
This is a repository copy of Towards population-based structural health monitoring, Part III:
graphs, networks and communities.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/161208/

Version: Accepted Version

Proceedings Paper:
Gosliga, J., Gardner, P.A., Bull, L.A. et al. (2 more authors) (2020) Towards population-
based structural health monitoring, Part III: graphs, networks and communities. In:
Dilworth, B.J. and Mains, M., (eds.) Topics in Modal Analysis & Testing. Proceedings of the
38th IMAC, A Conference and Exposition on Structural Dynamics 2020. 38th International
Modal Analysis Conference, 10-13 Feb 2020, Houston, TX, USA. Conference Proceedings
of the Society for Experimental Mechanics Series, 8 . Springer , pp. 255-267. ISBN
9783030477165

https://doi.org/10.1007/978-3-030-47717-2_26

This is a post-peer-review, pre-copyedit version of an article published in Dilworth B.,
Mains M. (eds) Topics in Modal Analysis & Testing, Volume 8. Conference Proceedings of
the Society for Experimental Mechanics Series. The final authenticated version is available
online at: http://dx.doi.org/10.1007/978-3-030-47717-2_26.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Towards population-based structural health monitoring,

Part III: Graphs, networks and communities

J. Gosliga, P.A. Gardner, L.A. Bull, N. Dervilis and K. Worden

Dynamics Research Group, Department of Mechanical Engineering

University of Sheffield, Sheffield S1 3JD, UK

Abstract

Population-based structural health monitoring opens up the possibility of using information from a population of
structures to provide extra information for each individual structure. For example, population-based structural health
monitoring could provide improved damage-detection within a homogeneous population of structures by defining a
normal condition across a population of structures, which was robust to environmental variation. Furthermore, in cases
where structures are sufficiently similar, damage location, assessment, and classification labels could be transferred,
increasing the damage labels available for each structure. To determine whether two structures are sufficiently similar
requires the comparison of some representation of the structure. In fields such as bioinformatics and computer science,
attributed graphs are often used to determine structural similarity. This paper will describe methods for comparing
the topology attributes of two such graphs. The algorithm described is suited to population-based structural health
monitoring as it provides matches between two graphs which have physical significance. This paper will also describe
the process of comparing hierarchical attributes to determine the level of knowledge transfer possible between two
structures.

Keywords: Population-based structural health monitoring; Irreducible Element model; Attributed

Graph; structural similarity

1 Introduction

The ideal case for structural health monitoring (SHM) is where both the normal condition and the various damage
states for a structure are known, and corresponding data sets are available. If the normal condition (including any
benign variations) is known, then damage detection is trivial, since any deviation must come from damage to the
structure. Additionally, if data were available for all possible damage states, then for any signal measured from the
structure the damage location and classification labels would be known. Also, if detailed data for each damage state
were available, it would be possible to determine the extent of the damage. A situation where damage can be detected,
classified, located, and the extent calculated would be extremely favourable, and with the aid of a good model could
allow for damage prediction [1].

In reality, data sets are scarce, for both the normal condition and the damage states of an individual structure. A
solution to this is to move away from individuals and perform structural health monitoring using populations of
structures instead [2, 3]. Population-based structural health monitoring (PBSHM) seeks to overcome the limitation
on available data for structural health monitoring, which to date has been a major obstacle in the industrial uptake
of SHM. By examining a population of structures, rather than simply looking at each structure individually, it may
be possible to share information about the normal condition and damage states, provided certain conditions are met.
An example of this is the Lillgrund wind farm [4], where the nominally identical structures form a homogeneous
population [5]. In the Lillgrund wind farm, it was possible to make the detection of performance anomalies robust to
variations in the normal condition by sharing SCADA data between wind turbines. In homogeneous populations, it is

also possible to describe the population using a single model, called a form, which effectively captures the variation
within the population [5].

