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Abstract 1 

In early preclinical drug development, potential candidates are tested in the laboratory using 2 

isolated cells. These in-vitro experiments traditionally involve cells cultured in a two-3 

dimensional monolayer environment. However, cells cultured in three-dimensional spheroid 4 

systems have been shown to more closely resemble the functionality and morphology of cells 5 

in-vivo. While the increasing usage of hepatic spheroid cultures allows for more relevant 6 

experimentation in a more realistic biological environment, the underlying physical processes 7 

of drug transport, uptake and metabolism contributing to the spatial distribution of drugs in 8 

these spheroids remain poorly understood. The development of a multiscale mathematical 9 

modelling framework describing the spatiotemporal dynamics of drugs in multicellular 10 

environments enables mechanistic insight into the behaviour of these systems. Here, our 11 

analysis of cell membrane permeation and porosity throughout the spheroid reveals the 12 

impact of these properties on drug penetration, with maximal disparity between zonal 13 

metabolism rates occurring for drugs of intermediate lipophilicity. Our research shows how 14 

mathematical models can be used to simulate the activity and transport of drugs in hepatic 15 

spheroids, and in principle any organoid, with the ultimate aim of better informing 16 

experimentalists on how to regulate dosing and culture conditions to more effectively 17 

optimise drug delivery.  18 

 19 

Keywords: Drug transport; Spheroid; Organoid; Hepatocytes; Systems pharmacology; 20 

Mathematical modelling.  21 
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1 Introduction 1 

The discovery of potential toxicity in-vitro remains an important process in providing pre-2 

clinical safety assurances during drug development. However, conventional 2D in-vitro 3 

experiments, such as monolayer cell culture, tend to be poorly predictive of toxicity, and 4 

emerging 3D systems are shown to be more physiologically relevant and predictive of the in-5 

vivo environment (1, 2). Accordingly, 3D cell culture systems such as multicellular spheroids 6 

are increasingly being utilised in drug development and hepatic safety assessment (3, 4). 7 

Although 3D spheroid systems offer improvements in terms of physiological relevance and 8 

in-vivo-like functionality, the mechanistic interaction between these systems and drugs is not 9 

yet fully understood.  10 

Multiscale in-silico methods can improve the application of 3D spheroid models to assess the 11 

hepatotoxicity of drug candidates (5, 6). Indeed, mechanistic mathematical modelling of drug 12 

metabolism and transport in 3D microtissues is important for the pharmaceutical industry as 13 

it facilitates an improved platform for both preclinical drug development and in-vivo 14 

extrapolation (7). This utilisation of mathematical models, devised to tackle pharmacological 15 

research challenges in a systems biology approach, has become known as part of the evolving 16 

field(s) of systems pharmacology and/or systems toxicology (8, 9). This approach is a 17 

multiscale, multidisciplinary field that employs holistic, integrative methods in order to 18 

enhance the understanding and prediction of emergent system properties. Moreover, this 19 

methodology is strictly quantitative requiring the integration of quantitative data and 20 

modelling to develop mechanistic knowledge of the system and reveal pharmacological and 21 

toxicological properties. Consequently, systems pharmacology models are becoming an 22 
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increasingly important part of the toolkit to improve capabilities and drive innovation for in-1 

vitro safety assessment (10-12). 2 

In this study we have characterised the spatiotemporal dynamics of drugs in an in-vitro 3 

hepatic spheroid system by simulating relevant physical processes in-silico. A data-driven, 4 

multiscale, mathematical modelling framework combining mechanistic information relating 5 

to the diffusion, transport and metabolism of chemical species in a hepatocyte spheroid is 6 

presented. A microscale single-cell model is analysed to study different transport mechanisms 7 

by varying boundary conditions on the cell membrane. This model is then coupled to a 8 

multicellular model developed to evaluate the effects of cellular arrangement and density on 9 

the transport and penetration of drugs, simulating the in-vitro microtissue environment. Such 10 

effects include a non-linear relationship between drug lipophilicity and spheroid penetration 11 

whereby drug delivery to the spheroid core is minimised for drugs of intermediate 12 

lipophilicity. The integration of experimental data allows for the development of realistic 13 

geometries and parameterisation of the multiscale model for a range of drugs. Ultimately, by 14 

accurately simulating the processes of drug transport and metabolism we aim to enhance the 15 

understanding of underlying mechanisms and optimise the use of these systems in-vitro. 16 

