG unit enters the active site and is deaminatedthe formation of uroporphyrinogen Ill. Surprisingly, for what
through the actions of a catalytic aspartic acid residue. Theseems like a complicated reaction, there is very little alignment
resulting azafulvene then reacts with the dipyrromethane between the amino acid sequences of uroporphyrinogen Il
cofactor, in essence to form a tripyrrole. This first binding pyr- synthases, and no essential active site residue has been identi-
role unit ends up as ring A in the final tetrapyrrole macrocycle. fied. However, a number of structures for the enzymes have
This reaction sequence of PBG binding at the active site, deamibeen elucidated, including one with a bound product4g).
nation, and attachment to the free position of the growing Mutagenesis studies have identified a possible active-site tyro-
polypyrrole chain is repeated three more times until a hexapyr- sine residue that may be involved in the elimination of the
role is formed, adding in rings B, C, and D of the final macro- hydroxyl group from HMB (44).
cycle. At this a point, the link between ring A and the dipyrro-  The biosynthesis of uroporphyrinogen 1l represents the first
methane cofactor is hydrolyzed to generate HMB. The major branch point in tetrapyrrole biosynthesisKig. 3. Meth-
structure of the enzyme reveals a flexible active-site cavity thak|ation of uroporphyrinogen Ill at positions 2 and 7 gives rise
is lined with a number of arginine residues that help to stabilize to precorrin-2, a highly unstable dipyrrocorphin that directs
and hold the growing polypyrrole entity 87). metabolism toward siroheme, cobalamin, and coenzyme
The final step in the synthesis of uroporphyrinogen Il is F,sobiogenesis. In contrast, decarboxylation of uroporphy-
catalyzed by uroporphyrinogen Ill synthase (UroSFi@. 3. rinogen Il directs the intermediate toward protoporphyrin
This enzyme not only cyclizes the HMB substrate but also|x  (protolX) and the biosynthesis of heme and Chi2{).
inverts ring D of the bilane @1). In this respect, the first three  Thege two branches will be considered separately, although,

rings of the uroporphyrinogen Ill product are arranged with 55 will be seen later, heme can made from either ProtolX or
their acetic acid and propionic acid side chains in the sameyecorrin-2.

order, whereas this order is reversed for ring D. This generates
the only asymmetric isomer of uroporphyrinoggn, pr.oviding a The precorrin-2 branch
molecular handle in terms of substrate orientation with regard ) ) )

to future enzymatic steps21). Uroporphyrinogen Ill synthase | € biosynthesis of siroheme

is a relatively small, monomeric enzyme with a molecular mass Siroheme represents the simplest of the modified tetrapyr-
of around 25 kDa. A number of different enzyme mechanismsroles. It is synthesized in just three steps from uroporphyrino-
have been proposed for the enzyme to explain how it is able togen Il (Fig. 3. Initially, uroporphyrinogen Il is methylated at
mediate ring closure and rearrangement. The only one of thesepositions C2 and C7 of the macrocyclic ring by uroporphyrino-
mechanisms to stand up to scrutiny is the spiro mechanism,gen Ill methyltransferase, which requires SAM as a methyl
which involves the formation of a cyclic spiro intermediate, donor (45). Itis thought that the C2 position is methylated first,
allowing ring D to flip over. A chemically synthesized spiro- followed by C7. The resulting product, precorrin-246), is also
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an intermediate in the biosynthesis of vitamin B, hemed,, and are found within a single multifunctional enzyme called CysG
coenzyme E5, The term precorrin arises from its firstidenti-  (Fig. 3 (57). In essence, CysG represents a fusion between a
fication as an intermediate in the biosynthesis of the corrinring, uroporphyrinogen Ill methyltransferase and Met8p. The struc-
and all intermediates up to the formation of the corrinring were ture of CysG has been determined to show how these different
given the name precorrinn, wheren refers to the number of domains are arranged within a dimeric structures@). Interest-
methyl groups that have been added to the macrocyclé7f. ingly, the enzyme was found to be phosphorylated, suggesting
Therefore, precorrin-1 would be the intermediate for which a thatphosphorylation may play arole in regulating the activity of
methyl group has only been added to the C2 position. the enzyme.

A number of structures of uroporphyrinogen Il methyl- ) _
transferases have been determined, showing a bi-lobal, kidneyl Ne biosynthesis of coenzyme,f;
shaped enzyme with the active site found at the junction of the  Coenzyme F,is a nickel-containing porphinoid that plays
two domains @8). The presence of SAH, one of the products of an essential role in the reduction of methyl-coenzyme M in the
the methyl transfer reaction, is often seen in the active site andproduction of methane gas by methanogens. Similarly, this
helps to pinpoint where the tetrapyrrole substrate is likely to coenzyme is also involved in anaerobic methane oxidation
bind. Indeed, a structure of a uroporphyrinogen methyltrans- through a reversal of the process, which allows bacterial con-
ferase with uroporphyrinogen Il bound has also been deter-sortia to utilize methane as a carbon sourcd ). Coenzyme
mined (49). A conserved arginine residue may play a role inF,5,is clearly based on the uroporphyrinogen Il templaté~{g.
helping to promote the methylation events. It is assumed that 1) but contains two further rings associated with the cyclization
uroporphyrinogen 1l binds in the correct orientation to allow of two side chains (rings E and F). The transformation of uro-
methylation at the C2 position and that it then disengages, porphyrinogen lll into F,5,involves methylation of rings A and
along with SAH, from the enzyme. After reloading with SAM, B, amidation of thea andcside chains, lactam formation of the
the precorrin-1 rebinds with the C7 positioned in close prox- amidatedc side chain, nickel chelation, macrocycle reduction,
imity to the SAM to allow the second methylation to take place. and cyclohexanone ring formationKig. 4.

Precorrin-2 is next acted upon by an NAD-dependent de- Early work on the biosynthesis of coenzyme, g, had shown
hydrogenase, which removes two protons and two electrongthat the macrocycle was derived from precorrin-2 or sirohydro-
from the macrocycle, thereby introducing an extra double chlorin (59). However, information on the pathway remained
bond. This forms anisobacteriochlorin that is called sirohydro- scant, although under certain conditions a ring-F open form of
chlorin (Fig. 3. In some bacteria, the dehydrogenase exists as &, calledseceF, 5., could be isolated§0). Incubation ofsece
single enzyme called SirC5Q). In other systems, the dehydro- F,;owith a crude cell extractand ATP resulted in the formation
genase also has chelatase activity. One such example ofdF,;, suggesting thaseceF,;,was the penultimate interme-
bifunctional dehydrogenase and chelatase is Met8p from yeastliate in the pathway. Progress on the biosynthesis gf;gbio-
(51). This enzyme appears to use the same active site for botlsynthesis came from analysis of the genomes of a number of
the dehydrogenase and chelatase activities. For the chelatagifferent methanogens. In many methanogens, the genes
reaction, the enzyme has to insert ferrous iron into sirohydro- encoding the enzymes for [z, synthesis appear to be dispersed
chlorin to produce siroheme. Although the structure of Met8p randomly in the genome, butin a few cases the genes are func-
has been determined, it is not clear how the chelation reactiontionally clustered. In several methanogens, five genes are found
is catalyzed or what residues are responsible for the process. to localize on the genome. They encode a class Il chelatase, an

The overall chelation reaction involves the removal of the amidase, two reductase subunits (which also display similarity
two protons attached to the pyrrole nitrogens. In contrast to the to the subunits of protochlorophyllide reductase of Chl biosyn-
lack of information available for the chelatase activity of Met8p, thesis), and a protein showing similarity to a ligase, MurF,
single-function chelatases are also known in different bacterialinvolved in peptidoglycan synthesiss(l, 69. The genes in the
systems. This includes the SirB enzym®&3), whichis related to cluster were given the locus designatiocfb, for cofactor F,5,
the chelatases associated with cobalt insertion into vitamin B biosynthesis.
via the anaerobic route, ferrochelatases associated with heme Recombinant production of the encoded proteins of thefb
synthesis, and the nickel chelatase of f5synthesis §$3). These cluster led to the elucidation of the k5, biosynthetic pathways
chelatases are classified as type |l chelatases and are generdliig. 4 (61, 62. The first step was shown to be the chelation of
single-subunit enzymes that do not require ATP for metal Ni? with sirohydrochlorin, mediated by CfbA. This enzyme is
insertion (53). This contrasts to the type | chelatases associatedr small chelatase, which has a subunit molecular mass of around
with Mg? insertion during Chl synthesis and cobalt insertion 12 kDa. It forms a homodimer that has a symmetrical active
along the aerobic B, pathway. Structural detail on the type Il site. CfbA is much more active with cobalt than nickeh vitro,
chelatases has helped identify the main catalytic groups at thébut it has a preference for nickein vivo, which indicates that
active site, which include several histidine residues that couldmetal delivery and availability play important roles in ensuring
be used to facilitate proton abstraction or metal ion binding thatthe correct metalis inserted into the correct pathway inter-
(54 ...5p The insertion of ferrous iron into the sirohydrochlorin - mediates 63). The product of the reaction catalyzed by CfbA is
macrocycle generates sirohemé€ig. 3. Ni-sirohydrochlorin, which then acts as the substrate for the

In some organisms, such a8. coliand Salmonella enterica next enzyme in the pathway, CfbB. This enzyme amidates the
all three steps of siroheme synthesis, tHas-methylation of and c acetic acid side chains attached to rings A and B and
uroporphyrinogen lll, dehydrogenation, and ferrochelation, requires glutamine and ATP as substrates. The enzyme is very
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Figure 4. The transformation of sirohydrochlorin into coenzyme F ,5,. The steps involved in the biosynthesis of f5, from sirohydrochlorin are outlined.

dnuuoly papeojumod

Initially, sirohydrochlorin is chelated with nickel by the enzyme CfbA to give nickel sirohydrochlorin. Next, the two acetic acid side chains onrings A and B, the =
a and c side chains, are amidated in a reaction catalyzed by CfbB that also requires glutamine and ATP as substrates. This generates nickel sirohydrochlor.
a,c-diamide, which acts as the substrate for the reductase system that is catalyzed by CfbC and -D. The reductase removes three double bonds from the

macrocycle, which also spontaneously results in the formation of the lactam ring E, thereby generatiegoF, 5, The final step, mediated by CfbE, results in
the formation of the cyclic hexanone ring F in another ATP-requiring process. T¢teaded boxXor coenzyme 5, coordinates with other pathway figures and
the summary depiction inFig. 14

similar to the amidase found in cobalamin biosynthesis, CobB,izing the propionate side chain on ring D to form a cyclo-
which amidates the same two side chains but on the corrinring.hexanone structure. It is presumed that this reaction
CfbB generates Ni-sirohydrochlorina,c-diamide, and this proceeds via formation of a phosphorylated intermediate to
product is the substrate for the reductase system, whichproduce coenzyme ko
removes three double bonds from the macrocycle. ) ) o

The reduction is mediated by two subunits, CfbC and CfbD. Biosynthesis of vitamin B,
These subunits are similar not only to the reductase systemthat Vitamin B, ,, or cyanocobalamin, is the anti-pernicious ane-
removes a double bond in Chl biosynthesis, changing the oxi-mia factor that was first extracted from raw liver. Structurally, it
dation of the macrocycle from that of a porphyrin to that of a is composed of a cobalt-containing ring-contracted macrocycle
chlorin, but also to the nitrogenase subunits that are involved in called a corrin 64). The cobalt ion is held not only by the four
nitrogen fixation. CfbC and CfbD both contain Fe-S centers pyrrole nitrogen atoms of the macrocycle itself, but also by two
and couple ATP hydrolysis with reduction of the macrocycle. further ligands that are found above (the upper or-ligand) and
Prolonged incubation of Ni-sirohydrochlorina,c-diamide with  below (the lower or -ligand) the plane of the tetrapyrrole ring.
CfbC and CfbD, together with ATP, resulted in a change in the In vitamin B,,, the upper ligand is a cyano group, but this is
color of the substrate, from purple to yellow, consistent with actually a consequence of extraction when cobalamin is pro-
reduction of the macrocycle. An analysis of the reaction prod- duced commercially 65). In biological systems, the upper
uct indicated that not only had reduction taken place but also ligand is normally either a methyl or an adenosyl group in meth-
the lactam ring E had formed. However, when the reaction with ylcobalamin and adenosylcobalamin, respectively).( The
the reductase subunits was incubated for shorter periods oflower ligand comes from an unusual base called dimethyl-
time, then ring E was not formed §1). It may be that the for- benzimidazole, which is part of a nucleotide loop that is
mation of the lactamring (E) is a spontaneous chemical reac-attached to the propionate side chain of ring D. Actually, cobal-
tion as a result of the reduction in the macrocycle. The net aminis just one member of a broader class of molecules that are
result, however, is the formation okeceF ,;, which is the referred to as either corrinoids or cobamides. The variation in
substrate for the final enzyme in the pathway, CfbE, which corrinoid structures relates to the nature of the lower nucleo-
has similarity to the peptidoglycan ligase, MurF. In the pres- tide loop and in particular the nature of the base. There are
ence of ATP, CfbE catalyzes the formation of ring F by cycl-around 20 different corrinoid forms 66), of which cobalamin is
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Adenosylcobyrinic Cobyrinic acid Hydrogenobyrinic acid
acid a,c-diamide a,c-diamide a,c-diamide (HBAD)
Figure 5. The aerobic biosynthesis of adenosylcobyrinic acid a,c-diamide from uroporphyrinogen Ill.  The individual steps along the aerobic route for

cobalamin synthesis are shown. Initially, uroporphyrinogen Il undergoes three methylation steps at C2, C7, and C20, before hydroxylation at the C20 position
generates precorrin-3B, a masked pinacol that is primed for ring contraction through rearrangement. The contraction is mediated by CobJ, which also
methylates at C17. More methylations, a decarboxylation, and a mutase reaction generate the orange-colored hydrogenobyrinic biid) (ntermediate.
Cobalt insertion followed by adenosylation and amidation of the side chains generates adenosylcobyrinic actddiamide, the point where the aerobic and
anaerobic (sed-igs. 6and 14) pathways rejoin. Theray shadingsurrounding Uroporphyrinogen Il coordinates with other pathway figures and the summary
inFig. 14

justone, and it appears to be the only member that is utilized in nature of the corrin, which not only holds the cobalt tightly but
eukaryotes. The corrinoids are unique among the vitamins inalso acts as an entatic state module, whereby its geometric and
that they are made exclusively by bacteri&?). The biosynthe- electronic conditions are adapted for function, in order to pro-
sis of these molecules did not make the transition to the eukary-mote changes in the oxidation state of the metal o168, 69.