Homogeneous populations are a special case within PBSHM, as for a population to be homogeneous, all structures
within the population must have identical topology, and nominally-identical geometry and materials. For a population
to be considered strongly homogeneous, the boundary conditions also need to match. Otherwise, a population is
considered to be heterogeneous, which has implications for the level of information transfer possible [6]. Within a
heterogeneous population, certain members may share a greater or lesser degree of similarity with another. The
degree of similarity between two structures will determine the information transfer possible. In order to calculate
the degree of similarity between structures, it is first necessary to create an Irreducible Element (IE) model of the
structure (as described in [7]) and then convert this IE model into an attributed graph (AG) [8]. This paper will
describe how the AGs from two separate structures are compared in order to determine the degree of similarity.

This paper will also describe the network of structures, which is formed from the AGs of various structures. The
idea of the network is that it will create a space where the distance between members of a heterogeneous population
is determined by the degree of similarity [9]. Since the distance is determined by the degree of similarity between
two structures, it is expected that similar structures will be closer together, and that this can be used to create
communities of structures. Within communities, the structures should be similar enough that information transfer is
possible. For example, within a community of aeroplanes, some information regarding damage in a wing should be
transferable, as all aeroplanes have wings.

Since the distance between structures in the network is determined by how similar they are, it is necessary to have
some method for quantifying structural similarity. The first step in quantifying the structural similarity is describing
the objects as IE models. These IE models are then converted into an AG. It is then possible to use AGs for two
structures to find common substructures or common subgraphs. For this application, the search is limited to induced

and connected subgraphs. Thankfully the problem of finding common subgraphs to quantify structural similarity
exists in other fields – most notably chemistry, bioinformatics and computer science – which means that tools are
already available [10]. Methods for finding the induced common subgraph [11] and connected induced common
subgraph [12] will be explored in this paper. A method for calculating a similarity score based on the size of the
subgraph and attribute matching, relevant to this application, will be developed.

2 Matching using the attributed graphs

An IE model of a structure is a way of abstracting and representing aspects of a structure that are important for
transferring information about that structure. By comparing the IE representations of two structures, it is possible to
determine the level of inference possible between them. To allow this comparison to be performed automatically, it is
more efficient to restructure the information into the form of an AG. In the AG, the same information is used as
for the IE representation, but whereas the properties for the IE representation are organised in a tabular format to
improve readability by humans, the information in the attributed graph is organised so that it can be more efficiently
processed by a graph-matching algorithm. The process for creating the AG for a structure is illustrated in Fig. 1 and
described in [7, 8].

For this paper, it is assumed that the previous steps have been followed, generating the attributed graphs for an
aeroplane and a wind turbine as shown in Fig. 2. The attributes are taken from the IE representations; where the
elements and joints for the aeroplane come from Tables 2 and 4 respectively, and the elements and joints for the wind
turbine come from Tables 1 and 3.

2.1 Introduction to graph-matching algorithms

Definition

A graph G is defined by a set of nodes V and edges E, and so G = (V,E) [13]. The edge and node set of a graph can
alternatively be represented as E(G) and V (G), respectively. It is also possible to define a graph by its neighbourhood
N , where the neighbourhood is defined as N(v) = {u ∈ V | (u, v) ∈ E}. This is a common approach when writing
code which incorporates graphs, and an example of a graph defined using the dictionary datatype in Python is shown

Nacelle

Rotor

blade

Rotor

hub

Tower

Foundation

E

A

B C

D

F

G

H

I

1

2 3

4

5

6

7

8

9

D

A

1

2 3

4 5

6

7

8

9

B

F

E

G

H

 I

C

1

2 3

4 5

6

7

8

Figure 1: The evolution of an attributed graph. The structure in this case is a wind turbine, and shown (from left to
right) are the IE model; an expanded version of the IE model, showing the element and joint designations; and finally,
the AG.

in Fig. 3. The neighbourhood N as defined does not contain the node itself; this is known as the open neighbourhood of
v. The closed neighbourhood of a node v, contains the node itself and is defined as N [u] = N(v) ∪ v. Neighbourhoods
are assumed to be open unless otherwise specified. If two nodes from V (G), say v1 and v2, are adjacent, then
(v1, v2) ∈ E(G). A graph is connected if there is a path from any node to any other node.