 17 

2 Methods 18 

2.1 Microscale transport – crossing the cell membrane 19 

To simulate the distribution of drugs throughout a 3D tissue comprised of multiple 20 

hepatocytes, it is necessary to determine how drugs penetrate and cross the cell membrane. 21 

This membrane comprises a phospholipid bilayer, providing a hydrophobic protective barrier 22 
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for the cell. Consequently, this chemical barrier property is a key determinant in the effective 1 

permeability of any drug. Many factors affect drug permeability in tissues such as ionisation, 2 

aqueous diffusion between lipid barriers, and protein binding, but the partition into the 3 

membrane (determined by lipid solubility) is one of the most important (13). Highly 4 

lipophilic substances can more readily penetrate the membrane via free diffusion, whilst 5 

relatively hydrophilic substances, (highly soluble in polar solvents such as water or blood), 6 

cannot enter the cell easily and require specific transporters (Figure 1A). The relative role of 7 

transporter proteins in intracellular drug transport is still debated and there remain different 8 

views as to whether passive diffusion or carrier-mediated transport is the major mechanism 9 

(14-18). For the entirety of this study we refer to the two main types of transport: passive 10 

diffusion – entering cells down a concentration gradient directly through the membrane 11 

(passive); and carrier-mediated transport – entering cells via specific transporter proteins 12 

embedded in the plasma membrane (passive or active). 13 

The mathematical representation of microscale drug transport across a cell membrane can be 14 

studied with a simple model considering the processes governing drug concentration 15 

dynamics in two phases, inside and outside the cell, with a permeable barrier in-between. 16 

Once inside the cell, the drug is removed via metabolism. We assume diffusion occurs at 17 

different rates inside (𝐷!) and outside (𝐷!) of the cell, which we initially assume is spherical 18 

of radius 𝑅, but relax this assumption in section 2.3. The drug concentration (𝐶) dynamics 19 

inside the cell are given by the partial differential equation (PDE): 20 

𝜕𝐶

𝜕𝑡
= 𝐷!∇

!
𝐶 −

𝑉!"#𝐶

𝐶 + 𝐾!

  , (1) 
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where 𝑉!"# is the maximum metabolic rate and 𝐾! represents the drug concentration at 1 

which metabolism is half maximal. Since there is no flow within the in vitro system, and the 2 

dominant form of removal within the multiscale model is assumed to be due to intracellular 3 

metabolism, we assume that outside the cell drug transport is governed by diffusion processes 4 

only: 5 

𝜕𝐶

𝜕𝑡
= 𝐷!∇

!
𝐶 . (2) 

For simplicity, we assume that the problem is radially symmetric and rescale the model with 6 

respect to cell radius and internal diffusion time (such that the cell boundary is now given by 7 

𝑟 = 1) to give  8 

 𝜕𝐶

𝜕𝑡
=
1

𝑟!

𝜕

𝜕𝑟
𝑟
!
𝜕𝐶

𝜕𝑟
−
𝑉!"#𝐶

𝐶 + 𝐾!

 ,  𝑟 ≤ 1 , (3) 

 𝜕𝐶

𝜕𝑡
=
𝐷

𝑟!

𝜕

𝜕𝑟
𝑟
!
𝜕𝐶

𝜕𝑟
 ,  𝑟 > 1 , (4) 

where 𝐷 = 𝐷!/𝐷! due to rescaling (see supplementary material for details). We impose the 9 

following boundary conditions at the cell centre (𝑟 = 0), for radial symmetry, and a distance 10 

away from the cell (𝑟 = 𝑟!"#): 11 

𝜕𝐶

𝜕𝑟
= 0 ,  𝑟 = 0 , (5) 

𝐶 = 𝐶!!"#
 ,  𝑟 = 𝑟!"# , (6) 

where 𝐶!!"#
 is a constant supply term. Assume that the flux at the cell boundary is equal such 12 

that mass is conserved, i.e., 13 
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𝐷!