otic world, most likely because of the sheer complexity of the There are two similar although genetically distinct pathways
process, which involves about 30 steps. The catalytic propertiegor the biosynthesis of cobalaminKigs. 5and 6), which are

of corrinoids appear to be associated with the ring-contracted referred to as the aerobic and anaerobic routeg(). As their
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Figure 6. The anaerobic biosynthesis of adenosylcobyric acid from uroporphyrinogen Ill.  The aerobic pathway starts with the synthesis of sirohy-
drochlorin, which is sometimes also referred to as Factor Il. Metal insertion at this stage generates cobalt-sirohydrochlorin, which then undsrgoe
further methylation at C20 to give cobalt-factor Ill. Ring contraction is mediated by CbiH, which forms dactone in the generation of cobalt-
precorrin-4. Further methylations coupled with lactone ring opening and rearrangement give rise to cobyrinic acid. Amidations together with adeno
sylation ultimately give rise to the formation of adenosylcobyric acid. Trehaded boxsurrounding uroporphyrinogen Il coordinates with other pathway
figures and the summary inFig. 14

names imply, the pathways differ in their requirement for = The biosynthesis of cobalamin represents the most complex
dioxygen, but they also differ further in the timing of cobalt of all of the pathways for the biogenesis of modified tetrapyr-
insertion (64). The two pathways diverge at precorrin-2 but roles. This reflects not only the high degree of modification that
rejoin at an intermediate called adenosylcobyrinic acalc-di- takes place on the tetrapyrrole framework but also the need to
amide. The final steps in cobalamin biosynthesis are similar inadd both upper and lower ligands to the cobalt. In this respect,
both pathways. The anaerobic pathway is the more commoncobalamin is much more three-dimensional than the other
of the two routes, with the aerobic pathway being largely members of this ring fellowship. Overall, the biogenesis of
restricted to members of the -proteobacteria {1). adenosylcobalamin from uroporphyrinogen Il involves the
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addition of eight SAM-derived methyl groups, ring contraction ilar to the magnesium chelatase reaction of Chl synthesis (see
whereby the methylated C20 carbon is extruded from the mac-below). With cobalt inserted, the upper ligand is next attached.
rocycle, six amidations, a decarboxylation, cobalt insertion,This involves reduction of the cobalt(ll) ion to a cobalt(l) spe-
aminopropanol attachment, construction and attachment of cies by a flavin-dependent enzyme called CobR0Q, 10). The
the lower nucleotide loop, and adenosylation of the cobalt ion Co(l) species acts as a supernucleophile and is very unstable; it
(64). As mentioned under *The biosynthesis of siroheme,Z thequickly reacts with the adenosyltransferase, CobO, to give
intermediates on the pathway are generally referred to as pre-adenosylcobyrinic acida,c-diamide (102). This is the point at
corrin-n, wheren refers to the number of methyl groups that which the aerobic and anaerobic pathways rejoin. These steps
have been added to the macrocyclé?). The aerobic and anaer- are reviewed in more detail elsewherdQ3...106
obic pathways will be discussed separately.
The anaerobic pathway

The aerobic biosynthesis of cobalamin The anaerobic pathwayFKig. 6 is characterized by the way

The aerobic pathwayl[ig. 5 was elucidated in the organism thatthe pathway is able to proceed in the absence of oxygen and
Pseudomonas denitrificansand genes for cobalamin biosyn- also by the early insertion of cobalt. In contrast to the aerobic
thesis are generally given the locus tagh Uroporphyrinogen pathway, the genes for the anaerobic biosynthesis of cobalamin
Il is methylated by CobA at positions 2 and 7 to give precor- are given the locus tagbi (67, 10§. As with the aerobic path-
rin-2 in areaction that requires SAM as a methyl dono#, 79. way, the pathway initiates with the bismethylation of uropor-
The next enzyme in the pathway, Cobl, then methylates at thephyrinogen Ill to give precorrin-2. Oxidation of the macrocycle
C20 position to give precorrin-3A 3, 74. The following through the removal of two protons and two electrons gener-
enzyme in the pathway, CobG, is a monooxygenase thaates sirohydrochlorin, which is also known as factor 15¢, 107,
requires dioxygen not only to hydroxylate the C20 position, but 108). This represents the substrate for cobalt insertion,
alsotoforma -lactone with the acetic acid side chaininring A whereby a class Il chelatase called ChiK or ChiX inserts cobalt
(75...7Y. This generates precorrin-3B, an intermediate contain- into the tetrapyrrole, generating cobalt-factor Il 3, 55, 109,
ing a masked pinacol that is primed for ring contraction 110). CbiL methylates the C20 position of Cobalt Factor Il in a
through a rearrangement reaction in the subsequent step. INSAM-dependent fashion to give cobalt-factor 111111). Ring
R. capsulatusthe same reaction is catalyzed by a quite distinctcontraction is next afforded by ChiH, which methylates at C17
enzyme called CobZ{8). The actual ring-contraction reactionis and forms a -lactone on ring A to give cobalt-precorrin-4 {12,
catalyzed by CobJ, which not only methylates the C17 positioninal13). ChiF is the next enzyme in the pathway, and, in the pres-
SAM-dependent fashion, but also contracts the macrocycle toence of SAM, it methylates at C11 to give cobalt-precorrin-5A
leave the extruded methylated C20 carbon as an acetyl grougll4...118The -lactone ring is broken by the action of ChiG,
attached to C1 {5, 77, 79.82). The product of this reaction is which gives rise to cobalt-precorrin-5B and releases the
precorrin-4, which acts as the substrate for CobM that addsextruded C20 carbon as acetaldehydé13...115, 1}9ChiD
another SAM-derived methyl group to the macrocycle at C11, subsequently methylates at C1 to give cobalt-precorrin-6A
yielding precorrin-5 83, 89. Methylation at C1 by CobF resultsin (115, 120. Reduction of the macrocycle by CbiJ in the presence
the loss of the extruded C20 position and produces precorrin-6A of NADH then produces cobalt-precorrin-6B (L 15). Decarbox-
(85, 89. A reduction of the macrocycle by CobK results in the loss ylation of the acetic acid side chain attached to C12 and meth-
of a double bond in a reaction that requires NADPH as a cofactorylation at C15 produces cobalt-precorrin-7 in a reaction medi-
and generates precorrin-6B3(7...9pD ated by CbiT (15, 12). A further methylation at C5 by CbiE

CobL is the next enzyme in the conveyor belt and mediatesgives rise to cobyrinic acid{15). Amidation of the a and c side
methylation at C5 and C15 as well as the decarboxylation of thechains of the macrocycle by ChiA produces cobyrinic ac#ic-
C12 acetic acid side chain9(l...98 CobL represents a fusion diamide (122). These steps are reviewed in more detail else-
between two distinct methyltransferases, with the C-terminal where @15, 123.
domain being responsible for the decarboxylation of the acetic The cobyrinic acida,c-diamide intermediate most likely acts
acid side chain at C12 and the methylation at C15. The N-ter- as the substrate for the adenosylation of the cobalt ion by
minal domain performs the subsequent methylation at C5. The the adenosyltransferase. Within organisms that appear to pos-
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net result of these reactions is the synthesis of precorrin-8,sess an anaerobic pathway, there seem to be at least three types

which is the substrate for CobH. This enzyme is responsible forof adenosyltransferasel@4). The first of these is called CobA,
the migration of the methyl group from C11 to C1294, 95. In  which should not be confused with the first methyltransferase
so doing, it introduces more conjugation into the macrocycle, of the aerobic pathway 125, 12¢. This enzyme is orthologous
forming an orange-colored pigment called hydrogenobyrinic to CobO described in the aerobic pathway above in that it
acid. With all of the methylations complete, the amidation of adenosylates the cobalt ion after it has been reduced to a Co(l)
some of the side chains then ensues. CobB amidatesdtemdc species. In the aerobic pathway, the reduction to Co(l) is appar-
side chains to give hydrogenobyrinic ac@lc-diamide inareac- ently mediated by free flavin rather than a specific reductase.
tion that requires ATP and glutamine 96). The next step Two other adenosyltransferases, PduO and EutT, are found
involves cobalt chelation, in which an enzyme complex formedwithin pathways associated with propanediol and ethanol-
between CobN, -S, and -T inserts cobalt in an ATP-dependentamine utilization, respectively, and are able to substitute for
fashion to give cobyrinic acidh,c-diamide (97...90 This chela- CobA (127, 128. The processes of either propanediol or etha-
tion reaction, mediated by the class | chelatase CobNST, is simnolamine utilization take place within specialized proteina-

J. Biol. Cherf2020) 295(20) 6888 D6926897



JBC REVIEWSBiosynthesis of modified tetrapyrroles

Figure 7. The final stages of cobalamin biosynthesis. Adenosylcobyric acid is converted into adenosylcobalamin through the action of three further
enzymes. Initially, an aminopropanol phosphate linker is attached to the propionate side chain found on ring D to give adenosylcobinamide phosphate.
Aminopropanol is itself derived from threonine. A GDP moiety is attached to the aminopropanol phosphate linker to give adenosyl-GDP-cobinamide. Finally,
the GDP moiety is replaced with another nucleotide called-ribazole, itself made from the ligation of dimethylbenzimidazole with the ribose portion of
nicotinamide mononucleotide (NaMN. This results in the formation of adenosylcobalamin. Tekbaded boxsurrounding adenosylcobalamin coordinates with
other pathway figures and the summary irFig. 14

ceous organelles called bacterial microcompartments, whichdecarboxylated in a pyridoxal phosphate... dependent reaction
both house adenosylcobalamin-dependent enzymes. Withincatalyzed by CobC/CobD to give aminopropanol phosphate
these bacterial microcompartments, PduO and EutT are able to(104, 135, 135 The adenosylcobinamide is primed for the
regenerate adenosylcobalamin when the coenzyme periodicallgttachment of the lower nucleotide loop by the addition of a
becomes occasionally inactivated during the catalytic cycle, andsDP moiety, derived from GTP, to the aminopropanol in a
hence these enzymes are not directly involved @e novobio- reaction catalyzed by the homologous enzymes CobP and
synthesis {29). In the biosynthesis of adenosylcobalamin, the CobU of the aerobic and anaerobic pathways, respectively, or
adenosyltransferase results in the synthesis of adenosylcobyhe nonhomologous CobY, giving rise to adenosyl-GDP cobin-
rinic acid a,c-diamide. amide (137...139

The unusual dimethylbenzimidazole base is made from
either reduced flavin in the presence of oxygen by an en-

After the synthesis of the corrin ring component by either the zyme called BluB 140) or from 5-aminoimidazole ribotide, a
aerobic or anaerobic pathway, the construction of the final mol- branch-point intermediate in thiamine and purine biosyn-
ecule is completed by the synthesis and attachment of the lowethesis, in four steps 141), under anoxic conditions. The
nucleotide loop Fig. 7. The final amidations of the corrinmac- lowernucleotideisconstructedbylinkingthedimethylbenzim-
rocycle are completed by CobQ/ChiP to give adenosylcobyriddazole base to nicotinamide mononucleotide in a reaction
acid through the addition of four amide groups from glutamine catalyzed by CobU/T, which generates the-ribazole phos-
to the b, d, e, andf side chains of the tetrapyrrole framework in phate (142...144 The -ribazole phosphate then displaces the
an ATP-dependent fashion30, 13). This gives rise to adeno- GDP moiety of the adenosyl-GDP cobinamide in a reaction cata-
sylcobyric acid. Attachment of an aminopropanol linker to the lyzed by CobV/CobS to generate adenosylcobalamin phosphate
free carboxylic acid generates adenosylcobinamide in areactiofil42, 149. The phosphate is removed by a phosphatase, CobC, to
mediated by CobD/ChiB 104, 133. The aminopropanol is give adenosylcobalaminl@é6, 147. More detailed reviews on the
derived from threonine by the action of either PduX or BIUE, biogenesis of the lower nucleotide loop and the overall synthesis of
which generates threonine phosphatel83, 134, which is adenosylcobalamin are found elsewhe@4( 104, 124, 148).

