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Abstract

Microsimulation is a class of Urban Building Energy Modeling

techniques in which energetic interactions between buildings are

explicitly resolved. Examples include SUNtool and CitySim+, both of

which employ a sophisticated radiosity-based algorithm to solve for

radiation exchange. The computational cost of this algorithm increases

in proportion to the square of the number of surfaces of which an

urban scene is comprised. To simulate large scenes, of the order of

10,000 to 1,000,000 surfaces, it is desirable to divide the scene to

distribute the simulation task. However, this partitioning is not trivial

as the energy-related interactions create uneven inter-dependencies

between computing nodes. To this end, we describe in this paper two

approaches (K-means and Greedy Community Detection algorithms)

for partitioning urban scenes, and subsequently performing building

energy microsimulation using CitySim+ on a distributed memory High

Performance Computing Cluster. To compare the performance of these

partitioning techniques, we propose two measures evaluating the

extent to which the obtained clusters exploit data locality. We show

that our approach using Greedy Community Detection performs well

in terms of exploiting data locality and reducing inter-dependencies

among sub-scenes, but at the expense of a higher data preparation

cost and algorithm run-time.

Keywords

hierarchical clustering, greedy community detection, urban scene,

partitioning, scalability, building energy, microsimulation
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Introduction

Sustainability is an important aspiration when planning the future of our

urban settlements. The built environment contributes to a major proportion

of greenhouse gas emissions (≈ 55%) as a result of the considerable

final energy used in this sector (≈ 62%) (Anderson et al. 2015; Robinson

2012). To mitigate climate change and improve sustainability, there is a

need to assess the environmental impact of the built environment and to

test potential interventions as accurately as possible (e.g. retrofit strategies,

heating/cooling systems and the use of renewable energy).

Urban Building Energy Modeling (UBEM) has emerged as a standard

term (Reinhart and Davila 2016) for modeling the operational energy use

of buildings. UBEM is particularly useful for testing strategies to reduce

buildings’ energy use and emissions in the urban context. A variety of

strategies have been developed to model these energy flows, depending

on the scale and objectives. These range from policy-oriented statistical

models of city- (NOUVEL et al. 2015) regional- (Braulio-Gonzalo et al.

2016; Cheng and Steemers 2011) or national- (Sousa et al. 2018) scale

aggregated stocks of buildings, through detailed dynamic modeling of

building stocks represented by archetypes, to explicit microsimulation of

buildings in their urban context for more detailed energy system (demand,

storage, supply) planning and design (Robinson 2018). For further details,

we refer interested readers to (Reinhart and Davila 2016; Robinson 2012).

In this paper, we are concerned with the microsimulation approach,

using CitySim+. Despite the significant increase in computing power of

single machines, microsimulation tasks at a neighborhood or a district

scale tend to be beyond the capabilities of a single computing node.

This is because the computational requirements for microsimulation

grow significantly as the scene grows (e.g. to thousands of buildings,

or hundreds of thousands of surfaces). We propose and evaluate a
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4 EPB: Urban Analytics and City Science XX(X)

methodology for splitting geospatial urban areas (we call them scenes

hereafter) to facilitate urban scale building energy microsimulation

for upwards of thousands of buildings. This methodology will enable

modelers to partition the simulation problem in a way that can harness

the capabilities of modern distributed computing platforms (e.g. cloud

infrastructure (Kalms and Göhringer 2018; Assunção et al. 2015)) while

minimizing the dependencies among the simulated parts to reduce overall

simulation time.

CitySim+ (Zakhary et al. 2016) is a successor of CitySim (Robinson

et al. 2009). In addition to extensions in its functional scope, it offers

a newly designed data layer architecture that works directly with a

standardized data model for 3D urban scenes (CityGML) (Kolbe et al.

2005) and the Energy Application Domain Extension (ADE) (Bruse et al.

2015; Rosser et al. 2019). This process is computationally intensive and

the intensity depends on a number of factors. Some of these factors

are: 1) the size of the scene (i.e. in number of buildings or number

of surfaces), 2) the duration of the simulation (i.e. simulating a day or

simulating a whole year), 3) the phenomena being simulated (e.g. full

energy simulation, or solar irradiation simulation to study the potential for

solar collectors). The algorithm of CitySim+ has O(n2) time complexity,

where n is the number of surfaces in the scene.