𝜕𝐶!

𝜕𝑟
= 𝐷!

𝜕𝐶!

𝜕𝑟
 ,  𝑟 = 1 , (7) 

where 𝐶! and 𝐶! are used to distinguish between interior and exterior drug concentrations at 1 

the cell membrane boundary. A further boundary condition must be specified at the cell 2 

membrane boundary in order to solve the coupled PDE system and investigate the effects of 3 

different means of drug transport. 4 

2.1.1 Passive diffusion 5 

The following boundary condition is imposed to describe the flux of drug into the cell due to 6 

passive diffusion:  7 

𝐷!

𝜕𝐶!

𝜕𝑟
= 𝐷!

𝜕𝐶!

𝜕𝑟
= 𝑄 𝐶! − 𝐶!  , 

 
𝑟 = 1 , (8) 

where 𝑄 is the permeability coefficient. The mathematical model can be solved numerically 8 

in MATLAB R2017b. For methodological details regarding derivations, numerical solutions 9 

and simulations of microscale transport, see the supplementary material. 10 

The impact of the permeability coefficient, 𝑄, on the steady-state distribution of drug 11 

concentration can be seen in Figure 1B (for temporal dynamics, see supplementary 12 

animations). For low permeability coefficients (𝑄 ≪ 1), there is less drug penetration per unit 13 

time and so there is a low steady-state value inside the cell and a large discontinuity at the 14 

cell membrane. As 𝑄 increases, relatively more drug enters the cell per unit time and in the 15 

limit, as 𝑄 → ∞, the steady-state solutions converge such that the drug concentration profile 16 

is continuous (𝐶! = 𝐶!) at the cell membrane boundary (which now provides no effective 17 
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barrier or resistance) and the steady-state profile represents the balance of supply via 1 

diffusion and removal via intracellular metabolism. 2 

2.1.2 Carrier-mediated transport 3 

For drugs whose physicochemical properties prohibit direct permeation across the cell 4 

membrane, specific transporter proteins are required that can mediate the transfer process. 5 

The reliance on transporter (or carrier) proteins dictates that the flux is now saturable with an 6 

explicit dependence on the surface area concentration, binding affinities, and activity of 7 

transporters in the cell membrane. In this scenario, the boundary condition representing 8 

membrane transport cannot be sufficiently represented by the passive diffusion condition in 9 

equation (8) and so we implement a simple carrier model as applied in other similar 10 

physiological membrane transport models, e.g., Keener & Sneyd (19) and Wood & Whitaker 11 

(20). This carrier model can be applied to define the flux boundary condition for the carrier-12 

mediated transport model scenario: 13 

𝐷!

𝜕𝐶!

𝜕𝑟
=

𝑇! 𝐶!  − 𝛼!𝐶!

𝛼! + 𝛼!𝐶! + 𝛼!𝐶! + 𝛼!𝐶!𝐶!

  , 
 

𝑟 = 1 , (9) 

where 𝑇! represents transporter protein concentration on the cell membrane and 𝛼!, 𝛼!, 𝛼!, 14 

𝛼!, 𝛼! represent algebraic expressions dependent on kinetic rates in the carrier model such as 15 

binding rates (see supplementary material for more information).  16 

The barrier effect provided by the carrier-mediated transport of drugs across the cell 17 

membrane allows for a discontinuity in the steady-state profile of the drug concentration 18 

distribution when there is a constant external supply that diffuses towards a metabolically 19 

active cell (as before with the passive diffusion case with low permeability). Indeed the 20 
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carrier mediated transport condition can be reduced to the passive diffusion condition 1 

mathematically with appropriate parametrisation (e.g., 𝑇! = 𝑄,𝛼!,! = 1,𝛼!,!,! = 0). 2 

Furthermore, the flexibility of the carrier-mediated condition facilitates the implementation of 3 

implicit active processes whereby the flux of drug can move uphill against its concentration 4 

gradient (e.g., see Figure 1C). This can be achieved with appropriate parameterisation of the 5 

simple carrier model such that 𝛼! < 1, e.g. when binding affinity/dissociation in the interior 6 

is lower/higher than exterior binding/dissociation. 7 

A 

 