Isomorphism

Two graphs, G and H, are said to be isomorphic if there exists a one-to-one mapping from V (G)→ V (H), and a
one-to-one mapping from E(G)→ E(H). Isomorphic graphs have the same topology, but have different node labels.
Therefore, all structures within a homogeneous population will have isomorphic AGs.

Subgraphs

A graph G′ is said to be a subgraph of G, if G′ ⊆ G, which implies V ′ ⊆ V and E′ ⊆ E. There are different types
of subgraph, which are differentiated by the rules for generating the subset of edges E′, given the subset of nodes
V ′. For example, given an arbitrary subset of nodes V ′, an induced subgraph of G is a subgraph where the edge set
E′ contains all the edges from E that have both endpoints in V ′, formally E′ = {(u, v) ∈ E | u, v ∈ V ′}. Induced
subgraphs are the most useful for this particular application. Two graphs, G and H, share a common subgraph if
both G′ ⊆ G and G′ ⊆ H. Finding the largest common induced subgraph is a problem that has already been solved
[11], as is finding the maximum common connected induced subgraph [12]. For this application, only connected
induced subgraphs will be considered. If an AG falls into two disconnected components, it means it is representing
two disconnected structures, and the two structures should be considered separately.

The problem of finding the maximum common induced subgraph between two graphs G and H is NP-complete,
meaning that exhaustive search algorithms are required to solve it. The maximum common induced subgraph problem
is a generalisation of the subgraph isomorphism problem. The subgraph isomorphism problem involves taking two
graphs G and H and determining whether or not G contains a subgraph that is isomorphic to H. The subgraph
isomorphism problem can be solved by finding the maximal cliques in the modular product of the two graphs, where
a clique is a subset of nodes of an undirected graph such that every two distinct nodes in the clique are adjacent.
Since the problem of enumerating all maximal cliques is NP-hard, the computational time of any algorithm used to

A

B

C

D

E

F

G

H

I

1

A1

A2
A3

BCD

E

F

G

H

I J

K

L
M

N

O
P

1

Figure 2: The graphs prodcued from list of elements in Tables 1 and 2 and list of joints in Tables 3 and 4. The graph
shown on the left is from the wind turbine (compare with Fig. 1) and the graph on the right is from the aeroplane.

‘A’ ‘B’

‘C’

‘D’

‘E’

graph = { ‘A’ : [‘D’]
‘B’ : [‘D’]
‘C’ : [‘D’]
‘D’ : [‘A’, ‘B’, ‘C’, ‘E’]
‘E’ : [‘D’] }

Figure 3: A graph and the corresponding Python dictionary. The dictionary defines the neighbourhood for each node.

solve this problem will not scale for larger graphs. However, the graphs for structures are unlikely to become so large
that this is an issue.

The modular product graph

The modular product is a graph (represented by G ⋄H) produced by combining two graphs G and H. An example
of a modular product graph is shown in Fig. 4. The modular product has the node set, generated by the cartesian
product V (G)× V (H) in which two nodes (x, u) and (y, v) are adjacent if:

• (x, y) ∈ E(G) and (u, v) ∈ E(H), or

• (x, y) /∈ E(G) and (u, v) /∈ E(H)

Examining Fig. 4 it can be seen that the cliques correspond to subgraphs which are common to both G and
H. For example, the nodes A1B2 and A2B3 in the modular product correspond to the subgraphs G′ and H ′,
where V (G′) = {A1, A2} ⊆ V (G) and V (H ′) = {B1, B2} ⊆ V (H), with corresponding edges (A1, A2) ∈ E(G) and
(B1, B2) ∈ E(H). It is possible to verify that this is an induced subgraph.

G

H

A3 A3B1 A3B2 A3B3

A2 A2B1 A2B2 A2B3

A1 A1B1 A1B2 A1B3

B1 B2 B3

Figure 4: The modular product graph for G and H. The solid lines represent c-edges and the dashed lines represent
d-edges.