Microsimulations of large geospatial scenes comprised of many

thousands of buildings, while preserving simulation accuracy is an open

research challenge (Frayssinet et al. 2018). We propose two novel

approaches for scene partitioning using established unsupervised machine

learning, namely K-means clustering and Greedy Community Detection

(GCD). By partitioning scenes into smaller interacting (e.g. due to radiant

energy couplings between surfaces) component parts (we call these sub-

scenes), we can deploy a High Level Architecture (HLA) to distribute our
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simulation tasks over a High Performance Computing (HPC) cluster. In

this way, our partitioned sub-scenes may be simulated whilst accounting

for inter-sub-scene energetic couplings between multiple instances of the

CitySim+ solver.

Our approach to partitioning scenes into inter-connected sub-scenes

should respect the following requirements: 1) limit the size of the

largest sub-scene to match the resource available on a single computing

node, 2) balance the total number of clusters with the available

number of computing nodes, 3) place a lower limit on any sub-scene

to avoid wasting computing resources, 4) balance the distribution of

workload, by minimizing the variance in sub-scene sizes. We apply

these requirements to a scene of residential buildings in the Sneinton

neighborhood of Nottingham, England. Details about the study area

including some demographics, characteristics and a 3D map are presented

in the supplementary material.

Through achieving these requirements, we exploit data locality in most

of the phenomena simulated using CitySim+, leading to a reduction of the

total computational cost (Baum and Winget 1990). The resulting smaller

sub-scene can be run concurrently over a distributed memory HPC facility

with minimal communication (e.g. simulation using HLA). We show the

performance in-terms of cluster separation, simulation errors/reliability

and overheads.

Related work

Many urban simulation problems face similar challenges as UBEM

when tackled at scale. For example, performing microsimulation for the

purpose of flood management using physically-based hydraulic model

(e.g. shallow water equations) at the urban-scale at fine cell details is
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generally not feasible to compute (Hunter et al. 2007) (i.e. requires

both significant computing resources and long simulation time). Instead,

different approaches have been proposed that simplify the model to only

consider a 2D representation (Guidolin et al. 2016) in an attempt to

provide rapid simulations result.

Unless the phenomenon of interest lends itself to multi-scale

simulation approaches, in which fine resolution domains are nested within

progressively coarser and larger simulation domains, as in the case of

climate modeling (Robinson 2012), then the problem either needs to be

simplified, or broken down and distributed. Examples of the former in the

urban context include the use of image processing techniques to simulate

shadow projections and sky view factors (Richens 1997) and combining

these techniques with energy modeling for urban energy analysis (Ratti

et al. 2000).

But in the present case, we wish to preserve the physical integrity of

our urban simulations, so a distributed approach is of more interest. One

such strategy is to partition large scenes into smaller sub-scenes while

minimizing the interactions between them. For example, Sanjurjo et al.

(2013) proposed a convex partitioning approach to calculate the global

illumination over a large scene using a parallel Monte Carlo ray tracing

algorithm. The approach reduced the computing overhead by minimizing

the number of rays crossing from one processor to another over a

distributed memory architecture. This approach is statistically driven and

does not consider reduction of communication overhead at the level

of the integration platform (e.g. HLA). Other approaches for managing

large scenes are based on limiting processing overheads in the case of

radiosity calculations, for example, 1. via visibility analysis (Cohen-

Or et al. 2003) 2. using an importance-based approach to speed-up

radiosity calculation (Aguerre et al. 2019) 3. by superimposing a regular
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grid (Muñoz et al. 2018; Rodríguez et al. 2017). With the regular grid

approach, each grid cell is simulated independently with some boundary

overlap with surrounding cells. A regular grid-based splitting of the urban

scene would not be suitable in our case as cells will contain different

number of buildings (hence unbalanced computing load and memory

requirements).

Many researchers have used image segmentation for partitioning view-

space, for example (Lowe 1999; Kumar et al. 2015; Dhanachandra et al.