B C 

 
Figure 1: Modelling transmembrane transport in a single cell. (A): Drug transport schematics 8 
across the cell membrane. Two modes of transport are considered, passive diffusion (pink 9 
substrates/circles) and carrier-mediated transport (green substrates/circles). Drugs that permeate the 10 
cell via passive diffusion move down a concentration gradient directly through the membrane and are 11 
limited by their associated permeability coefficient. This coefficient is dependent on the 12 
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physicochemical properties of the drug and drugs which cross the membrane via this mechanism are 1 
typically small and lipophilic. Other drugs may require the action of specific membrane-bound 2 
transporter proteins to enter the cell (carrier-mediated transport). In this study, it is assumed that this 3 
mechanism is dependent on carrier proteins/receptors (depicted in cyan) which can reversibly bind to 4 
the substrate and undergo conformational changes to transport the substrate across the membrane. 5 
Species within the figure are annotated with symbols related to mathematical models described in the 6 
main text and supplementary material. (B): Variation in the permeability coefficient determines the 7 
steady-state concentration profile of drug concentration in a single cell for the passive diffusion 8 
transport mechanism. Low permeability results in a discontinuity at the cell membrane (𝐷 =9 
2,𝑉!"# = 10,𝐾! = 0.5,𝐶!!"#

= 1). (C): For specific parameter choices within the carrier-mediated 10 

transport model, a steady-state can be reached such that the drug is transported against its 11 
concentration gradient, implicitly simulating an active process (𝐷 = 2,𝑉!"# = 1,𝐾! = 0.5,𝐶!!"#

=12 

1,𝑇! = 1,𝛼! = 0.5,𝛼! = 1,𝛼! = 0,𝛼! = 0,𝛼! = 0). Full spatiotemporal dynamics can be found for 13 
(B) and (C) in supplementary animations. 14 

 15 

2.2 Parameterisation  16 

For the full multiscale model, describing the transport and metabolism of drugs in a 17 

multicellular in-vitro environment, it is useful to include quantitative, dimensional parameter 18 

values based on experimental data to directly represent the laboratory scenario for drugs with 19 

a range of physicochemical properties. Therefore, it is important to identify relevant 20 

parameter ranges for the microscale model before upscaling the problem to the 21 

multicellular/tissue level by introducing hepatic spheroid geometry. There are currently three 22 

key processes that determine drug dynamics in our system and require parameterisation: 23 

diffusion, metabolism and permeation. For simplicity and more general applicability, we will 24 

focus on the passive diffusion case and not cover carrier mediated transport during analysis of 25 

the multicellular model.  26 

2.2.1 Diffusion of small molecule drugs 27 

Most drugs, and nearly all drugs that cross the cell membrane via passive diffusion, are 28 

categorised as small molecule drugs. These are low molecular weight compounds and 29 
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comprise most drugs on the market today (21). For a sample data base of 321 such drugs 1 

(22), we calculated diffusion coefficients based on physical measurements of weight and 2 

density (MW ~100-1,200Da; density ~0.6-2.6g/m
3
). Thus we propose the feasible diffusion 3 

coefficient range of approximately 5×10
-10 

to 1×10
-9

m
2
/s (further information in the 4 

supplementary material). This narrow range supports the assertion that the main determinants 5 

of drug disposition are the ability to translocate across hydrophobic diffusion barriers 6 

(permeability) and chemical transformation (metabolism), while variations in the aqueous 7 

diffusion rate have only minor effects on overall pharmacokinetics (13). A representative 8 

value of 7.5×10
-10

m
2
/s for both 𝐷! and 𝐷!  will be considered as default for further 9 

simulations. 10 

2.2.2 Permeability as a function of lipophilicity 11 

The permeability of a drug transported via passive diffusion is related to its lipophilicity, a 12 

measurable physicochemical property that can be used to define our permeability coefficient, 13 