Final stages of cobalamin biosynthesis
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Figure 8. Thethree routes to heme from uroporphyrinogen|il.  The protoporphyrinroute @ray arrow) involves the formation of protoporphyrin IX via
coproporphyrinogen and protoporphyrinogen with the final step involving insertion of iron into protoporphyrin IX. There are aerobic and anaerobic
forms of the enzymes associated with the formation of protoporphyrinogen and protoporphyrin, where thasterisksnext to the enzyme (for CgdH,
PgdH1, and PgdH2) indicate that these enzymes are found largely under anaerobic conditions. The siroheme rquate (blue arrowy involves the
decarboxylation of siroheme to give didecarboxysiroheme, followed by the removal of the acetic acid side chains on rings A and B to give Fe-copro-
porphyrin before the final step, which involves the decarboxylation of the propionate side chains on rings Aand B to produce heme. The coproporphyrin
pathway (dusty rose arrowis a hybrid between the first two routes: coproporphyrinogen is oxidized to give coproporphyrin, which is chelated with iron

to give Fe-coproporphyrin. The final step is then the formation of the vinyl side chains through the decarboxylation of the propionate side chains on
rings A and B. The conversion of Fe-coproporphyrin into heme is catalyzed by the same enzyme in both the siroheme and coproporphyrin pathways,
although it has different names. Thehaded boxesurrounding the names of some compounds coordinate with other pathway figures and the summary

in Fig. 14

Heme biosynthesis: three distinct routes from cules of CQ, There is some evidence to suggest that the
uroporphyrinogen Il enzyme is able to mediate the ordered decarboxylation of the
There was a time, not that long ago, when heme biosynthesig@rboxymethyl side chains with ring D first followed by A, B,
was viewed as something quite straightforward. Now it is rec-and C. Uroporphyrinogen decarboxylase is able to use the pyr-

ognized that there are three distinct pathway$(g. § for the role rings of the macrocycle to act as an electron sink to help in
biosynthesis of heme that are referred to as the protoporphyrin, the catalytic process and hence does not need any exogenous

coproporphyrin, and siroheme pathway<sj. cofactor. The enzyme exists as a homodimer with a subunit
molecular mass of around 40 kDa. Structural studies of the free
The ProtolX pathway for heme (and Chl) synthesis enzyme and the enzyme with bound product have led to the

The ProtolX pathway was long believed to be the only path-idea that the mechanism may involve conserved arginine and
way for heme synthesis, involving the transformation of uro- aspartate residues acting as general acids and baé8,(150. It
porphyrinogen Ill into ProtolX in three steps prior tothe inser- has been suggested that uroporphyrinogen decarboxylase is
tion of iron (Fig. 8. The ProtolX branch begins with the ©one ofthe mostcatalytically proficientenzymes foundin nature
transformation of uroporphyrinogen Il into coproporphyrino- ~ (151).
gen Il through the action of uroporphyrinogen Il decarboxyl- ~ Coproporphyrinogen Ill next undergoes an oxidative decar-
ase B), which decarboxylates the four carboxymethyl sideboxylation of the two propionate (carboxyethyl) side chains
chains attached to the macrocycle with the loss of four mole- attached to rings A and B, to generate vinyl side chains with the
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release of two more molecules of CQThe tetrapyrrole prod- Heme is synthesized from ProtolX by the insertion of ferrous
uct is protoporphyrinogen IX, and the enzyme is now referred iron into the porphyrin macrocycle with the loss of two protons

to as coproporphyrinogen decarboxylase, CgdC (previoushthat were previously attached to the pyrrole nitrogens. The
referred to as HemF)%). The exact mechanism of the enzyme is metal-inserting enzyme is a type Il chelatase and therefore does
unknown, and, as with the previous enzyme in the pathway, thenot require ATP. This enzyme is often membrane-associated,
reaction does not appear to require any exogenous cofactors ond @ number of them are known to contain an Fe-S cluster,
metal ions, although it does require dioxygerib2). A structure although the fgnctmn of this redox center is not known165).

of the oxygen-dependent enzyme has been determined, and thahe best.-stud|ed ProtolX fgrrochelatase is the human enzyme,
roles of a number of amino acid residues have been investigateand detailed structural studies have revealed how the substrate

(153, 154. Under anoxic conditions, organisms employ an oxy- 'S able to bind and induce the associated conformational

gen-independent version of the enzyme, which is technically achanges that occur during the catalytic cycld 66).

coproporphyrinogen dehydrogenase, called CgdH, butwhich isthe siroheme pathway for heme and heme dsynthesis
often referred to as HemN {55). This enzyme belongs to the
radical SAM superfamily of enzymes. In this case, the enzym
utilizes SAM as a co-substrate to generate an adenosyl radic

that participates in the decarboxylation process. HemN was thethat heme was made from precorrin-2. Follow-up research also

first radical SAM enzyme to have its structure determined jyqniified some possible intermediates on the way to heme, but
(156). The reaction involves the formation of an adenosyl rad- ¢he research remained incomplete. More recently, this new
ical, wh«;h is ab"? to abgtracta hydrogeq fro.m the-position of - gjternative heme pathway was finally elucidated when it was
the propionate side chain, allowing elimination of the carboxy- shown that the precursor for heme was actually sirohem&gg).
late as CQ (157). Initially, siroheme undergoes a decarboxylation of the acetic
The final step in the biosynthesis of protoporphyrin IX  acid side chains attached on rings C and D to produce didecar-
requires the enzyme protoporphyrinogen oxidase. The enzymenoxysiroheme Fig. §. This reaction is mediated by a decarbox-
catalyzes the six-electron oxidation of the macrocycle byylase that is composed of two subunits, AhbA and AhbB. A
removing six electrons and six protons with the consequentstructure of this enzyme has been solved, revealing how the
introduction of three new double bonds. The associated substrate binds within the active site, in proximity to a number
increase in conjugation within the system introduces color, of highly conserved catalytic amino acid residue4€9. The
generating the red color associated with porphyrins. As with next step in the pathway involves a radical SAM enzyme,
the previous step in the pathway, there are oxygen-dependentermed AhbC, which decarboxylates the two carboxymethyl
and oxygen-independent versions of the enzyme. The bestesidues onrings A and B. The mechanism underpinning this
studied enzyme is oxygen-dependent and was initially nameddrocess has not been elucidated, but the reaction generates Fe-
HemyY but has been renamed as PgoX,(65. This is a flavin- coproporphyrin, which is sometimes referred to as coproheme.
dependent enzyme that exists as a homodimer with a subunitThe final step in the pathway involves AhbD, another radical
molecular mass of around 50 kDal68). Overall, the reaction SAM enzyme. AhbD carries out a reaction analogous to that
requires three molecules of dioxygen, and, because the enzynfedtalyzed by CgdH, the coproporphyrinogen dehydrogenase, in
contains a tightly but noncovalently bound FAD, it is assumed that it mediates the decarboxylation of the two propionate side
that the reaction progresses through three two-electron steps,Chains attached torings A and B and their conversion into vinyl
generating three molecules of kD, (5). Several structures of side chains. This siroheme pathway for heme biosynthesis is

PgoX have been determined, although the absence of either g?:gd ROtﬁnly n Z;If?;e-r?r?]uur_]g Eacterla ?#talsp n n;lr_emZQrs
substrate or product complex has precluded any detailed mech-g_ e3arr$d gea (68, 170. The siroheme pathway is outlined in
anistic proposal (59, 160. It is also important to note that 19s. 2ande. . . . . .

i : : Significantly, didecarboxysiroheme is also an intermediate
ProtolX is an intermediate of the Chl and BChl pathways (see . . o
below) for hemed, synthesis. Hemel, is an unusual modified tetrapyr-

T h that | ble t te Prot Ixrole that is not really a heme at all but is actually a dioxo-iso-
Wwo ofher enzymes that are aiso able 1o generate Frotoly,, terjochlorin (168). The genes associated with the biosynthe-
from protoporphyrinogen IX, but only under anoxic condi-

. ) I . sis of hemed, are found within the nir operon in denitrifying
tions, have been identified. Technically, these are protoporphy-bacteria’ and includenirD , -L, -G, -H, -F, -J and N. As with
rinogen dehydrogenases. The first was initially called HemGpome synthesis from siroheme, herd, synthesis proceeds via
but has since been renamed PgdHE)( This is an FMN-con-  gidecarboxysiroheme, in which siroheme is decarboxylated by
taining enzyme that belongs to the flavodoxin family, and it 4 combination of NirDL, -G, and -H. The propionic acid side
interacts with the cellular respiratory chain161, 163. The sec-  chains attached to rings A and B of the macrocycle are extruded
ond anaerobic enzyme was initially termed HemJ but has sinceyy the action of NirJ (L71), a radical SAM enzyme that shares
been renamed PgdH2. This enzyme is the least well-charactersequence similarity to both AnbC and AhbD. Although NirJ has
ized of the ProtolX-forming systems, as it has not been purified. been purified and has functionally been shown to be a radical
Itis not known whether it is associated with any specific cofac- SAM enzyme that catalyzes the removal of the two propionate
tors (163, 164. However, like PgdH1, it is thought to interact side chains and their replacement with carbonyl groups, its
with the respiratory chain. reaction mechanism still has to be elucidated 2. The intro-

It has been noted by Sano and co-worker&&7) that in sul-
gfte-reducing bacteria, the two methyl groups attached to rings
and B of heme were derived from SAM, strongly indicating
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Figure 9. The biosynthesis of chlorophyll a from protoporphyrin IX. Magnesium insertion into ProtolX directs the intermediate toward Chl synthesis by
generating magnesium ProtolX. This acts as the substrate for a methyltransferase (ChiM), which, together with SAM, gives rise to magnesium Proto
monomethyl ester. In the following reaction, the cyclase forms ring E of PChlideghe C17 C18 double bond of which is then reduced, forming divinyl Chlide

a. After reduction of one of the vinyl side chains, geranylgeraniol is attached to the propionate on ring D to form geranylgeranyl @bubsequent reduction

of the geranylgeranyl group to phytol ) gives rise to Chb,. Theshaded boxsurrounding Chla, coordinates with other pathway figures and the summary
depiction in Fig. 14

duction of a double bond into the propionate side chain latter requires hydrogen peroxide as the oxidant, and crystal
attached to ring D is mediated by NirN, which uses electron structures of the enzyme have led to proposed mechanisms

bifurcation to promote the dehydrogenation173, 173. involving key catalytic residues within the protein that are posi-
) ) tioned adjacent to the relevant propionate side chaind {7,
The coproporphyrin pathway for heme synthesis 178). The coproporphyrin pathway is outlined inFig. 8and is