2015). Image segmentation is a low-level image processing problem

that deals with the challenge of automatically classifying an image into

different regions. It has mostly been employed for high-level computer

vision operations, ranging from object recognition (Lowe 1999) to scene

understanding (Kumar et al. 2015). Clustering has been used to perform

image segmentation by dividing an image into discrete regions. K-means

is one of the most popular algorithms for clustering due to its simplicity

and performance (Dhanachandra et al. 2015). It divides a given scene

into a disjoint set of smaller sub-scenes where there is high similarity

within and high differences between the sub-scenes according to a defined

distance function.

More recently, a greedy optimization approach for clustering based on

modularity was proposed (Clauset et al. 2004). This approach belongs to

a family of algorithms known as agglomerative hierarchical clustering.

This is an unsupervised machine learning approach that performs a

bottom-up clustering (Fahad et al. 2014). The process starts with

each object belonging to its own cluster, with adjacent clusters being

progressively merged, as defined by a given hierarchy. Clauset et al. (2004)

proposed a fast hierarchical agglomeration algorithm for finding various

communities in a large graph (we call it GCD hereafter).
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Method: Machine Learning for Scene Splitting

In this section we present our approach for splitting urban scenes. We

start by introducing our proposed means for evaluating scene partitioning

efficiency. We then introduce a base-line using K-means for comparative

purposes. Finally, we detail our proposed approach using GCD and present

its resulting sub-scenes.

Measures of Efficiency

To measure the efficiency of the splitting algorithm, we analyze the

relationship between the sub-scenes to show the strength of their

interdependence. We developed two measures to better understand how

any two sub-scene are linked. Firstly, we measure the relative number of

edges (Links(%)) that exist between each pair of sub-scenes (i.e. inter-

sub-scene links on the graph) to the mean number of links intra-sub-

scene. Secondly, we measure the total relative Inter-Reflection (IR) of

these edges (IR(%)) representing the total weight given to these edges

relative to the mean of the total IR on all links inter-sub-scenes.

The first measure provides direct information about how many buildings

will need to be reprocessed at each synchronization point at the various

computing nodes. The second measure provides information about the

impact of the contributions from one sub-scene to another. As it is the case

with IR, this impact is not symmetrical (i.e. the sub-scene that is receiving

the inter-reflected radiation is being impacted and not the one reflecting

it). Hence, we analyze the measures of inter-sub-scene edges as directed

graph that show radiation from the reflecting to the receiving sub-scene

(called Emitting to the Receiving sub-scene).
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Base-line Case Using K-means Clustering

K-means is one of the widely used unsupervised machine learning

algorithms (Jain 2010). We show in this section the application of K-

means in clustering the centroids of buildings’ footprints. In comparison

to GCD, K-means has the following important advantages: 1) It performs

fast clustering, 2) the way it was set-up in our case requires little pre-

processing to obtain the buildings’ centroids (i.e. it doesn’t require pre-

processing of the whole urban scene to calculate the IR relationship graph

between buildings), 3) and it assumes spherically shaped clusters. This is

particularly useful when partitioning a large scene of tens of thousands of

building, or indeed a whole city.

K-means Algorithm for splitting large scenes

The K-means algorithm aims to find a set of clusters consisting of groups

of buildings based on the Euclidean distance between their footprints. The

hypothesis is that closer buildings will have higher IRs, hence stronger

interactions compared to buildings that are further away. This leads to

clusters that have more edges within each cluster than between clusters.

A required Hyperparameter for the K-means algorithm is the number

of clusters to represent the data. Research has been conducted to find

a suitable value (Jain 2010). The prefix “hyper” indicates that this is a

required input set by the user for the algorithm, as opposed to a parameter

which can be deduced through the training process. For operational

purposes, we choose the maximum number of clusters empirically based

on the available resources to each of the computing nodes as this will

dictate how large a sub-scene can be. It is important to note that is the

minimum number of sub-scenes (and hence the lowest number of HPC

computing nodes) needed to simulate the whole scene distributively.
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We run K-means using Lloyd’s algorithm (Lloyd 1982) (also known

as Voronoi iteration) to search for evenly spaced and disjoint sets of

clusters. The partitioning of points is based on the Euclidean distance.