However, induced subgraphs are not always connected. If the nodes A1, B1 and A3, B3 were chosen instead, then
V (G′) = {A1, A3}. There are no edges in E(G) with both endpoints in V ′(G), since the edge (A1, A3) is not in E(G).
The subgraph G′ is still induced, but since no edges exist in G′, it is unconnected. Likewise for the subgraph H ′,
where V (H ′) = {B1, B3}.

2.2 Bron-Kerbosch algorithm

As mentioned previously, finding cliques in the modular product of two graphs is equivalent to finding the common
subgraphs. The Bron-Kerbosch algorithm [11], described in Algorithm 1, is a clique-finding algorithm that will report
all maximal cliques, and therefore all subgraphs between two graphs. This algorithm is guaranteed to generate
induced subgraphs but does not guarantee that they are connected. The Bron-Kerbosch algorithm is considered one
the most efficient backtracking algorithms for maximal clique enumeration is widely used in chemical and life science
applications [10]. The complexity of the Bron-Kerbosch algorithm is O(3n/3).

Algorithm 1 Bron-Kerbosch

R: set of nodes to be reported, initially R = ∅
P : set of nodes which can be added to R, initially P = V
X: set of nodes which cannot be added to R, initially X = ∅

1: procedure EnumerateCliques(R, P , X)
2: Let P be the set {u1, ..., uk}
3: if P = ∅ and X = ∅ then
4: report R
5: else

6: for i← 1 to k do

7: P ← P\{ui}
8: N ← {v ∈ V | (ui, v) ∈ E}
9: EnumerateCliques(R ∪ {ui}, P ∩N , X ∩N)

10: X ← X ∪ {ui}
11: end for

12: end if

13: end procedure

The algorithm will report all of the cliques in the graph. In the graph shown in Fig. 5, these will be {A,B,C} and

A

B C

D

Figure 5: A simple graph for illustrating clique-finding algorithms.

A

B C

D

Figure 6: A simple graph for illustrating clique-finding algorithms. The solid lines represent c-edges and the dashed
lines represent d-edges.

{C,D}. To find the largest subgraph, the cliques are then ranked in order of size. Due to node re-labelling any
clique-finding algorithm will report all graphs that are isomorphic to a given subgraph. The alignment of the subgraph
which gives the best physical match is made possible through the use of attributes.

2.3 C-clique-finding algorithm

This algorithm is a modification of the Bron-Kerbosch algorithm which ensures only connected induced subgraphs are
found. This is not only useful for ensuring they are valid in a physical sense, but also significantly cuts down the
search time. In order to limit the search to connected subgraphs, it is first necessary to define the concept of c-edges.

C-edges

Two nodes (x, u) and (y, v) in the modular product G ⋄H are adjacent via a c-edge (where the c stands for connected)
if (x, y) ∈ E(G) and (u, v) ∈ E(H). This is the first condition for adjacency in the modular product graph. The rest
of the edges are d-edges (where the d stands for disconnected) and are defined by the second adjacency condition in
the modular product graph. The c-edges and d-edges are shown in Fig. 4.

Cliques which include c-edges are called c-cliques. Limiting the clique-finding algorithm to only find c-cliques ensures
that any reported subgraphs are connected. This can also decrease the computation time [12] as the set of c-cliques is
a subset of the set of all cliques in a graph. Therefore a smaller number of cliques needs to be considered, which
reduces the size of the search tree. If the graph contains d-edges, as shown in Fig. 6, the only clique of interest is
{A,B,C} as the clique {C,D} does not contain any c-edges.

To limit the search to only c-cliques, it is necessary to modify Algorithm 1. The major modification is the creation of
a new set D which contains the set of nodes which cannot be directly added to the current clique because they are
adjacent to the current node u via a d-edge.

This problem now requires an initialisation algorithm, shown in Algorithm 2. This algorithm iterates over all nodes in
the graph, gradually adding them to T , which is the set of nodes that cannot be added to a clique because they have

already been used to intialise the algorithm. It is necessary to exclude nodes that have already been used to initialise
the algorithm because otherwise every clique of size n would be reported n times.