The third variant of heme biosynthesis was identified after shown to be a hybrid between the ProtolX and siroheme
researchers found that some bacteria had a pathway that wasoutes.
not routed through either ProtolX or siroheme (75. In ) )
essence, this pathway starts with the decarboxylation of uro-The transformation of ProtolX into Chis: Chl a
porphyrinogen Il by UroD to produce coproporphyrinogenas  Chls are the major absorbers of sunlight on Earth for photo-
described previously. However, the next step involves the oxi-synthesis, and consequently they supply much of the biosphere
dation of the macrocycle to yield coproporphyrin in a reaction with energy. The most abundant of these pigments is Ch|
that is analogous to the oxidation of protoporphyrinogen to which is found in all oxygenic phototrophs 179), but there are
ProtolX (i.e.the reaction involves the loss of six electrons andalso Chisb, ¢, andd and the recently discovered CHi (Figs. 9
six protons) (Fig. 8. The enzyme was first thought to be a pro- and10) (180). Chls form a structurally and functionally distinct
toporphyrinogen oxidase and was initially called HemY, group within the porphyrin family, characterized by the pres-
although now it has been renamed CpoX5). The next step in ence of afifth ring, the isocyclic *EZ ring, and an alcohol, usually
the pathway involves ferrochelation to give Fe-coproporphyrin phytol, esterified at the C17 position. A central magnesiumion
or coproheme. The structure of this class Il ferrochelatase isis bound via coordinating bonds to the four central nitrogen
very similar to that of ProtolX ferrochelatase. Evidence sug-atoms of the tetrapyrrole. The pyrrole rings of Chls form an
gests that this enzyme works through the distortion of the tet- extended system of conjugated bonds that confers strong
rapyrrole substrate to allow insertion of the metal ion1(76). absorption, notonly in the blue-violet region of the electromag-
The final step in the pathway involves the decarboxylation of netic spectrum, a property shared with many porphyrins, but
the two propionate side chains on rings A and B to produce the crucially also in the red. Chls possess other structural features
vinyl moieties that are found in heme. This reaction is either that amplify absorption in the red and also extend it toward 750
catalyzed in some organisms by AhbD or in others by annm; these include the carbonyl on ring E, and various side
enzyme called HemQ, which has been renamed Chd®).(The chains at C1...4; the most red-shifted pigment, Chlhas C2
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Figure 10. Pathway to show the transformation of chlorophyllide  a into other chlorophylls. The addition of the esterifying phytol moieties to the C17
propionates is presumably catalyzed by ChIG in all cases. CAO hydroxylates the C7 methyl group twice, producing a geminal diol that spontaneousl
dehydrates to form the formyl group of Chb. The enzyme leading to Chdl in A. marinais unknown. Chid is also found in some terrestrial cyanobacteria that
can photoacclimate to utilize far-red light for oxygenic photosynthesis. There is evidence suggesting that thiol compounds and/or proteins, including
cysteine-rich allophycocyanins produced in far-red light, and oxygen may catalyze the formation of @hNote that conversion of the C3 vinyl group of Chd

to the C3 formyl group of Chld requires the loss of one carbon. The C2 formyl group of CGthé introduced by a photooxidoreductase, ChIF, which is an enzyme
containing Chla and pheophytin a and which is structurally related to the D1 subunit of photosystem Il. Trehaded boxesurrounding the names of Chls
coordinate with other pathway figures and the summary irfrig. 14

formyl and C3 vinyl substituents {80). Chls are more than just Synechocystisp. PCC 6803 Gun4 bound to both deuteropor-
light absorbers, and when they are situated in an appropriatephyrin and Mg-deuteroporphyrin (189); however, structures of
protein environment, they acquire another function, redox subcomplexes, and the entire Mg chelatase complex at various
activity, which is crucial for their central role in reaction center stages of the catalytic cycle, will be required for a complete
complexes 179). characterization of this important enzyme complex.

The biosynthesis of Chls is initiated when magnesium The next step in Chl biosynthesis involves esterification of
(Mg? ), rather than the Fé used for heme biosynthesis, is the propionate side chain attached to ring C with a methyl
inserted into the ProtolX macrocycle. The large, multisubunit group, forming Mg-ProtolX monomethylester Fig. 9 (190).
Mg chelatase complex catalyzes this thermodynamically chal-This reaction, which requires SAM as the methyl donor, is cat-
lenging reaction, in which the free energy of hydrolyzing 15 alyzed by the enzymées-adenosylt-methionine Mg-ProtolX
ATP molecules (81) is used to drive conformational altera- methyltransferase (ChiM) {91). Steady-state and transient
tions in the complex, likely associated with distortion of the kinetic analyses of ChIM, produced heterologously iB. colj
ProtolX and selective depletion of the hydration shell sur- show that the reaction proceeds by a random-binding mecha-
rounding the Mg? . The 140-kDa ChIH subunit binds the nism that forms a ternary ChIM-SAM-Mg-ProtolX complex
porphyrin substrate (82, and the 40-kDa Chlland 80-kDa (192). Intriguingly, the magnesium chelatase subunit ChiH
ChID subunits belong to the ATPases associated with variousaccelerates the formation and breakdown of an intermediate in
cellular activities (AAA ) superfamily. The current view is that the catalytic cycle of ChIM (93). Another link between the two
ChID is the physical and mechanical link between the Chll first committed steps of Chl biosynthesis is suggested by Gun4,
AAA  motor and ChlH, which houses the site of metal ion which could play arole in trafficking Mg-ProtolX from ChiH to
chelation (183). ChIM; the propionate group of Mg-deuteroporphyrin that is

Although the ChIHID subunits form the catalytic core of methylated by ChIM has been observed to protrude from the
magnesium chelatase and are sufficient fam vitro activity, binding cleft of Gun4, potentially exposing it to ChiM (94).
plants and cyanobacteria also require a small 26-kDa) solu- The methylated propionate side chain on ring C is used to
ble protein, Gun4, and make little Chlinits absenc&84). Gun4 form the isocyclic fifth (E) ring Fig. 9, in a series of reactions
lowers the magnesium concentration required for chelatasecatalyzed by Mg-ProtolX monomethylester (oxidative) ring
activity atlow porphyrin concentrations (L85 and substantially cyclase (cyclase) that produce 3,8-divinylprotochlorophyllide
enhances the catalytic rate, by at least 10-fol@i§1). There are (divinyl-PChlide). The formation of ring E is accompanied by a
structures of apo-ChlH (86), apo-Gun4 (L85, 187, 188 and transition to a green color, and this structural change creates an
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absorption band at 630 nm, a crucial step in the eventual for- by characterizingArabidopsis thalianamutants that accumu-
mation of Chl a with strong absorption at 665 nm in methanol. late divinyl-Chl (218, 219. Cell extracts fromE. coli overex-
Experiments with *80-labeled molecular oxygen showed its pressing the AT5G18660 gene catalyzed the conversion of
direct incorporation into the carbonyl group of the isocyclic divinyl-Chlide to monovinyl-Chlide (218). Homologs of the
ring (195), so this enzyme is referred to as an oxidative, aerobicAT5G18660 gene are found in higher plants, green algae, some
or O,-dependent cyclase. There is also an,@nhdependent green sulfur bacteria (GSB), and some purple bacteria, &\yh-
cyclase, BchE, which incorporates oxygen donated from wateechococcuspp., but not in red algae, filamentous anoxygenic
(196). Although BchE homologs (termed ChIE) have beenphototrophs, or freshwater cyanobacteria2@0...222 The ho-
found in some cyanobacterial(97), the O,-independent cyclase mologous gene encoding divinyl reductase in phototrophic
is found mainly in anoxygenic phototrophic bacteria, and it will bacteria wagenamed asciA (220), and homologs have been
be described under «The biosynthesis of BChis b, and g.Z confirmed by genetic mutation Chlorobaculum tepidum
Pintaet al. (198) assigned AcsF (aerobic cyclization system Ferice, and Rhodobacter sphaeroidgsgenetic complementa-
containing subunit) in the purple betaproteobacteriunRubriv- tion (R. sphaeroidgsand recombinant divinyl reductase
ivax gelatinosudo the O,-dependent reaction, and homologs assaysC. tepidumand rice) 220, 224, 22} A second type of
were subsequently found in all oxygenic photosynthetic organ-divinyl reductase, termed BciB, is found in many cyanobac-
isms investigated. These include the gen€sdl and Cthlin teria, higher plants, green algae, some GSB, some purple
Chlamydomonas reinhardtii(199, 200, sll1214andsll1874in  bacteria, and some filamentous anoxygenic phototrophs
Synechocystisp. PCC 68037201, 202, Chl27 in Arabidopsis (226 ...228 Although plant and green algal genomes contain
(203, andXantha-I in barley (204). Three classes of @depen- homologs of both bciA and bciB, most cyanobacterial
dent cyclases have been identified: in betaproteobacteria, Acsgenomes only contain homologs of one gene, eithleciA or

is sufficient, whereas oxygenic phototrophs require an auxiliarybciB. An exception is found in the marine cyanobacterium
subunit, Ycf54 05), and alphaproteobacteria also require BciE Acaryochloris maring which has both forms of divinyl
(206). Kinetic and structural characterization of the @Q-depen- reductase 29). Whereas BciA uses NADPHZ20) as the
dent cyclase await the availability of sufficient quantities of reductant, BciB from GSB contains an FAD cofactor and

pure, active protein. [4Fe4S] clusters and uses ferredoxin as the reductant for this
Following formation of the E ring by the cyclase, reduction of reaction (228).
the C17 C18 double bond of ring D further alters the -elec- The final steps of Chla biosynthesis involve attachment of a

tron system and produces chlorophyllide (Chlide), with a stron- C20 isoprenoid alcohol, geranylgeraniol, to the C17 propionate
ger, more red-shifted absorption transition approaching that of side chain of monovinyl-Chlidea and then its reduction to phy-
the final pathway product, Chl (Fig. 9. Nature has discovered tol. In the reaction sequence shown iifrig. 9 geranylgeraniol
two completely different ways to achieve this reduction: in one, diphosphate is attached to monovinyl-Chlide, and then it is
a light-dependent reaction is catalyzed by NADPH:protochlo- subsequently reduced to phytol. However, itis also possible that
rophyllide oxidoreductase (LPOR)207, 208; in the other, phytol diphosphate is attached to monovinyl-Chlide follow-
reduction of the C17 C18 double bond is catalyzed by a dark- ing prior reduction of the free alcohol 230). The enzyme that
operative protochlorophyllide reductase (DPOR), consisting ofcatalyzes this esterification of the C17 propionate is Chl syn-
ChiIL, ChIN, and ChIB subunits that display similarity to the thase, ChlG, which is predicted to be an intrinsic membrane
components of nitrogenase09). The ability to trigger the cat- protein of 42 kDa 31). ChiIG catalysis proceeds via a ping-
alytic cycle with short pulses of light has led to a number of pong mechanism in which geranylgeraniol diphosphate (or
kinetic studies 10...21R and recently the structure of LPOR phytol diphosphate) binds first to the enzyme and causes a con-
has been reported Z08). The phylogenetic distribution of formational change in ChlG, allowing it to bind Chlide, the
LPOR and DPOR is interesting: anoxygenic photosyntheticsecond substrate 432). Residues 88...377 are catalytically
bacteria contain only DPOR; cyanobacteria, green algaeactive, and Arg-91, Arg-161, and Cys-109 are critical for the
mosses, and most gymnosperms possess both LPOR argynthase activity 233). The other enzyme involved is gera-
DPOR; and angiosperms (flowering plants) contain only LPOR nylgeranyl reductase, ChIP, which iA. thaliana is capable of
The half-life of DPOR rapidly declines upon exposure to oxygencatalyzing the stepwise reduction of free geranylgeranyl
(213), and possibly this enzyme could not tolerate the advent ofdiphosphate into phytol diphosphate as well as the reduction of
oxygenic photosynthesisA14, 219. Instead, bacteria capable of monovinyl-Chlide agg into monovinyl-Chlide a,, namely Chl
oxygenic photosynthesis are thought to have adapted to thea, (234, 235. Although phytylation exerts only a small influ-
increasing oxygen content of the atmosphere by acquiring theence on the spectroscopic properties of the monovinyl-Chlide
oxygen-insensitive, light-dependent LPOR216). A similar substrate 236), there is a significant increase in hydrophobic-
consideration may apply to the adoption of the oxygen-depen-ity, which is crucial for the assembly and function of Chls within
dent MgPME cyclaseZ17). membrane-intrinsic, light-harvesting, and reaction center
The majority of Chils have a single vinyl group at the C3 complexes. The completion of the Chl biosynthetic pathway
position and an ethyl group at C8. The 3,8-divinyl Chlide necessitates the handover of this pigment from the membrane-
formed by protochlorophyllide reductase is reduced by 8-vinyl intrinsic Chl synthase to the machinery for synthesis of nascent
reductase, also known as divinyl reductase, forming 8-ethylproteins and their insertion into the membrane bilayer. Co-pu-
Chlide (monovinyl-Chlide) (ig. 9. Two groups independently rification of ChlG with the YidC insertase 237) indicates a link
isolated the first gene encoding divinyl reductase, AT5G18660petween Chl biosynthesis and membrane assembly, and the
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Figure 11. Synthesis of bacteriochlorophylls a, g, and b from divinyl-protochlorophyllide  a. There are two types of Chlide oxidoreductases. The type
found in R. sphaeroidesnd most other anoxygenic phototrophs converts Chlida into 3-vinyl BChlidea. However, organisms such adeliobacterium modes-
ticaldum (Hm) that produce BChige or Blastochloris viridighat produce BChib have an enzyme that converts 3,8-divinyl Chlide into BChlidgwhich has an
ethylidene side chain at the C8 position. BChland b are usually esterified with phytol by the BChl synthases (BchG) that occur in those organisms. However,
BChigis esterified with farnesol by the Bchy synthases that occur in heliobacteria. Note that divinyl PChlide is also the precursor for the synthesis of the family
of pigments known as Cht. For additional details, see section OExtension of the pathway beyond Chéitfehl a.O Thehaded boxesurrounding the names of
some compounds coordinate with other pathway figures and the summary ifig. 14

additional presence of Ycf39, HIiD, and HIiC proteins suggestsZn? , or no chelating metal ion (pheophytins). As can be seen
that an element of photoprotection is incorporated into the from Fig. 1Q Chlidea represents a hub intermediate €.a cen-
synthase complex. tral intermediate) for biosynthesis of Chls, b, d, andf (220,
The Chl biosynthetic pathway is usually studied one step at a222, 239. More generally, nearly all Chls and BChls are derived
time, for ease of interpreting kinetic and structural data, but from one of the two central intermediates, divinyl-Chlide and
within the cell, these enzymes must function while bathed in Chlidea. Note that the order of the terminal reactions in cells is
light and in the presence of oxygen generated by photosystenprobably not rigid, because divinyl reductases have somewhat