Our criteria for the analysis is to minimize the inertia which is the sum-

of-squares within each of the clusters.We set the number of clusters to

the required number of computing nodes (as discussed above), and the

algorithm divides the N building centroid samples BCi into K disjoint

clusters C. For each cluster Ci, the algorithm calculates the center CCi

and each point is assigned to the cluster closest to it. The mean for all

the samples within each cluster µi is recalculated to minimize inertia.

This is repeated until the results stabilize (i.e. both Ci and CCi do not

change significantly). Although CCi falls within the same space as BC,

it does not have to be one of these points. The formal definition for the

minimization of inertia can be described as follows:

1

n

K
∑

j=1

∑

xi∈Cj

(

|xi − µj|
2
)

(1)

where xi denotes a point i ∈ [1..N ] which belongs to cluster Cj , and µj

is the current mean for cluster j.

K-means scales well with large datasets compared to other

algorithms (Arthur and Vassilvitskii 2006). One particular problem with

K-means is that it can get locked in local minima. In order to avoid this,

we performed multiple initial sampling of different cluster centers. We

subsequently choose the set of cluster centers with the minimum inertia as

the initial set of cluster centers for the K-means algorithm.

K-means Algorithm Results in a Realistic 3D Urban Scene

In this section, we present our base-line approach. We show the results

of splitting a large urban scene (shown in figure 1 in the supplementary
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material) into a number of smaller sub-scenes. We perform the clustering

using K-means as discussed above to label each of the buildings with one

of the cluster labels. We performed each run using 10 randomly assigned

centers for each of the clusters shown in figure 1a.

One way to fulfill the dependency between the sub-scenes is by

performing regular synchronization and exchange of intermediate results

throughout the parallel execution over K computing nodes (e.g. using the

HLA standard). This exchange preserves the energy-relations between

sub-scenes and ensures the accuracy of simulation results. Another

approach is to replicate buildings affecting each sub-scene during the

simulation in order to account for their effect without performing further

synchronization during execution. Since our HLA-enabled simulation

platform development (Amponsah et al. 2019) is not sufficiently complete

for the purposes of demonstration at this time, we adopt the latter approach

for the evaluation in this paper.

Figure 1a show the labels assigned using the K-means algorithm

to each of the buildings in our example scene (shown in figure 1 in

the supplementary material). The figure shows 12 different clusters to

partition the scene which could be easily changed. Some of these clusters

are clearly separated by distinctly clear Euclidean distance such as clusters

3 and 6 on the west part of the scene. On the other hand, the algorithm

did not make a clear distinction between some other clusters (e.g. clusters

2, 4 and 10 at the north and towards the center as well). We can see that

the K-means algorithm do not produce clear separate classes in difficult

cases where buildings are densely positioned and with little gap existing

between them.

The distribution of load across clusters is also important as it will

affect the performance of the whole simulation (i.e. nodes reaching

synchronization points will have to wait for the slowest node before
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12 EPB: Urban Analytics and City Science XX(X)

(a) Produced clusters. (b) Clustering performance (class refers to a

sub-scene)

Figure 1. K-means results for the Sneinton scene (shown in figure 1 in the supplementary

material).

they all exchange data -if needed- and proceed). The simulation speed

is directly linked to the number of buildings (more specifically the total

number of surfaces) that are simulated by CitySim+, and equally sized

clusters will ensure that all nodes proceed at a comparable execution

speed. We have found that the number of buildings in each of the clusters

does not vary significantly (i.e. clusters are of relatively similar size),

hence processing time is expected to be homogeneous (apart from local

node-specific variations).

Figure 1b shows the measurements of performance for the K-means

algorithm. The figure shows the Links(%) and IR(%) between each pair of

clusters. Emit refers to the links where the irradiation is emitted from the

sub-scene, and Recv refers to the links where the irradiation is received

by the sub-scene. We can see that the maximum Links(%) reaches 25%.