Algorithm 2 Initialisation for Enumerate C-Cliques

R: set of nodes to be reported
P : set of nodes which can be added to R, because they are adjacent to node u via c-edges
D: set of nodes which cannot be directly added to R, because they are adjacent to u via d-edges
T : set of nodes which have already been used to initiate the EnumerateC-Cliques algorithm
Ec: set of c-edges for the graph G Ed: set of d-edges for the graph G

1: for u ∈ V do

2: P ← ∅
3: D ← ∅
4: X ← ∅
5: N ← {v ∈ V | (u, v) ∈ E}
6: for v ∈ N do

7: if (u, v) ∈ Ec then

8: if v ∈ T then

9: X ← X ∪ {v}
10: else

11: P ← P ∪ {v}
12: end if

13: else if (u, v) ∈ Ed then

14: D ← D ∪ {v}
15: end if

16: end for

17: R← {u}
18: EnumerateC-Cliques(R, P , D, X, T)
19: T ← T ∪ {u}
20: end for

The initialisation algorithm iterates through all nodes in the neighbourhood N(v) and determines whether a node
u is adjacent to v via a c-edge, in which case – provided that node has not been previously used to initialise
EnumerateC-Cliques – the node is added to P . Nodes in P may be directly added to R in the next procedure call.
If the node u has been previously used to initialise EnumerateC-Cliques, it is added to X instead. If the node u is
adjacent to v via a d-edge, it is added to D. The node u is then added to R and the procedure EnumerateC-Cliques,
described in Algorithm 3 is called. After the procedure has finished, u is added to T so that it is excluded from being
added to future cliques. This procedure excludes cliques which do not contain a simple path of c-edges that connect
all vertices within that clique (for example, {C,D} in Fig. 6).

A node in D cannot be added to R at the point where EnumerateC-Cliques is called. However, nodes in D may
at some point be adjacent to a node in P via a c-edge. This check is performed on Lines 9 and 10 in Algorithm 3,
where each node in D is checked for adjacency via a c-edge with the current node ui. If the node v is adjacent to ui

via a c-edge, and has not previously been used to intialise the procedure EnumerateC-Cliques (i.e. v /∈ T), then
the node is added to P and can potentially be added to R in the next procedure call. If the node v ∈ T then v is
added to X. The node is then removed from D. Aside from this this check to see whether or not nodes can be moved
from D to P , Algorithm 3 is essentially the same as Algorithm 1.

For the structures shown in Fig. 2, the maximum common connected induced subgraph found by Algorithm 3 is
shown in Fig. 7. For the remainder of the discussion all subgraphs are assumed to be connected and induced.

3 Similarity scores

The similarity scores are calculated by examining the node attributes in each graph that form the subgraph in each
question. This is achieved by extracting the nodes in the subgraph and querying the dictionary containing the node

Algorithm 3 Modified Bron-Kerbosch

R: set of nodes to be reported
P : set of nodes which can be added to R, because they are adjacent to node u via c-edges
D: set of nodes which cannot be directly added to R, because they are adjacent to u via d-edges
T : set of nodes which have already been used to initiate the EnumerateC-Cliques algorithm
Ec: set of c-edges for the graph G

1: procedure EnumerateC-Cliques(R, P , D, X, T)
2: Let P be the set {u1, ..., uk}
3: if P = ∅ and X = ∅ then
4: report R
5: else

6: for i← 1 to k do

7: P ← P\{ui}
8: N ← {v ∈ V | (ui, v) ∈ E}
9: for all v ∈ D do

10: if (v, ui) ∈ Ec then

11: if v ∈ T then

12: X ← X ∪ {v}
13: else

14: P ← P ∪ {v}
15: end if

16: D ← D\{v}
17: end if

18: end for

19: EnumerateC-Cliques(R ∪ {ui}, P ∩N , D ∩N , X ∩N , T)
20: X ← X ∪ {ui}
21: end for

22: end if

23: end procedure

('E', 'A2')

('A', 'L')

('F', 'G')

('B', 'N')

('H', 'K')

('C', 'M') ('D', 'A3')

('G', 'J')

Figure 7: The maximum common connected induced subgraph of the two graphs shown in Fig. 2.