Il. Itis possible that a large multienzyme assembly could chan-ejaxed substrate specificity and can act before or after D-ring
nel photolabile biosynthetic intermediates between active sites g qyction by PChlide reductase.

minimizing their exposure to light and oxygen. The heterolo-

gous assembly of the Chl biosynthesis pathwayin colipro- 25 extended to produce compounds with enhanced absorp-
vides a platform for investigating the physical and mechanlstlc,[ion in the blue region of the solar spectrum. For example, Chl

2l demonsirates ha, after docades of research, all actor Wich s produced by ading a single enzyme beyond Chile
necessary for the biosynthesis of Chi have now been a(Fig. 10, is an example of an extension of the main pathway to

. . enhance absorption of blue light. On the other hand, the loss of
identified. . - .
a single enzyme can also be sufficient to account for a unique

Extension of the pathway beyond Chlide a/Chla Chl product with enhanced blue light absorption. The absence

Following the evolutionary invention of Chia, high concen- of 8.-vinyl.r.eductase activity .(BciA or BciB). leads to gtraiqs pro-
trations of which absorb light completely in the 400 ...700-nmducing divinyl-Chl a (or divinyl-Chl b) (Fig. 13. This minor
spectral range, light probably became a limiting resource inchemical difference bathochromically shifts the Soret absor-
many niches. To deal with the problem of harvesting light for bance band slightly compared with that of Cha, which allows
photosynthesis in competition with Chla, bacteria, plants, and Cells producing these divinyl-Chls to absorb slightly different
algae evolved other pigmentse(g.carotenoids and bilins) as Wavelengths of blue-green light than Clel or Chl b. The excep-
well as the ability to produce Chls and BChls with different tion to the hub compounds described above is the small family
absorption properties. Fifteen major Chl/BChl species, with of Chls known collectively as Chle. Chlcderivatives are appar-
different tetrapyrrole headgroups, are known, and additional ently produced as derivatives of PChlid&40) and have very
molecular diversity occurs because of esterification by differentstrong absorption in the blue but absorb much more weakly in
alcohols and/or the occurrence of compounds with Mg, thered (240, 24). Unlike most other Chls, members of the Chl

In about half of the cases, the pathway beyond Chlid&Chl a
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¢ family do not have an esterifying alcohol on the carboxyl marina in 1996, which has Chid as its major Chl with only
group of the C17 propionate, and this side chain is oxidized to minor amounts of Chla, validated its occurrence in cyanobac-
contain a double bond in some of the family member240. teria (252, 253. Subsequent studies showed that the original
BChleandf of GSB are also specialist molecules for absorbingeport was probably due to epiphytic cyanobacteria that grew
blue light, but they only gain this emergent property after the on the underside of the red algal fronds264, 253. More
formation of supramolecular aggregates in chlorosomes. Torecently, small amounts of ChH have been found in diverse
date, BChlf is not known to occur naturally, but mutants that terrestrial cyanobacteria that also synthesize Chihen grown
can produce BChIf have been produced and studied in the in far-red light (FRL) 256 ...260 In these organisms, Chdl is
laboratory 242). specifically associated with FRL-photosystem Il but is not pres-
Solar radiation reaching Earth contains only 10% fewer entinthe FRL-photosystem | complexe69, 260. It has been
photons between 700 and 1100 nm than visible light (400 ...708uggested that Chdl may be a component of the electron trans-
nm), so it is not surprising that many organisms evolved Chls/ port chain in such organismsZ60).
BChls to use those wavelengths for photosynthesis as well. Two Numerous studies have been conducted to identify the
Chls (Chld and Chif) and five BChls (BChh, b, ¢, d, andg) have enzyme(s) responsible for the synthesis of Cihin A. marina,
enhanced absorption principally in the far-red/near-IR wave- but to date, the enzyme(s) remains unknown. Labeling studies
length regions. All of these compounds are made by pathwayhave suggested that the oxygen atom in the 3-formyl group is
extensions leading from divinyl-Chlidea or Chlide a. In some derived from dioxygen and that the precursor is Chlida/Chl a,
cases, asingle enzyme can again account for the production of ut otherwise little is known 261). In vitro studies indicate that
new Chl species derived from Chlidea with modified light-  Chld can easily be produced when Chlis incubated with thiol
harvesting potential. In other cases, multiple steps were re-reagents €.gthiophenol or 2-mercaptoethanol) in the presence
quired to produce a compound with beneficial and new light- of oxygen @62), and one report found that the Chla could be

harvesting properties. converted into Chld in the presence of the thiol protease,
) ) papain 63). Areaction mechanism involving thiyl radicals was
The biosynthesis of Chis b, d, and f suggested to play a role in Chil synthesis catalyzed by thiophe-

The addition of a formyl group at the C7 position of Chl, nol (262). Very recently, mutants unable to synthesize the FRL-
forming Chl b (Fig. 10, distorts the -electron system of the specific allophycocyanins associated with growth in FRL were
macrocycle and draws electron density along the @xis atthe found to be strongly depleted or even devoid of Cld (264).
expense of the Qtransition. The Q, axis runs fromring Ato  Unlike most other phycobiliproteins, these allophycocyanin
ring C, and the Q, axis runs from ring B to D; sed-ig. 1forthe  subunits contain 2... 4 cysteine residues that are not involved in
labeled rings in the analogous uroporphyrinogen Il molecule. covalent binding of phycocyanobilin. It is possible that these
This modification attenuates and blue-shifts the Qabsorption  thiol-rich and abundant proteins play a role in producing the
band while red-shifting the Soret band343), which comple- small amount of Chld required for growth in FRL, just as
ments the absorption of Chh. Thus, the major light-harvesting papain doedn vitro (264). Such a mechanism would likely not
complex of plants, LHCII, which binds nearly equal propor- function in A. marina, which produces minimal amounts of
tions of Chl a and b (244), acquires an enhanced capacity for phycobiliproteins that do not contain such extra cysteine resi-
absorbing light. Chla oxygenase (CAO) was discovered bydues; however, some other sulfhydryl-containing small mole-
studying mutants ofC. reinhardtii unable to synthesize Chb cule or cysteine-containing protein could play a role in Chd
(2495. Anin vitro assay for CAO was devised with Chlideas a synthesis in this cyanobacterium.
substrate, which showed that recombinant CAQO frorA. thali- Chl f was discovered less than 10 years ago in a cyanobacte-
ana catalyzes conversion of the C7 methyl to a formy246), a rium derived from a stromatolite found in Sharks Bay, Australia
reaction that requires dioxygen447). The reaction appears to (180, 243, 26k This Chl absorbs maximally at about 707 nm in
proceed by producing #-OH-Chlide a as an intermediate organic solvents, the longest value for any naturally occurring
(248). Collectively, these observations strongly suggest thathlorin described to date 251, 266. Chlf only differs from Chl
CAO catalyzes consecutive hydroxylations of the C7 methyla by having a formyl group at C2 rather than a methyl group
group to produce ageminaldiol intermediate, which can spon- (Fig. 1Q. The oxygen atom of the formyl group has been
taneously dehydrate to produce Chlidb. Although a detailed reported to be derived from dioxygen, but it is unclear whether
structural and mechanistic model is still lacking for CAO, the Chlide a or Chl a is the precursor €67). Chl f synthase was
gene sequence encodes putative binding domains for a Rieskeliscovered to be one of the 20 genes in the far-red light photo-
type [2Fe-2S] center and for a mononuclear nonheme iron. Theacclimation gene cluster by deletion mutagenesis in two cyano-
true substrate could be Chéh, rather than Chlidea (249), which  bacteria 59). Surprisingly, Chif synthase is related to the PsbA
raises the intriguing possibility that CAO could use both free (D1) core subunit of photosystem Il and is a member of the
and protein-bound Chla as substrates. so-called super-rogue PsbA subfamily. These PsbA paralogs are

Chl d was first described as a minor pigment associated withhighly divergent members of the PsbA superfamily and lack
red algae in 1943250). Structurally, itis similar to Chla, except the essential amino acid residues associated with ligation of the
the 3-vinyl group is replaced by a formyl groupHig. 10, which  Mn ,Ca, O water oxidation complex. Deletion of thehlF (for-
causes this pigment to absorb maximally in methanol at 697merly psbA4 gene produced a mutant that was unable to syn-
nm, a red shift of about 35 nm 243, 25). Although initially thesize Chlif and that was unable to grow in FRL259). Heter-
suspected to be an artifact, the discovery dicaryochloris ologous expression othlF genes in a cyanobacterium that
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normally synthesizes only Chh showed that this strain gained  The oxygen-independent E-ring cyclase, found in all bacteria
the ability to synthesize Chf, even if photosystem Il was inac- that synthesize BChils, is encoded lipchE(274), and it obtains
tivated by deletion of the two copies of th@sbDgenes in the the required oxygen for the keto group of the E-ring from water
organism £68). PsbA binds Chla, -carotene, and pheophytin (196). Cobalamin is required for the oxygen-independent
a, and, likewise, purified Chlf synthase is a homodimer that cyclase 167), and in the mechanism proposed for the anoxic
binds these same cofactors. Furthermore, the GHiliosynthetic  reaction, adenosylcobalamin forms an adenosyl radical, which
reaction is light-dependent and sensitive to 3-(3,4-dichloro- in turn leads to the formation of the 13-radical of MgPME.
phenyl)-1,1-dimethylurea, which suggests that it may act byWithdrawal of an electron forms a 13-cation, which reacts
transferring electrons to plastoquinone259, 268. Although it~ with water to form the 13'-hydroxy intermediate of MgPME.
was initially hypothesized that the substrate CH or Chlide Finally, the withdrawal of three hydrogen atoms leads to the
a molecule might bind in a pocket formed by the missing eventual cyclization and formation of PChlide. BchE, which is a
Mn,Ca,O; cluster, more recent site-specific mutagenesismember of the radical SAM superfamily, contains an Fe/S clus-
experiments suggest that the substrate may bind in a peripherater that may be involved in the initial electron transfer steps of
site analogous to the Chiz, binding site of photosystem IE To  the mechanism 275).

date, noin vitro enzymatic assay system has yet been developed All photosynthetic organisms except angiosperms have the
for this enzyme. The development of such a system will be theDPOR, which catalyzes reduction of the C17C18 double bond

key to learning more about this interesting reaction. using a heterotrimeric complex resembling nitrogenase con-
_ _ sisting of BchL, BchN, and BchB subunit${g. 11). Ferredoxin
The biosynthesis of BChilsa, b, and g functions as an electron donor, and the enzyme consists of a

Some of the biosynthetic steps leading to BChdsb, andgare  BchL homodimer as a reductase component that contains an
similar to those for the Chla pathway but use enzymes that 0Xygen-sensitive [4Fe-4S] cluster and a BchN-BchB heterote-
have evolved to function in the oxygen-limited, even anoxic,tramer as the catalytic component. The crystal structure of
conditions experienced by purple phototrophic bacteria. Thus, BchL from R. capsulatusdetermined with bound MgADP to
the BChl pathway F|g 1]) includes an Q-independent E_ring 1.6 A resolution Q76), shares overall structural SImI'arlty with
cyclase and a DPOR reminiscent of nitrogenase, which prothe Fe protein of nitrogenase, including the [4Fe-4S] cluster and
duces Chlidea, and a paralogous enzyme, Chlideoxidoreduc- the nucleotide-binding sites. Crystal structures of the BchN-
tase (COR), that reduces it to form bacteriochlorophyllide BchB protein from R. capsulatuswere solved both in the
(BChlide)a (222). As noted above, divinyl-Chlide can be con- PChlide-bound and PChlide-free forms at2.3and 2.8 Aresolu-
sidered as a hub for biosynthesis of nearly all Chls and BChistion, respectively 77). Subsequently, the X-ray crystallo-
and indeed by switching the enzymes that feed off this centrallygraphic structure of the 360-kDa Bchi-(BchN-BchB), transi-
important pigment, itis possible to convert a phototrophic bac- tion state complex was solved with bound PChlid&{8). The
terium, R. sphaeroidego the synthesis of Chh (269). proposed reaction mechanism of DPOR involves ATP-depen-