This indicates that the two clusters have about quarter of the links between

them compared to the mean number of links inside any of the clusters. At
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the same time, this maximum value for Links(%) is associated with a low

IR(%) (close to 0.5%), which means that, although there are many links

between these two clusters, the amount of data to be exchanged expressed

by IR(%) is quite low. It is interesting to observe that for the values where

IR(%) is higher than 1.37% (or mean + 1 Std. Dev.), the Links(%) ranges

from 4% to 18%.

To further analyze the results obtained using K-means and GCD,

we have performed statistical analysis of various variables (including

Links(%) and IR(%)) and we provide details in the supplementary

material.

Greedy Community Detection Algorithm

We adopt the Greedy Community Detection algorithm by Clauset et al.

(2004) for the discovery of community structure in large network. In

our case, the buildings form a network where they are linked with each

other by the IR. This section presents the results obtained using the

GCD algorithm. This machine learning algorithm, similar to K-means,

is unsupervised. Moreover, it is a hierarchical agglomeration algorithm,

hence has a significant overhead compared to K-means. We present the

results similar to those shown for K-means in previous section for ease of

comparison.

GCD Algorithm for splitting large scenes

We define a community as a collection of buildings that have stronger

and a higher number of links between them compared to those with

other communities. Hence, we require a graph that depicts such IR

interconnections between the buildings (which we have illustrated in

figure 4) in order to preform the community detection. The algorithm

starts with each building belonging to its own community. During the
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agglomerative process, each of these communities is iteratively merged

with another community whose amalgamation produces the highest

increase in the graph modularity Q which is defined as follows:

Q =
∑

i

eii − a2i (2)

where generally eij is the fraction of edges that link vertices from

community i to vertices in community j, and eii is the fractions of edges

that starts and ends with vertices in community i. ai represents the fraction

of the ends of edges that are linked to vertices in community i.

Unlike K-means, GCD does not require an input parameter setting

the number of clusters. On the other hand, the algorithm uses a set of

weights associated with the graph edges (i.e. community detection using

a weighted graph). A GCD algorithm starts by setting each building to

its own cluster to form N clusters (where N refers to the number of

buildings). The algorithm does not require a target number of clusters as

the agglomeration process is done iteratively to test for a possible merge

between clusters (e.g. test which two closely linked clusters could be

merged together into as a single cluster). This merging process is repeated

for N-1 iterations. Once the process is completed, the resulting number of

communities could be anything from 1 (where all the buildings are tightly

linked) to N (no two buildings are interconnected). More often than not,

we have observed that GCD clustering produces more communities than

needed to perform distributed UBEM for the whole scene as the number

of computing nodes ≪ N .

In order to reduce the number of cluster (i.e. to a number equal to the

processing nodes available for the distributed UBEM) while observing

the boundary between the detected communities using GCD, we have

introduced an edge contraction stage after running the initial GCD. We
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note that merging two communities produced by GCD would -as a worst

case- have the effect of adding their interdependencies when running the

UBEM (i.e. the new formed community will have a dependency that is

the union of the interdependency of its constitutions). For this step, we

require a community-level weighted graph that describes community-to-

community links with the weight representing the total original IR relation

between the two communities. The community-level graph is similar to

the original weighted graph we have used to run GCD but with all the

edges that fully exist within the same community being contracted (i.e.

edges where the two buildings belong to the same community). Edge

contraction is a graph theory operation by which two vertices can be

merged into one while preserving the original graph connectivity. After

performing this post-processing step, we have a graph with each vertex

representing one of the detected communities by GCD and where the

number of vertices is still higher than the available processing nodes.

To reduce the number of communities further, we iteratively perform

edge contraction on the community-level graph merging strongly linked

communities first until we reach the desired number of communities.

GCD Algorithm Results in a Realistic 3D Urban Scene

Figure 2a shows the sub-scenes obtained using the GCD algorithm. The

results show the assigned clusters over the scene (shown in figure 1 in

the supplementary material). The resulting sub-scenes are clearly different

from those obtained using K-means and shown in figure 1a. This is

especially clear at the central part of the scene (e.g. around clusters 6,

8, 9 and 10).

These clusters at the middle of the scene are difficult to separate using

machine learning algorithms for two reasons. Firstly, the buildings are

compacted and there are no clear separation lines between these clusters.