𝑄. Menochet et al. (23, 24) discovered a log-linear relationship for hepatic uptake between 14 

passive diffusion clearance, 𝑃!"##, and lipophilicity, 15 

log𝑃!"## = 0.6316×LogD!.! − 0.3143 , (10) 

where 𝑃!"## has units of µL/min/10
6
cells and LogD7.4 is a partition coefficient measure of 16 

lipophilicity at a physiologically relevant pH (pH = 7.4). This relationship allowed us to 17 

derive, 𝑄, as a function of 𝑃!"##, and the radius of the cell, 𝑅, by taking into account passive 18 

uptake across the whole cell membrane of surface area 4𝜋𝑅!: 19 
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𝑄 =
𝑃!"##

4𝜋𝑅!
=

1

10!

10
!.!"#!×!"#!!.!!!.!"#!

4𝜋𝑅!
. (11) 

For the full derivation see the supplementary material. LogD7.4 values between 1 and 5 are 1 

considered within this study to represent relatively lipophilic, small-molecule drugs (relevant 2 

for passive diffusion), with LogD7.4 = 3 as default. 3 

2.2.3 Simplified drug metabolism in hepatocytes 4 

Metabolism represents the principal sink/removal term in our model and the metabolic rate is 5 

likely to vary greatly depending on the chemical makeup of the drug of study, as well as the 6 

quantity and activity of metabolising enzymes present. Therefore this term is likely to have a 7 

significant impact on the overall disposition of drug concentration in a metabolically active 8 

in-vitro spheroid system. Metabolic rates are assumed to be independent of space in the 9 

model for simplicity, although zonal variation may exist. Brown et al. (25) reported kinetic 10 

parameters for a range of compounds to predict metabolic clearance by using cryopreserved 11 

human hepatocytes. This publication provided pharmacologically feasible 𝑉!"# (5×10
-6 

to 12 

4.5×10
-1

mol/m
3
/s) and 𝐾! (5×10

-4 
to 1.4×10

-1
mol/m

3
) ranges for drugs primarily metabolised 13 

in the liver and were thus used as conservative guidance for this model parameterisation, 14 

given that cells cultured in 3D often display improved drug metabolism functions. As default, 15 

we consider parameters values of 𝑉!"# = 5×10
-3

mol/m
3
/s and 𝐾! = 1×10

-2
mol/m

3
. 16 

2.3 Macroscale – hepatocyte spheroid geometry 17 

The impact of the hepatic spheroid environment on drug transport is considered by upscaling 18 

our microscale model to consider multiple discrete cells in a realistic spheroid geometry 19 

within an extracellular space (culture medium). This hepatocyte spheroid geometry was 20 
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generated based upon histological staining of hepatic spheroids to provide representative cell 1 

sizes, number, and arrangement thereby replicating the in-vitro scenario within the multiscale 2 

mathematical model.  3 

2.3.1 Mathematical description of spheroid geometry 4 

Histological staining of a hepatocyte spheroid revealed the spatial distribution of the cell 5 

nuclei within a section (Figure 2A). This spatial information, as well as the spheroid 6 

boundary, was quantified digitally with WebPlotDigitizer (26) and imported into MATLAB. 7 

Due to the abundant expression of extracellular matrix in the hepatic spheroid histological 8 

images, it was not possible to visualise and/or quantify the location of the hepatocyte 9 

membranes. Therefore, we estimated the location of cell boundaries using Voronoi 10 

tessellation (Figure 2B). Briefly, Voronoi tessellation involves assigning regions to each 11 

nucleus such that any point in space within that region is closer to that nucleus than any other. 12 

The boundaries of these regions can be determined by drawing perpendicular bisectors 13 

between adjacent pairs of nuclei. This technique has been shown to provide viable estimates 14 

for the qualitative morphology of cells in a tissue (27). 15 

Cellular ultrastructure was visualised by transmission electron microscopy (TEM). TEM 16 

revealed that the space between hepatocytes was narrow (~0.1-0.5µm, see Figure 2C).  These 17 

values are supported by the literature which states intercellular spaces from 100nm to the µm-18 

scale (28, 29). Furthermore, it should be noted that fixation methods can shrink such 19 

morphological features (30) and therefore we consider both narrow and wide intercellular 20 

space geometries. This was achieved by contracting the vertices of each model cell towards 21 
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the cell’s respective centre of mass by 1% (“narrow”, ~0.2µm) or 10% (“wide”, ~2µm) 1 