(A, N) (B, M)

(C, L)

(D, A3)

(E, A2)

Figure 8: A possible subgraph from the two graphs shown in Fig. 2.

attributes. For the sample subgraph shown in Fig. 8, the node labels can be used to look up the attributes for the
corresponding nodes in the original AGs, shown in Fig. 2.

The left-hand entries in node labels (A, B, C, D, E) correspond to the wind turbine, and so node and edge attributes
can be found in Tables 1 and 3, whereas the right-hand entries in the node labels (A2, A3, N, M, L) correspond to
the aeroplane and can be used to find node attributes from Tables 2 and 4. For example, the geometry class and
shape for node in the wind turbine is ‘Beam, Aerofoil’, and for node N in the aeroplane the geometry class and shape
is also ‘Beam, Aerofoil’ so there is a match. However, node D in the wind turbine represents complex geometry, while
node A3 in the aeroplane represents a shell, so these do not match.

The comparison is performed at the greatest possible level of resolution, if the geometry class matches, then the shape
is compared. If the shape matches, then the dimensions for each are examined. If the elements match on all levels,
then they are essentially identical. This is shown as a flowchart in Fig. 9. This is true for the case of materials as well.
If the material class, specific material and material properties are all the same, then the two elements are made from
the same material.

The same matching can be performed for joints. In this case, the joint to examine in each graph is determined
by examining the edges in the subgraph. which are adjacent in the subgraph. This gives a set of nodes which are
connected by the edge in the original graphs. From this, the edge attributes can be extracted. The joint type is
compared, and if the joint is kinematic, the restricted degrees of freedom can also be compared.

If all elements and joints in two graphs are identical (all of the hierarchical attributes are available and match)
then these two graphs form a homogeneous population. If all elements and joint in the subgraph of two graphs are
identical, then they share a subcomponent and transfer is possible within this subcomponent [6]. The more likely
case is that only partial matches are seen, and in this case the level of match determines the appropriate transfer
learning approach.

4 Communities

It is possible to determine a similarity score (Jaccard similarity coefficient) based purely on the size of this maximum
common subgraph G′. This is calculated using the following equation,

Jv(G,H) =
| V (G′) |

| V (G) | + | V (H) | − | V (G′) |
(1)

where Jv(G,H) is the Jaccard index for the node sets. Similarly, it is possible to find the Jaccard index for the edge
sets,

Je(G,H) =
| E(G′) |

| E(G) | + | E(H) | − | E(G′) |
(2)

Multiplying Jv(G,H) and Je(G,H) by 100 gives a percentage similarity score. This was calculated for several
representative structures and the results are shown in Fig. 10. Structures tend to match more with similar structures,
for example aeroplanes match strongly with aeroplanes, and bridges match strongly with bridges. However, some

Choose
candidate
nodes

Geometry
class

match?

Shape
attributes?

Shape
attribute
match?

Report
no match

Report
geometry
match

Dimension
attributes?

Report
shape
match

Dimension
attribute
match?

Report
dimension
match

no

yes

no

yes

no

yes

no

no

yes

yes

Figure 9: A flowchart for comparison of the geometry attributes of a pair of nodes in the AG.

Figure 10: Figures showing the percentage topology match between structures. The percentage score is based on the
Jaccard index Jv(G,H) and Je(G,H) for nodes and edges respectively.

bridge graphs match more with the aeroplane and turbine structures. This could be caused by there being a higher
chance of finding large subgraphs when the two graphs G and H are larger.

This highlights one of the main issues with matching on topology alone. Topology aids in finding similar structures
with consistent location labels, but topology matching alone does not guarantee that nodes in the subgraph have
similar geometry or material attributes. For example, looking at topology alone may lead one to match the deck of
a bridge with the wing of an aeroplane. Equally, when matching an aeroplane with an aeroplane there are many
orientations of the subgraph that do not produce a sensible match. For example, the fuselage may be aligned with a
wing of the aeroplane. The key to producing sensible matches is using similarity scores which take the node attributes
into account.