Secondly, the terrain (i.e. affected by the ground height) features a valley
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at the center (i.e. around clusters 6, 9 and 10) (as it can be seen in figure 1

in the supplementary material).

(a) Produced clusters. (b) Clustering performance (class refers to a

sub-scene).

Figure 2. GCD results for the Sneinton scene (shown in figure 1 in the supplementary

material).

Figure 2b shows the measurements of performance for the GCD

algorithm. Similar to figure 1b, it shows the Links(%) and IR(%) between

each pair of clusters. The maximum Links(%) is much lower and reaching

only 10%. This indicates that these two clusters have about only 10% of

the links between them compared to the mean number of links inside any

of the clusters. This maximum value for Links(%) is associated with a low

IR(%) (close to 0.5%), but the next highest value for Links(%) has a much

higher IR(%) than the mean of about 1.3%. Even for this instance with

higher IR(%), it is much lower than when using K-means which goes up

to 3.5%. It is interesting that compared to K-means, for the values where

IR(%) is higher than 0.36% (or mean + 1 Std. Dev.), we find the Links(%)

ranges from around 2%-8% (compared to the range of 4%-18% for K-

means).
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UBEM Simulation Results

In this section we demonstrate the performance of the two scene splitting

approaches using CitySim+. We performed two sets of experiments to

compare the impact of considering buildings outside each sub-scene

that contribute to the simulation errors. Firstly, we executed CitySim+

simulations only considering buildings that exist in each sub-scene (i.e.

without sharing any data concerning buildings located beyond them).

Secondly, we execute simulations in which each sub-scene includes all

external buildings (to this sub-scene) that affects the CitySim+ simulation

due to the existence of links. This produces a modified set of sub-

scenes that are larger than the original clustering results. As noted earlier,

this is an intermediate step for the purposes of evaluating our scene

partitioning strategies, which will be implemented in the future as part

of a progressively comprehensive urban simulation platform, employing

HLA.

Figure 3. Exploded view (right) of annual heating energy

demand simulation results obtained following simultaneous

microsimulation of the whole scene (left): i.e. no splitting.

To calculate the errors introduced by the two approaches, we have used

a “truth” case in which we have performed a full microsimulation of the

Prepared using sagej.cls



18 EPB: Urban Analytics and City Science XX(X)

whole scene, without splitting, on a single computing node (so that the

scene size was determined based on the capacity of this node; a restriction

that is avoided in the distributed case that is the motivation underlying this

work). Figure 3 presents the yearly energy demand per floor area for a

small part of the whole scene (using average story height of 2.7m and the

whole building footprint area).

Figure 4a compares the execution times of the sub-scenes simulations

produced by K-means and GCD. In this and subsequent figures, we denote

K-means by 1 and GCD by 2. Each sub-scene is simulated without

considering any interactions existing outside the boundary of each sub-

scene (i.e. not considering inter-sub-scenes links). We can see that the

median execution time for the three components (Daylight, Longwave

and Shortwave: the calculation of which each use the same sub-scene

view information) and the total are slightly higher for GCD sub-scenes

compared to the K-means case. On the other hand, we find that the K-

means sub-scenes show greater variability (i.e. the degree of imbalance is

much higher). In a distributed simulation scenario, this will lead to slower

overall execution, as the slowest federate will in turn delay other federates,

as they get held at each synchronization point. We note particularly that

the upper quartile is systematically lower for GCD. The total simulation

time -which is the time when the slowest sub-scenes finishes- shows that

GCD-based simulation is slightly faster than K-means.

Figure 4b shows the errors in simulation results when not considering

external buildings. The K-means and GCD sub-scenes results are

compared to the base case of running the scene as a whole (i.e. without

partitioning). This base case was constructed for comparison purposes but

it would not be possible for larger scenes (as it would not be possible to

run it as a single simulation). In this figure, we omit buildings that have

very small simulation errors (i.e. error value below 0.01%) for clarity of
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(a) Execution times (b) Simulation errors (y-axis in log scale)

Figure 4. Performance of CitySim+ components (no external buildings) for K-means(1) &

GCD(2): DL, LW, SW, sub-scene total(ST)/Total(T) respectively.

presentation. Firstly, we note that for all the components the maximum

errors (without considering the outliers as defined by the box-plot graph)

were around 2%. These results are attributed to the fact that most buildings

are not on the boundary of the sub-scenes, hence most of their IR occurred

with other buildings that already existed within the same sub-scene.