The first committed step of BChl biosynthesis is catalyzed bydent electron transfer from the [4Fe-4S] cluster of BchL to the
magnesium chelatase, but there are some aspects of thigFe-4S] cluster of (BchN-BchB) which houses the active site,
enzyme complex that differ from the Chl-specific version, nota- Where coupled electron and proton transfers reduce the
bly the absence of an analog of Gun4, which is so important forC17 C18 double bond of PChlide.
chelationin vivo (184), and the presence of an Fe/S clusterinthe BChl a has an ethyl group at C8, and the variety of 8-vinyl
BchH subunit 270). Although the role of this cluster is not reductases reflects the importance of ensuring the proper for-
known, it probably has some regulatory significance related tomation of this side chain. Some early reports suggested that the
the need for bacteria such aR. sphaeroide® control levels of Vinyl reductase oR. capsulatusvas encoded bypch)279), but
BChl in response to oxygen concentration. It is interesting that inactivation of bchdin C. tepidumdoes not block the reduction
the ferrochelatase in this bacterium, which catalyzes the forma-of the C8 vinyl group but did result in the excretion of large
tion of heme at the other step at this biosynthetic branch point, @mounts of divinyl-PChlide into the growth medium 220).
may also have an FeS clustgfThe ferrochelatase from oxy- This phenotype suggests that BchJ might play a role as a chap-
genic phototrophs is no less important, given the need to con-€rone in the BChl biosynthetic pathway, but this has not been
trol partitioning between the heme/bilin and Chl branches of verified experimentally.R. sphaeroidetas BciA @24), and a
tetrapyrrole biosynthesis, but in this case, the catalytic core issecond type of 8-vinyl reductase, BciB, is found in GSB2(,
attached to a hydrophobic C-terminal, CAB (Ché/b-binding) 228), some purple bacteria, and some filamentous anoxygenic
domain with a putative Chl-binding motif 271, 273. Clearly, Pphototrophs (221, 22§. C8-vinyl Chlide, rather than C8-vinyl
this partitioning is too important to be left solely to the respec- PChlide, is the preferred substrate for both BciA and BeiBg0,
tive activities and catalytic mechanisms of the magnesium and281). BciB from the GSBChloroherpeton thalassiunwas pro-
Fe chelatases, and iR. sphaeroideghe PufQ protein binds to duced recombinantly inE. coli it has two [4Fe-4S] clusters and
ferrochelatase and makes sufficient ProtolX available for BChian FAD cofactor, andn vitro assays showed that BeiB is a ferre-
synthesis 273). doxin-dependent 8-vinyl reductase228). Intriguingly, COR

(Chlide a oxidoreductase), which reduces the C7C8 double

bond of Chlidea, also possesses 8-vinyl reductase activ2g(),
5. Shen and D. A. Bryant, unpublished observations. so the COR-type 8-vinyl reductase represents a third class of
® A. Hitchcock, personal communication. this enzyme.
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The hallmark of BChls is their absorption in the near IR, its attachment to the C17 propionate side chain of BChlide
which in organic solvents is bathochromically shifted by abouta (Fig. 9. Geranylgeranyl-reductase (BchP) catalyzes the
100 nm with respect to Chla. Two major modifications of the NADPH-dependent stepwise reduction of free geranylgeranyl
8-ethyl Chlide a macrocyle are responsible for this absorption diphosphate into phytol diphosphate as well as the reduction of
shift. The 3-vinyl moiety of ring A is converted to a 3-acetyl BChlide a-geranylgeranyl into BChlidea-phytyl, namely BChl
group, and the C7 C8 double bond of ring B is reduced. a (292, 293. The attachment of either geranylgeranyl diphos-
Together, these changes alter the distribution of the-electron  phate or phytol diphosphate to BChlide is catalyzed by BChl
system, away from the Bring andtoward thering A...C{@axis, synthase Fig. 11). Early genetic studies showed thaichG
promoting strong absorption that is bathochromically shifted encodes BChl synthase iR. sphaeroideand R. capsulatusas
from 661 to 734 nm for BChlidea. The enzymes involved in mutations of this gene accumulate BChlida and lack BChla

these steps are as follows: COR (BchXYZ) catalyzes the redu¢294, 295. Subsequently, BChl synthase assays were developed

tion of the C7 C8 double bond of ring B; 3-vinyl BChlidea using extracts from E. coli overexpressingbchG (296, 297.
hydratase (BchF) is responsible for the hydroxylation of the(B)Chl synthases exhibit a high degree of specificity for the tet-
3-vinyl group; and 3-hydroxyethyl (3HE)-BChlida dehydro- rapyrrole substrate; ChliG from Chl-containing organisms can
genase (BchC) converts the 3HE group to the 3-acetyl grouponly utilize Chlide a and not BChlidea, whereas BchG from
(Fig. 17 (222). The order of the two steps catalyzed by COR andBChl-producing organisms can only utilize BChlida and not
3-vinyl BChlide a hydratase was shown to be interchangeableChlide a (297...299 Competitive inhibition of the ChIG of Syn-
by the isolation of a BChl intermediate, 3-vinyl BChlida (282). echocystisp. PCC 6803 by BChlida or of BchG of R. spha-
COR, as a second nitrogenase-like enzyme in (B)Chl biosyneroidesby Chlide a was observed, suggesting that the active
thesis, shares many similarities with DPOR, not only in the sites of ChlG and BchG are structurally simila300). lle-44 of
reaction chemistry but also in enzyme composition. This simi- Synechocytisp. PCC 6803 ChlG and Phe-28 &. sphaeroides
larity extends to the CfbC/D proteins that catalyze reduction of BchG were found to be responsible for the tetrapyrrole sub-
Ni? -sirohydrochlorin a,c-diamide to Ni? -hexahydrosirohy- strate specificity based on the experimental evidence that the
drochlorin a,c-diamide (283), a step in the biosynthesis of coen- ChlG 144F mutant has activity with BChlidea, whereas the
zyme F,5, (see above). Genetic studies &. sphaeroidesind BchG F28I mutant has activity with Chlidea (301).
R. capsulatugevealed the three genedchX bchy, andbchz As with Chl, completion of the BChl biosynthesis pathway is
that encode COR 274, 284, 28h R.capsulatusCOR was followed by transfer of the final product to the membrane-em-
reconstituted with purified BchX and BchY-BchZ proteins bedded machinery for photosystem assembly. IR. spha-
using the same biochemical approaches applied to reconstituteeroides BChl synthase associates with the protein translocase
DPOR, and, as expected, COR requires ATP and dithionite forsubunit YajC and the YidC membrane protein insertase and the
activity (286). Furthermore, the recombinant COR fronRoseo- assembly factor for the light-harvesting 1 complex, Lha&(@2).
bacter denitrificanswas used to study the substrate binding and It was proposed that membrane nanodomains foster interac-
catalytic mechanism 287). COR is able to use substrates with tions between pigments produced by BchG and nascent pro-
modifications on rings A, C, and E, but not with modifications teins within the SecYEG-SecDF-YajC-YidC assembly machin-
of the C17-propionate group. EPR revealed the presence of ary to coordinate assembly of this light harvesting complex.
[4Fe-4S] cluster in (BchX)and a second [4Fe-4S] clusterinthe  BChl b has the most red-shifted absorbance known among
(BchY/BchZz),. photosynthetic organisms, and the monomer in diethyl ether
Formation of the 3-acetyl group of BCh& proceeds through absorbs at 795 nm. This shift, relative to BCllabsorbing max-
the action of a hydratase and then an oxidation/dehydrogenasemally at 771 nm, arises from the influence exerted by the C8
step Fig. 11); the participation of a hydratase was shown by ethylidene group on the -electron system of the macrocycle
80-labeling and MS (96). 3-Vinyl BChlide a hydratase is (281). Remarkably, incorporation of BChb within the light-
encoded by thébchFgene @84, 288. Biochemical characteriza- harvesting LH1 complex oBlastochloris viridismparts a much
tion of this enzyme, which was produced by heterologous over-larger bathochromic shift to 1023 nm, the basis of which was
expression ofC. tepidum bchF revealed an integral transmem- revealed by the 2.9 A structure of the RC-LH1 comple803).
brane protein that converts Chlidea to 3HE Chlide a (289). This red shift is much larger than that seen for BChd bound
BchF produces primarilyR-stereochemistry at the chiral C3  within the light-harvesting 1 complex ofR. sphaeroidgsvhich
position. This is essential because the next step in the pathwaybsorbs maximally at 875 nm 304).
is catalyzed by an NAD-dependent dehydrogenase; such Tsukataniet al. (281) overexpressedbchXYZof B. viridis in
enzymes require specific substrate chirality for their action. E. coliand showed that the recombinant proteins converted the
The oxidation of the 3HE to form a 3-acetyl group is catalyzed 8-vinyl group of 8-vinyl Chlide a to a C8-ethylidene moiety,
by the product of the bchC gene @90, 29). The C. tepidum yielding BChlideg Subsequent action by Chydratase (BchF)
bchCwas overexpressed i&. coliand subsequently purified as and dehydrogenase (BchC) enzymes convert the C3 vinyl side
a soluble BchC-NAD complex, which was shown to have chain to an acetyl group, producing BChlidé, which would
broad substrate specificity: modification of the E ring is toler- become BChlb upon esterification of the C17 propionate by
ated, the central M can be omitted or replaced with ZA ,  phytol (Fig. 11). Thus, the activity of the COR (BchXYZ) from
and a nonreduced B ring is also accepte®g9). B. viridis, which catalyzes the formation of the C8-ethylidene
The final steps of BChl biosynthesis are similar to those forgroup, is distinct from the COR (BchXYZ) ofR. sphaeroides
the Chl pathway, namely the reduction of geranylgeraniol andthat also possesses 8-vinyl reductase activi§8(). Each of
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Figure 12. Synthesis of bacteriochlorophylls c, d, g and f from chlorophyllide a. Purified BciD is active with both BChliddand BChlidecas substrates. The
conversion of the C7 methyl group to a formyl group proceeds via a geminal diol intermediate that spontaneously dehydrates to produce the formyl group.
Esterifying alcohols are added by BchK in all cases. BG@hésd d are characteristically found in green-colored green bacteria, whereas BGhind f are
produced by brown-colored green sulfur bacteria. Note that BChhas not been observed in nature; however, it has been generated by mutationla¢hUin

C. limnaeumand can still produce functional chlorosomes (see sectio€RlorobiumChls: BChls, d, e, and fO for more details). In green sulfur bacteria, the
esterifying alcohols of BChls, d, ¢ andf are usually farnesolR) (seeinset showing a farnesol group attached to ring D of a partial macrocycle). However, in
members of the Chloroflexi andC. thermophilumthe esterifying alcohols are often highly variable and are frequently straight-chain alcohols or geranylgeraniol
and its reduction products. All alcohols are added by BchK enzymes that are specific to individual organisms. In green sulfur bacteria and some other greerx
bacteria, the ethyl side chain at C8 can be methylated by BchQ to produce propyl, isobutyl, and neopentyl side chainsisgad). Similarly, the methyl group

at C12 can be methylated by BchR to produce an ethyl side chain. Tasterisknear the hydroxyl group at C3indicates that this is a chiral center that is mostly
Rbutis Swhen the side chains at C8 and C12 are more extensively methylated. Bhaded boxesurrounding the names of some compounds coordinate with
other pathway figures and the summary irFig. 14

these auxiliary functions augments the central Chlida oxi- unknown. Finally, Acidiphilium rubrum exclusively produces
doreductase activity. Starting from an engineered strain ofZn-BChl a (309), and the reaction centers o€hloroacidobac-
R. sphaeroidethat produces BChlb, inactivation of the bchF  terium thermophilum have a Zn-BChla, dimer as the special
gene and replacement of the natiiechGgene withbchGfrom  pair (308, 310, 31). It is unknown how Zn?  replaces M¢
Heliobacterium modesticaldunresulted in a strain that pro- either case, but this is especially perplexing in the latter case,
duced BChlg., BChl g esterified with farnesol Fig. 11, again becauseC. thermophilummostly synthesizes BChd and Chla
demonstrating that enzymes and reactions leading to BChls arecontaining Mg?  ions.
now largely understood 805).