By grouping structures according to their similarity it should be possible to create communities of structures. Within
these communities, it is expected that a certain level of information transfer is possible. The communities which are
formed may change based on the particular SHM problem, depending on which attributes are determined to be the
most relevant.

5 Conclusion

To compare the similarity of two structures, they are first converted into IE models. The IE models are then converted
into AGs. These graphs are then compared to find a list of possible substructures. The method for doing this is to first
find the modular product of the two graphs, and then use a clique finding algorithm to generate a list of subgraphs.
The attributes of the corresponding nodes in each graph can then be compared. Comparing node attributes is simple
as the nodes in each graph are uniquely identified (within that graph) and the information can be stored using a
Python dictionary, or in a database. Transferring this methodology to a database will form the basis of future work.

6 Acknowledgements

The authors would like to thank the UK EPSRC for funding through the Established Career Fellowship EP/R003645/1
and the Programme Grant EP/R006768/1.

References

[1] A. Rytter. Vibrational Based Inspection of Civil Engineering Structures. PhD thesis, Deptartment of Building
Technology and Structural Engineering, Aalborg University, Denmark, 1993.

[2] I. Antoniadou, N. Dervilis, E. Papatheou, A.E. Maguire, and K. Worden. Aspects of structural health and
condition monitoring of offshore wind turbines. Philosophical Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 373, 2015.

[3] K. Worden, E.J. Cross, N. Dervilis, E. Papatheou, and I. Antoniadou. Structural health monitoring: from
structures to systems-of-systems. IFAC-PapersOnLine, 48:1–17, 2015.

[4] E. Papatheou, N. Dervilis, A.E. Maguire, I. Antoniadou, and K. Worden. A performance monitoring approach
for the novel Lillgrund offshore wind farm. IEEE Transactions on Industrial Electronics, 62:6636–6644, 2015.

[5] L.A. Bull, P.A. Gardner, J. Gosliga, T.J. Rogers, M. Haywood-Alexander, N. Dervilis, E.J. Cross, and K.
Worden. Towards population-based structural health monitoring, Part I: Homogeneous populations and forms.
In Proceedings of IMAC XXXVIII – the 38th International Modal Analysis Conference, Houston, TX, 2020.

[6] P.A. Gardner and K. Worden. Towards population-based structural health monitoring, Part IV: Heterogeneous
populations, matching and transfer. In Proceedings of IMAC XXXVIII – the 38th International Modal Analysis

Conference, Houston, TX, 2020.

[7] J. Gosliga and K. Worden. A general representation for assessing the similarity of structures. In Proceedings of

the 12th International Workshop on Structural Health Monitoring, Palo Alto, CA, 2019.

[8] J. Gosliga, P.A. Gardner, L.A. Bull, N. Dervilis, and K. Worden. Towards population-based structural health
monitoring, Part II: Heterogeneous populations and structures as graphs. In Proceedings of IMAC XXXVIII –

the 38th International Modal Analysis Conference, Houston, TX, 2020.

[9] K. Worden. Towards population-based structural health monitoring, Part VI: Structures as geometry. In
Proceedings of IMAC XXXVIII – the 38th International Modal Analysis Conference, Houston, TX, 2020.

[10] E. Duesbury, J.D. Holliday, and P. Willett. Maximum common subgraph isomorphism algorithms. Match,
77:213–232, 2017.

[11] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undirected graph. Communications of the

ACM, 16:575–577, 1973.

[12] I. Koch. Enumerating all connected maximal common subgraphs in two graphs. Theoretical Computer Science,
250:1–30, 2001.

[13] R. Diestel. Graph Theory, 3rd ed. Springer-Verlag, New York, 2006.

A Appendix

Tables listing the element and joint properties for the IE models.