(Figure 2D). 2 

2.3.2 Experimental methods 3 

Primary rat hepatocyte spheroids with an initial seeding density of 5,000 cells were produced 4 

using the liquid-overlay technique as described by Kyffin et al. (31). After 11 days in culture 5 

the spheroids were washed in PBS, fixed in 4% paraformaldehyde and subjected to routine 6 

histological processing before staining with haematoxylin or processed for TEM analysis. For 7 

TEM imaging, spheroids were fixed in 3% glutaraldehyde and processed as previously 8 

described (31). Ultrathin (~70–90nm) sections were examined using a FEI Tecnai 9 

Transmission Electron Microscope at an accelerating voltage of 80Kv and images taken using 10 

a Gatan digital camera. 11 

2.3.3 Numerical simulation 12 

The finite-element simulation software, COMSOL Multiphysics
® 

5.3, was used to solve the 13 

multiscale model PDEs. The 2D spheroid slice geometry was imported into COMSOL and 14 

the PDEs were defined as before to calculate the dynamics of drug concentration, 𝐶, for two 15 

separate phases (intracellular, 𝐶!, and extracellular, 𝐶!): 16 

 𝜕𝐶!

𝜕𝑡
= 𝐷!∇

!
𝐶! −

𝑉!"#𝐶!

𝐶! + 𝐾!

 ,  𝐶 = 𝐶!  , (12) 

 𝜕𝐶!

𝜕𝑡
= 𝐷!∇

!
𝐶!  ,  𝐶 = 𝐶!  , (13) 

with boundary conditions at the every cell membrane within the spheroid, 17 

𝐷!∇𝐶! ⋅ 𝐧 = 𝐷!∇𝐶! ⋅ 𝐧 = 𝑄 𝐶! − 𝐶!  , (14) 
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for the general inward fluxes, where 𝐧 is the unit normal vector pointing out of each cell. An 1 

illustrative example of the multiscale model steady-state with a constant supply of drug at the 2 

outer boundary of the media phase (𝐶!!"#
 = 500µM) can be seen in Figure 2E, simulated for 3 

a drug with physicochemical properties based on the default parameter set described above. 4 

Note that permeability 𝑄 is related to LogD7.4 according to equation (11). A 1D cross-section 5 

is plotted in Figure 2F for visualisation, highlighting the discontinuities in drug concentration 6 

between intra- and inter-cellular space and the heterogeneity in drug concentration between 7 

cells in different regions.  8 
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A B 
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E F 

 

Figure 2: The multiscale model including hepatocyte geometry. (A): Histological staining of a 1 
hepatocyte spheroid slice indicating the location of cell nuclei (blue). (B): Voronoi diagram 2 
constructed to provide estimates of hepatocyte boundaries (red) based on location of hepatocyte nuclei 3 
(blue). (C): Representative TEM image of a hepatocyte spheroid showing the size of the space 4 
between adjacent cells. The intercellular space is indicated by the red arrows. (D): Intercellular space 5 

50 µm 

2 µm 
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was introduced into the model geometry by contracting the vertices of Voronoi cells (indicated by 1 
black arrows) towards the centre of each cell (yellow stars; nuclei in blue). (E): Steady-state 2 
distribution of an example drug (LogD7.4  = 3 with default parameters and wide intercellular space), 3 
formed with a constant supply of 500µM at the outer media boundary (disc of radius 750µm). The 4 
drug distribution is denoted by the colour-bar, demonstrating that there are lower drug concentrations 5 
in the central hepatocytes. (F): A 1D cross-section of the simulation (position indicated by white line 6 
in (E)) signifies the variation of drug concentration inside and outside of the cells within the spheroid 7 
structure, as well as the heterogeneity of intracellular drug concentration in different regions of the 8 
spheroid. 9 