Secondly, we note that for most of the simulation components shown in

Fig. 4b, there are many observations where the errors, marked as outliers

or circles, reached as high as 50%. These significant errors could be

attributed to buildings that are affected by the missing IR interactions

due to the lack of the influence of external buildings in each sub-scene.

The results show median errors, for all the components, that are close to

0.10%, with the 3rd quartile being below 0.50%, which means that for

most buildings, their interactions were contained within their respective

sub-scenes. We also note that the range of error is similar for K-means

and GCD sub-scenes. For each of the sub-scenes, only a small percentage

of buildings would be affected around the boundary where most of the

missing IR interactions from external buildings were present.
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We now demonstrate the partitioning algorithms by considering the

influence of external buildings. For this, we augment each of the sub-

scenes by including external buildings from surrounding sub-scenes

before performing our microsimulations. We select which buildings needs

to be considered in each of the sub-scenes based on the IR links. We show

the impact of the two different approaches on execution time and errors

(noting that these errors should be minimized or eliminated when using a

distributed simulation platform employing HLA).

Figure 5a shows the execution times of the various simulations of all

sub-scenes produced by both K-means and GCD. Although the median

execution time for K-means sub-scenes is slightly lower, they still show

a much larger variance and range. This is not only the case for each sub-

scene total, but also at the individual components simulation time. This

means that when performing synchronization at the component level, we

should expect even higher impact on performance (i.e. slower simulation).

Moreover, it is important to highlight that the increase in median cost is

about a factor of two (compared to those shown in fig. 4a), underlining the

importance of strategies to minimize interconnections. We could also see

that the total simulation time in this case is significantly lower for GCD.

Figure 5b shows the errors in simulation results when considering the

effect of external buildings affecting each of the sub-scenes. Overall, the

errors are much lower compared to those shown in Fig. 4b as the median is

about 0.05% and the third quartiles are below 0.12%. Meanwhile, we can

still observer slightly higher errors of below 2% which could be attributed

to how external buildings were considered in each sub-scene (i.e. cascade

impact effect due to considering the external buildings outside of their

spatial context). From these results, we can see considerable increase in

accuracy but with an additional increase in execution time. The simulation

errors vary slightly between K-means and GCD sub-scenes. This is due
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(a) Execution times (b) Simulation errors (y-axis in log scale)

Figure 5. Performance of CitySim+ components (with external buildings) for K-means(1) &

GCD(2): DL, LW, SW, sub-scene total(ST)/Total(T) respectively.

to the fact that external buildings—which contribute to these errors if

missed—were included to supplement each of the sub-scenes with either

approaches, hence both were rendered similar in terms of their simulation

accuracy.

Conclusion

In this paper, we presented the problem of splitting large-scale UBEM

simulations. We proposed an approach based on GCD, a graph partitioning

machine learning algorithm, to automate the splitting process. For this,

we developed a graph-based representation of the scene to minimize

energy flows which subsequently reduces computation dependency when

using distributed computing. We compared the performance to a base-

line approach based on using the K-means algorithm to cluster buildings’

centroids over the 2D map utilizing the Euclidean distance. We have

proposed two measures to evaluate the effectiveness of our splitting

algorithm (Links(%) and IR(%)).
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From this we conclude the following: 1) A spatial-only partitioning

using K-means -although having minimal overhead in-terms of

data preparation compared to GCD- produces uneven sub-scenes,

2) Partitioning the IR graph of a large scene using GCD reduces the

energy-related interactions which subsequently evenly distribute the inter-

dependencies among computing nodes, 3) The total runtime required

for simulating the sub-scenes independently when using GCD approach

is lower compared to K-means. We expect to report on the utility

of this distributed simulation architecture for urban building energy

microsimulation (and other complementary) purposes in the near future.
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