Table 1: List of elements and their properties for Turbine 1

Element designations for Turbine 1

Name Element ID Material Geometry Shape

Rotor blade A FRP Beam Aerofoil
Rotor blade B FRP Beam Aerofoil
Rotor blade C FRP Beam Aerofoil
Rotor hub D FRP Complex Rotor hub
Nacelle E FRP Shell Cuboid
Tower section 1 F Metal Beam Cylindrical
Tower section 2 G Metal Beam Cylindrical
Tower section 3 H Metal Beam Cylindrical
Foundation I Concrete Plate Cylindrical

Name Element ID Boundary - -

Footing 1 Ground - -

Table 2: List of elements and their properties for Aeroplane 1

Element designations for Aeroplane 1

Name Element ID Material Geometry Shape

Fuselage A1 FRP Shell Truncated cone
Fuselage A2 FRP Beam Cylindrical
Fuselage A3 FRP Shell Cone
Wing 1 B FRP Beam Aerofoil
Pylon 1 C FRP Complex Pylon
Engine 1 D Assembly Shell Cylinder
Pylon 2 E FRP Complex Pylon
Engine 2 F Assembly Shell Cylinder
Wing 2 G FRP Beam Aerofoil
Pylon 3 H FRP Complex Pylon
Engine 3 I Assembly Shell Cylinder
Pylon 4 J FRP Complex Pylon
Engine 4 K Assembly Shell Cylinder
Vert stabiliser 1 L FRP Beam Aerofoil
Vert stabiliser 2 M FRP Beam Aerofoil
Horz stabiliser N FRP Beam Aerofoil
Front landing gear O Assembly Complex Assembly
Rear landing gear P Assembly Complex Assembly

Name Element ID Boundary - -

Tarmac 1 Ground - -

Table 3: List of joints and their properties for Turbine 1

Joint designations for Turbine 1

Joint ID Element set Coordinate Type Disp. DoF Rot. DoF

1 A, D 8, 15, 235.75 Bearing [x, y, z] [y, z]
2 B, D 8, 14, 254 Bearing [x, y, z] [y, z]
3 D, E 10, 15, 253 Bearing [x, y, z] [y, z]
4 D, C 8, 16, 254 Bearing [x, y, z] [x, y]
5 E, F 15, 15, 250 Bearing [x, y, z] [x, y]
6 F, G 15, 15, 183 Bolted - -
7 G, H 15, 15, 105 Bolted - -
8 H, I 15, 15, 5 Bolted - -
9 I, 1 15, 15, 0 Soil - -

Table 4: List of joints and their properties for Aeroplane 1

Joint designations for Aeroplane 1

Joint ID Element set Coordinate Type Disp. DoF Rot. DoF

1 A1, A2 34.2, 14.68, 5.165 Perfect - -
2 A2, A3 34.2, 60.96, 5.165 Perfect - -
3 A2, B 32.2, 29.79, 2.89 Lug - -
4 B, C 13.2, 42.67, 4.74 Complex - -
5 C, D 13.2, 40.17, 4.74 Complex - -
6 B, E 23.2, 30.79, 3.57 Complex - -
7 E, F 23.2, 28.29, 3.57 Complex - -
8 A2, G 36.2, 29.79, 2.89 Lug - -
9 G, H 45.2, 30.79, 3.57 Complex - -
10 H, I 45.2, 28.29, 3.57 Complex - -
11 G, J 55.2, 42.67, 4.74 Complex - -
12 J, K 55.2, 40.17, 4.74 Complex - -
13 A3, L 33.2, 68.58, 7.55 Lug - -
14 A3, M 35.2, 68.58, 7.55 Lug - -
15 A3, N 34.2, 64.58, 9.16 Lug - -
16 A1, O 34.2, 7.75, 1.75 Complex - -
17 A2, P 34.2, 29.67, 1.75 Complex - -
18 O, 1 34.2, 7.75, 0 Plane [z] [x, y]
19 P, 1 34.2, 29.67, 0 Plane [z] [x, y]

	Introduction
	Matching using the attributed graphs
	Introduction to graph-matching algorithms
	Bron-Kerbosch algorithm
	C-clique-finding algorithm

	Similarity scores
	Communities
	Conclusion
	Acknowledgements
	Appendix