A few puzzles still remain to be elucidated, however. The Chlorobium Chis: BChisc, d, e, and f
reaction centers oH. modesticalduncontain four moleculesof ~ Green bacteria are a highly diverse ensemble of bacteria from
8-hydroxy-Chl a (306), and whereas this Chh derivative can three phyla, Chlorobi, Chloroflexi, and Acidobacteria, but they
be produced spontaneously when BChl is exposed to oxygen share two interrelated and defining properties. All green bacte-
(307), it seems highly unlikely that this occurén vivo because ria employ chlorosomes as the light-harvesting antenna for
this bacterium is a strict anaerobe and is rapidly killed in the phototrophic growth, and each green bacterium can synthesize
presence of oxygen. A second unresolved issue concerns thene member of the so-called@hlorobium ChisZ {.e.BChlc, d,
stereochemistry of the methylcarboxyl moiety at CE3Bulk e, orf) (222, 312, 313 These molecules are not actually BChls
Chls and BChls haveR-stereochemistry at C13 but small but are in fact chlorins, and, compared with Ché, they have
amounts of pigments withS-stereochemistry at this position two important modifications. They have a hydroxyl group at
occur in reaction centers. Heterodimeric type-1 reaction cen- the chiral C3" position, and they lack the methylcarboxyl group
ters, such as photosystem I, have a heterodimer of Gl (R) at C1F (Fig. 12. These two modifications allow these BChls to
and Chla, (9 as the special pair P700, whereas homodimericform protein-free, supramolecular aggregates in chlorosomes
type-1 reaction centers have special pairs that are either BCh(314), the structures of which are now known315...318 These
ap, BChl g-, or Zn-BChl a5 (241, 308. How these C13 supramolecular aggregates have emergent absorption proper-
epimers of BChlsa,, BChl g-, and Chl a, are produced is ties that are not observed for the monomeric BChls in organic
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solvents. For example, BCldhas an absorbance spectrum that perform up to three methylations of the terminal carbon atom
is very similar to that of Chla in methanol with a maximum at of the C8 ethyl group of 3-vinyl-BChlided, producing com-
approximately 663 nm, but BChic in chlorosomes absorbs pounds with n-propyl, isobutyl, or neopentyl side chains at C8.
maximally at about 740...750 nn31(2, 313. This large batho- These methylations fine-tune the absorbance maximum of the
chromic shift allows organisms with BChic to harvest light BChlaggregatesin chlorosomes and additionally affect the half-
efficiently even if they are growing beneath a layer of organismsandwidth of the emergent far-red absorbance maximum of
containing Chl a. Correspondingly, BChise and f produce the chlorosomes. One can rationalize these methylation reac-
emergent, strong absorption bands between 500 and 550 nm inions as the equivalent of changing the protein environment of
the blue-green region of the visible spectrum, which allows chromophores in other light-harvesting antenna systems. The
these organisms to grow at much greater depths in aquaticpacking of the BChl aggregates in chlorosomes is affected
environments @42, 319. locally by changes in methylation, and this produces inhomo-
The determination of the genome sequence for the naturally geneous broadening of the near-IR absorbance band, which
transformable GSBC. tepidum in 2002 provided an initial jncreases the probability of photon capture by the antenna pig-
opportunity to search for the genes for BChibiosynthesis 820, ments over a broader range of wavelengths (see R826and
321). C. tepidumnaturally synthesizes three Chis/BChls: BChl 357t0r further details).
¢ esterified with farnesol, Chl, esterified with  2,6-phyta- The next step in this pathway is catalyzed by &8inyl hydra-
dienol, and BChla, esterified with phytol. The C. tepidum tase, BchF, which is shared with the pathway to BChIn these
genome encoded three ChI/BChI synthases (ChiG, BchG, andganisms and produce®-stereochemistry at the chiral car-
BchK), and deletion obchKimportantly showed that this gene 4, o1 Bchv, which preferentially uses substrates with multi-
e_ncoded the BCht synt_hase and th_at cells_ lacking BChlwere ple methyl groups and preferentially produceS-stereochemis-
viable 322). These findings made it possible to search for thetry at the chiral carbon €ig. 13 (222, 328. A bchFmutant of
other genes required for BCht biosynthesis by bioinformatics, tepidummakes significantly less BCHi, increased levels of
neighborhood analysis, and reverse genetics approaches, whi \inyl-BChl a, and less BCht than the WT (329). The BChic
led to the elucidation of the entire pathway to these BChls (Seehomologs in t,his mutant are primarily S-epimers, and com-

Ref.222f0r a deteyled reweyv). . . pared with WT, the BChlchomologs in the mutant were more
The first committed step in synthesis of BChls, d, e, andfis hiahl hvlated at the C8 ition. A behV h
removal of the C18 methylcarboxyl group and branches from '9 y methylated at the C8 position. AbchVmutant synthe-

sized less BCht than the WT, and most of the BChlc had

the hub compound Chlidea (Fig. 1. The bciC gene Fhat R-stereochemistry at C3. The amounts of ethyl and propyl side
encodes the demethoxycarbonylase enzyme was identified bghains at C8 were similar to WT. but almost no BCht with an

phylogenetic profiling, mutagenesis of the corresponding gene . . . . .
in C. tepidum, and biochemical characterization of the mutant isobutyl side chain at C8 was observed. Studies with recombi-

(323). The mutant was unable to synthesize BChland accu- n_ant BehF and BCh_V_ conf_irmed that these enzymes have €-3
mulated excess Chlida. More recently,bciC was successfully vinyl hydratase activity with a broad range of substrateBE_{O,
expressedirk. coli and the enzyme was shown to be active with 33})' _Brown-colored GSB that sy_nthe5|_ze BChihave a .th'rd
Chlidea, 8-vinyl Chlidea, and some other substrates but exhib- C3"vinyl hydratase member of this famlly, but the function of
ited a preference for Chlidea (324, 325. No activity was that enzyme is unknown at presgnt. Itis notenurely cIear why
observed with porphyrin derivatives or when the CE3nethyl- GSB have tvv_o_or even 'Fhree isoenzymes for this tsmy_l
carbonyl group hadS-stereochemistry, and the reaction was nydratase activity; nor is it clear what the value of producing
not inhibited by methanol, suggesting that the enzyme is aBChls with different stereochemistry at CBmight be.

demethoxycarbonylase and not a methylesterase. These results Brown-colored GSB synthesize BCIg, and unlike BChisc
demonstrate that BciC catalyzes the formation of 3-vinyl- @ndd, this pigment forms supramolecular aggregates in chio-
BChlide d from Chlide a as the first committed step in the "0SOMes that have greatly enhanced absorption in the blue-
pathway to BChld and BChic. green region of the visible spectrum. Because of this, these
The next reactions in the pathway may not occur in a specific organisms characteristically occur at greater depths in aquatic
order. Because methylation at the G8and C12 positions €nvironments, the most extreme example being a stable popu-
affects the chirality of the product of the C3 vinyl group hydra- lation of GSB that occurs 110 meters below the surface of the
tion reaction, it seems likely that these two methylation steps Black Sea%32, 333. Bioinformatic comparisons of green- and
can precede hydration. However, in some straine.¢. Chloro- brown-colored strains identified a small cluster of genes
flexussp.) and inbchQandbchRmutant strains, these reactions uniquely found in BChl e...producing organisms3@g4...336
do not occur at all, and the downstream reactions still occur. One of the genes in this clusterbciD, encoded a member of
For example, hydration of the C3 vinyl group occurs (with the radical SAM superfamily. Deletion of thebciD gene in
mostly R-stereochemistry) in bchQ and bchR mutants, so the model, brown-colored GSBChlorobaculum limnaeum
clearly the C3-vinyl hydratase enzyme, BchF, does not requirsshowed that this gene was necessary for BGhbiosynthesis
methylated substrates for its activity (see BCHl discussion (336, 33%. Studies with recombinant, reconstituted BciD
above). The C8 (BchQ) and C12 (BchR) methyltransferase showed that this radical SAM enzyme is sufficient for BCldl
enzymes are members of the radical SAM methyltransferaséiosynthesis; it catalyzes two successive hydroxylations of the
superfamily 22, 32§. BchR can methylate the C12 methyl C7 methyl group of BChlidecor BChlided to yield BChlideeor
group to produce an ethyl side chain at this position. BchQ can BChlidef, respectively 836). The resultinggeminaldiol inter-
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Figure 13. Synthesis of bilins from biliverdin, which is formed from heme  b. Biliverdin is produced by the oxygen-dependent cleavage of henteby the
enzyme heme oxygenase. Regio-specific ferredoxin-dependent bilin reductases lead to phytochromobilin, phycocyanobilin, and phycoerythrobilin, and 2
biliverdin reductase produces bilirubin. Note that phycoerythrobilin can be synthesized by one enzyme (PebS) or in two steps by PebA and PebB via ac
17,18-dihydrobiliverdin intermediate. Phycoviolobilin and phycourobilin are produced from phycocyanobilin and phycoerythrobilin, respectively, by isomer-
ization, which occurs during the attachment of these bilins to proteins by isomerizing bilin lyasd&VRbiliverdin reductaseHY?2 phytochromobilin synthase.
See section OBilins: Chromophores of phycobiliproteins, phytochromes, and cyanobacteriochromesO for additional detagbabeel boxesurrounding the
names of some compounds coordinate with the summary iRig. 14

apeojumoq

mediates presumably lose water spontaneously to produce the The branching pathways for the synthesis of these four BChls
C-7 formyl groups of BChle or BChlf, respectively Fig. 19. terminate like those of all other Chls and BChls with a Chl/BChl
BChl ¢ and BChl e have a methyl group at C20, which is synthase that adds the esterifying alcohol moiety to the tet-
introduced by BchU, the C20 methyltransferase. Inactivation of rapyrrole headgroup Fig. 12. As noted above, biochemical
the bchUgene inC. tepidumproduces a strain that synthesizes studies have shown that (B)Chl synthases exhibit strong sub-
BChld, and a strain that naturally produces BChd was further  strate preference for the tetrapyrrole but much lower specificity
shown to carry a frameshift mutation in thebchU gene @27). forthe esterifying alcohol 842, 343. The genome ofC. tepidum
The crystal structure of dimeric BchU has been determined and other green-colored GSB encode three (B)Chl synthases
(338), and the C3 hydroxyl group appears to be an important (320), and phylogenetic analyses indicated that thbchG
determinant of substrate binding, suggesting that C20 methyl-(CT1610) andchlG (CT1270) genes were likely to encode the
ation follows hydration of the C3 vinyl group. Growth compe- BChl a synthase and Chk synthase, respectively3@2). The
tition studies with FRL show that cells producing BChdihave a bchGgenes ofC. tepidumand Chloroflexus aurantiacusvere
growth advantage over otherwise identical cells producingidentified by functional complementation of ebchGmutant of
BChld. Mutation of the bchUgene inC. limnaeum, which nor-  the purple bacteriumR. capsulatug344), which confirmed that
mally produces BCheg, yielded a mutant with chlorosomes con- ORF CT1610 of theC. tepidumgenome was BChh synthase.
taining BChl f, an anticipated pigment that has surprisingly Heterologously produced BchG showed strong substrate spec-
never been observed naturally242, 339. The mutants grew ificity for BChlide a and was unable to esterify BChlide or
more slowly under low light intensity than the WT, probably Chlide a (343). However, when farnesyl-pyrophosphate was
because energy transfer from BClilto BChl a in the chloro- provided as the other substrate instead of geranylgeranyl-pyro-
some baseplate was less efficient than for BGhto BChl a  phosphate, BchG readily catalyzed the formation of BCaL.
transfer 319, 340. The triplet excitonic state of BChffis more No in vitro or in vivo complementation experiments for the
favorable energetically for the production of singlet oxygen chlGgene of GSB have yet been described. However, character-
than the triplet excitonic states of BChlg, d, and e, and this ization of bchPandbciC mutants of C. tepidumled to the infer-
difference could lead to excessive oxidative stress when cellence that ChlG can use geranylgeranyl diphosphate as a sub-
producing BChlf are exposed to high light. The energy levels ofstrate 222).
the triplet excitonic states of the naturally occurring BChls, d, Inactivation of the third synthase genebchK produced a
andemay provide some natural protection against the produc- mutant that could no longer synthesize BChd., thus establish-
tion of singlet oxygen and associated oxidative stressgreen ing clearly that BchK is BChk synthase that adds the farnesyl
bacteria 341). For all of these reasons, BClilseems not to tail to BChlide ¢ (322). BecausébchU mutants of C. tepidum
occur naturally, making it a sforbiddenZ BChl242, 319, readily synthesize BChil., BchK must additionally be able to
339..341). utilize BChlide d as a substrate 327). The bchK mutant is
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Figure 14. Summary overview of the entire tetrapyrrole biosynthetic network. ~ Those aspects of life on Earth that depend on tetrapyrroles are shown at
the periphery inboxeswith black outlinesadjacent tocolor-coded squardbat correspond to various tetrapyrrolesColor-coded boxespecify the functions of
nearby tetrapyrroles. Theolorsused in this figure coordinate with thecolored boxeassociated with the names of end-product compounds in other figuresin
this article. The link to central metabolism is indicated, which provides the starting point for the entire network. Note that all compounds produced in this
pathway ultimately are derived from uroporphyrinogen Ill. Note also that hemtearises as a respiratory cofactor and as a precursor of henegd, ando and
biliverdin IX. Hemeb also arises separately in archaea and sulfate-reducing bacteria as a cofactor for nitrogen and sulfur metabolism.

unable to synthesize BCH, so it is likewise unable to produce though it had not yet been named at the time, BCldsynthase
functional chlorosomes and instead produces vestigial chloro-activity was demonstrated with a BchG paralog fro@. auran-
somes filled with carotenoids (scarotenosomesZ32Q). Al- tiacus(343). Some GSB produce a paralog of BchK, denoted as

J. Biol. Cherf2020) 295(20) 68886926911
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BchK2 (222, 336, and interestingly, all BChe...producing GSB source of both heme and iron under these growth conditions.
produce at least one BchK2 paralog. At present, the roles off o release Fe, however, pathogens must cleave the heme mac-
these paralogous BChdsynthases are unknown. Feeding stud-rocycle. Whereas it has long been known that some pathogens
ies with C. tepidumprovided with a wide variety of exogenous use Hox1 or Hox2 to perform this task, it has recently been
alcohols suggest that the substrate specificity of BchK for thediscovered that other types of heme oxygenases occur among
esterifying alcohol is extremely broad and is primarily driven by bacteria (and eukaryotes). A second major family of heme oxy-
substrate availability 842, 345.349). genases, the 1sdG family, comprises proteins that are structur-
Sequential reduction of geranylgeraniol as the free pyrophos-ally distinct from HO-1 and related enzymes, and whereas
phate or as the alcohol after attachment to a tetrapyrrole head-HO-1 enzymes produce biliverdin and carbon monoxide as
group leads to 2,6-phytadienol or phytol, the esterifying alco- products, IsdG family members produce several different bilin
hols of Chla, and BChlag, respectively. BChh...producing products and only sometimes release carbon monoxide. 1sdG
members of the phylum Chloroflexi and the acidobacterium family members have been identified in all three domains of life,
C. thermophilumhave single copies dbchP, which thus must and several examples have been characteriz8thphylococcus
be responsible for the synthesis of phytol or both phytol and aureus produces two members of the IsdG family, IsdG and
2,6-phytadienol, respectively222). However,C. tepidumhas Isdl, which produce formaldehyde and estaphylobilin,Z a mix-
two bchPparalogs, and a few GSB have more than two. A nullture of 5-oxo- -bilirubin and 5-oxo- -bilirubin (358). The
mutant of one of these, denotetichP, showed that the product MhuD enzyme ofMycobacterium tuberculosiproduces myco-
of this gene is required for geranylgeranyl reductase activitybilin, which is a derivative of 5-oxo- -bilirubin in which the
(293, 350. More recent studies have shown that the secondbridging carbon is retained as a formyl group369 ...36)]L
paralog, formerlybchOand now renamectrul to reflectitsrole  The green algaC. reinhardtii, can produce two members of the
in carotenoid biosynthesis, reduces the 1,2-double bond oHO-1 family and one member of the IsdG family. The bilin
chlorobactene 851). In organisms with otherbchP paralogs, product of the latter enzyme has not yet been structurally char-

the substrates are unknown. acterized, but it is known to be distinct from biliverdin and the

. - ) products of other IsdG-type enzymes362). Recently, ChuWw, a
Bilins: Chromophores of phycobiliproteins, novel oxygen-independent, heme-degrading enzyme from
phytochromes, and cyanobacteriochromes Escherichia colD157:H7, has been described. This enzyme is a

Bilins are linear tetrapyrroles derived from heme, are found member of the radical SAM methyltransferase family that pro-
in all domains of life, and perform a wide range of functions. duces a linear tetrapyrrole, anaerobilin, by cleavage of heme in
Biliverdin IX is a green-colored bilin that is the primary prod- the absence of dioxygen366). Finally, there are possibly two
uct of heme catabolism. Itis derived from the dioxygen-depen- other families of heme-degrading enzymes, but key details of
dent cleavage of the heme macrocycle of hemoglobin of eryththe reactions these enzymes catalyze and the products they
rocytes in animals by a reaction catalyzed by heme oxygenaséorm are still unknown (357).

In humans, biliverdin IX is usually rapidly reduced by Phycobiliproteins are brilliantly colored, water-soluble,
NADPH-dependent biliverdin reductase to produce the yel- light-harvesting proteins found in cyanobacteria and in red
lowish tetrapyrrole, bilirubin (352). Both compounds have algae, glaucophytes, and cryptomonads. The subunits of these
antimutagenic and antioxidant properties, and both are potent proteins carry one or more bilin chromophores, which are
scavengers of peroxyl radical8%3, 354. Further reduction of bound to the proteins via thioether linkages to cysteine resi-
bilirubin in the colon leads to the production of stercobilin, a dues. Phycocyanobilin and phycoerythrobilin are the most
compound responsible for the brown color of human feces. In common chromophores 16, 363. Cyanobacteria typically have
fungi and bacteria, biliverdin IX is the light-responsive chro- two forms of heme oxygenase, one of which is produced con-
mophore of phytochrome photoreceptorsZ0, 355. stitutively (Hox1) and another that is synthesized under

Heme oxygenases occur in all three domains of life, but atmicrooxic conditions (Hox2) 364). In plants, algae, and cyano-
least five families of heme-degrading enzymes have now beebacteria, various bilins are produced from biliverdin by
described (5, 16, 20, 355...3p7The canonicalZ heme oxyge- enzymes known as ferredoxin-dependent bilin reductases
nase, HO-1, of eukaryotes and some aerobic bacteria cleavésEDBRS) (for a review, see Réf7). For example, phycocyano-
heme releasing biliverdin IX, ferrous iron, and carbon mon- bilin is produced from biliverdin IX by PcyA €ig. 13, which
oxide (15, 19. The enzyme catalyzes cleavage of the heme ringarries out two successive regio-specific reductions by a radical
atthe -mesabridging carbon to form biliverdin X inareac- mechanism (7, 365. Phycoerythrobilin, which is an isomer of
tion that proceeds by three successive monooxygenase-likphycocyanobilin, can be produced by three different enzymes
reactions with -mesehydroxyheme and verdoheme interme- (17). PebA and PebB are members of the FDBR family of
diates. In humans, much of the heme oxygenase activity i®nzymes and can catalyze successive reductions of biliverdin to
found in the spleen, which can degrade up to 1% of erythro- produce phycoerythrobilin via a 15,16-dihydrobiliverdin inter-
cyte heme per day, accounting for about 80% of the daily pro-mediate 366). Alternative FDBR family members, PebSg7)
duction of carbon monoxide. and PcyX @68), were found in marine viral genomes and can

An extremely important virulence determinant among catalyze two reduction steps via a different intermediate than
human pathogens is the capacity to obtain Fe when living insidePebA/PebB to produce phycoerythrobilinKig. 13 (18).
the host. Iron (and heme) trafficking is very tightly controlled  In addition to their important roles in light-harvesting
and regulated in animals, and hemoglobin is an abundantproteins, biliverdin, phytochromobilin, phycocyanobilin, and

6912 J. Biol. Cherf2020) 295(20) 6888 D6925

0202 ‘g aunc uo 1sanb Ag/B1o ogl-mmmy/:dnyuol) papeojumoq



JBC REVIEWSBIiosynthesis of modified tetrapyrroles

phycoviolobilin can be covalently bound to GAF domains pin respiration, nitrogen and sulfur metabolism, mammalian
of phytochromes and phytochrome-like cyanobacteriochrome metabolism, methanogenesis, and photosynthesis, and a
photoreceptors (9). GAF domains (cGMP-specific phos- scheme depicting the complete network of tetrapyrrole biosyn-
phodiesterases, adenylyl cyclases, and FhlA) occur in diverghetic reactions is shown inFig. 14
proteins and are structurally related to Per-Arnt-Sim (PAS)  Given the fundamental importance of the tetrapyrrole mac-
domains, both of which frequently occur in sensory proteins. rocycle for the functional roles of hemes, Chls, vitamin,B and
Cyanobacteria do not naturally synthesize phytochromobilin, coenzyme E5, it is significant that this vital framework is
but this chromophore binds to GAF domains of plant phyto- established almost at the outset, with just three steps required
chrome photoreceptors and is photoactive. Phycoviolobilin is to form uroporphyrinogen Il from ALA. Uroporphyrinogen Il
produced by isomerization of phycocyanobilin after covalentis the precursor for vitamin B, and coenzyme 5, and only
attachmentto the Cysresidue inthe GAF domain. Several othertwo more steps are required to form the Copro Il and Proto IX
mechanisms, including protonation of the bilin, cysteine precursors of other hemes and bilins and of the myriad Chl and
adduct formation to the central bridging carbon of the chro- BChl pigments that collect the solar energy that powers much
mophore, and steric hindrance, can all be used to further tuneof the biosphere. The intermediates and final products in the
the wavelength response of cyanobacteriochromes and phyto€hl and BChl branches inFig. 14are notable for their light-
chromes (9). Thus, members of this family of photoreceptors absorbing properties, and as one moves along each branch of
can sense and respond to light wavelengths between 350 anthese pathways, there is a progression in their abilities to selec-
750 nm. tively absorb certain parts of the solar spectrum. The Granick
Attachment of bilins to phycobiliprotein subunits usually hypothesis, proposed over 70 years ago, suggests that pathways
requires specific lyases, some of which are also bilin isomeraseasy/olve as organisms evolve (and conversely, organisms evolve
(369. For example, the phycobiliprotein phycocyanin carries as pathways evolve; also sometimes stated as the biosynthetic 2
one phycocyanobilinonits subunitand two phycocyanobilins pathway of Chl recapitulating its evolution) 382...384 Thus,
onits subunit (365). The subunit chromophore is attached the proliferation of Chl and BChl branches irFig. 14is pro-
by amember of the CpcE/CpcF family of bilinlyase370...372 posed to reflect the acquisition of new biosynthetic steps and
The subunitchromophore at Cys-82 is attached by a memberthe production of novel pigments, allowing phototrophs to
of the CpcS (or CpcS/CpcU) family373, 374, and the chro- avoid competition by seeking and occupying new spectral
mophore at Cys-153 of the subunitis attached by CpcTE75). niches. Equally importantly, biosynthetic alternatives were
Phycobiliviolin and phycourobilin also occur in cyanobacteria, developed in response to dioxygen in the atmosphere, leading
but to date, no FDBR members have been identified that canto parallel pathways for nearly all of these essential molecules
directly synthesize these two chromophores in cyanobacteria(5, 223, 385, 386). In this respect, there are parallels with the
Instead, some members of the CpcE/CpcF family isomerizeanaerobic and aerobic pathways for biosynthesis of vitamip,B
these bilin chromophores during attachment to the apoprotein. Although the Granick hypothesis was formulated for hemes
For example, the PecE/PecF lyase for thesubunit of phyco- and Chls, this postulate could be relevant to all of the biosyn-
erythrocyanin isomerizes phycocyanobilin to phycobiliviolin thetic reactions inFig. 14
during attachment of phycocyanobilin to PecA, and other  Although there are still many details to unravel, the biosyn-
lyases canisomerize phycoerythrobilin to phycourobilin during thetic framework of tetrapyrrole biosynthesis is now reasonably
the attachment reactions with linker proteins or phycoerythrin well-understood. However, the regulation of these pathways
subunits 376...378 Interestingly, the moss,Physcomitrella and their multiple branches; the stoichiometry, cellular loca-
patens has an FDBR, PubS, that can synthesize phycourobilinion, and organization of pathway enzymes into biosynthetic
directly from biliverdin (379). Phycourobilin does not appearto complexes and assemblies; and the way in which the final cofac-
be used for light harvesting but instead seems to be involved intor products are incorporated within their respective protein
light sensing and photomorphogenesis. The last member of thescaffolds are largely unknown. Undoubtedly, many of these
FDBR family of enzymes is phytochromobilin synthase, HY-2,details will emerge in the decades to come.
which produces the phytochromobilin chromophore of plant
phytochromes 380). Surprisingly, when produced irE. colj
phytochromobilin can be attached to the subunit of apophy- 1. Battersby, A. R. (2000) Tetrapyrroles: the pigments of Nfet. Prod. Rep.
cocyanin fromSynechocystisp. PCC 6803. Although this pro- 17,507...52€rossRef Medline
tein only binds phycocyanobilin naturally, when co-expressed 2. Allen, J. W., Barker, P. D., Daltrop, O., Stevens, J. M., Tomlinson, E. J.,
along with various bilins inE. colj it can carry any one of six Sinha, N., Sambongi, Y., and Ferguson, S. J. (2005) Why isn-t -standardz
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