 10 

3 Results 11 

3.1 Impact of drug permeability on spatiotemporal distribution throughout spheroid 12 

The diffusion rate of a drug depends mainly on size, a property that has minimal variation in 13 

small molecule drugs (a detail supported by our analysis of over 300 compounds during 14 

parameterisation) and thus has relatively little impact upon drug distribution when compared 15 

with the ability to translocate across the hydrophobic diffusion barrier of the cell membrane 16 

(13). This translocation ability is determined by the lipophilicity of the drug during passive 17 

diffusional transfer across the membrane. Therefore we consider the impact that drug 18 

permeability (as determined by lipophilicity) has upon the overall dynamics within the 19 

representative in-vitro spheroid system. This analysis is illustrated by simulating the model, 20 

dosed for 3 example drugs with different permeability coefficients (corresponding to LogD7.4  21 

= 1, 3, 5, within the otherwise default parameter set) via constant supply at the external 22 

boundary and comparing the steady-state spatial distribution of drug concentration (Figure 3). 23 

Spatiotemporal dynamics can be found in supplementary animations. 24 

The results indicate that for highly lipophilic drugs (LogD7.4  = 5), the cell membrane does 25 

not represent a significant barrier to drug penetration and there is relatively little difference 26 

between drug concentrations in cells and the intercellular space. For relatively lowly 27 
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lipophilic drugs (LogD7.4  = 1), the membranes represent a significant barrier. Drug 1 

concentration is very low within the cells but relatively high in the intercellular space 2 

throughout the spheroid. However, in the intermediate case (LogD7.4  = 3), there is relatively 3 

little drug in the spheroid centre, both inside and outside of the hepatocytes. This is due to the 4 

balance between the overall processes of drug transport towards the spheroid centre 5 

(diffusion, permeability and metabolism), impacting penetration potential. Overall, it is clear 6 

that an increase in permeability results in higher intracellular drug concentration but there is a 7 

non-linear response in the intercellular space as permeability is increased, with a potential 8 

local minimum for drugs of intermediate lipophilicity. The same observations are made for 9 

narrow intercellular spaces and when varying transporter expression in the carrier-mediated 10 

transport model (data not shown). This result highlights the potential importance of not only 11 

permeability, but intercellular space on overall drug delivery. 12 
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Figure 3: Impact of permeability on drug dynamics distribution. Top row: Spatial distribution of 1 
drug concentration within a hepatic spheroid for 3 different permeability coefficients (permeability 2 
decrease from left to right, LogD7.4  = 5, 3, 1). The plots represent steady-state values after constant 3 
supply of 500µM at the outer media boundary (disc of radius 750µm). Bottom row: Corresponding 4 
representative 1D plots are provided for each drug using the same-cross section position as Figure 2E. 5 

 6 

3.2 Impact of intercellular dimensions on spatiotemporal distribution throughout 7 

spheroid 8 

Many mathematical models of cellular spheroids consider geometrical simplifications such as 9 

radial symmetry and a homogenous continuum of cells. The consideration of a spheroid with 10 

individual hepatocytes modelled as discrete regions in space, and accompanying intercellular 11 

space, has a visible impact upon the radial drug concentration profile. This can be seen most 12 

clearly in the case of low permeability with large fluctuations in the drug concentration 13 

between intra- and inter-cellular space (Figure 3). There is a considerable range of 14 

intercellular gap sizes within spheroids, a feature which can be magnified by fixation issues 15 
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and cell type, with tumour spheroids notoriously exhibiting higher porosities  (32). Therefore 1 

it is prudent to also consider the impact of porosity (gap size) on drug delivery by simulating 2 

our model for both narrow and wide intercellular space geometries, as well as a model 3 

without intercellular space altogether for comparison. Steady-state spatial distributions in 4 

Figure 4 suggest that intercellular space has a considerable impact upon drug penetration, 5 

with increased porosity resulting in higher drug concentration for the spheroid interior. 6 

A B C 

 
Figure 4: Impact of intercellular space on drug dynamics distribution. Spatial distribution of drug 7 
concentration within a hepatic spheroid for 3 different intercellular space geometries (no spaces (zero 8 
porosity, A); narrow spaces (~0.2µm, B); wide spaces (~2µm, C)). The figures represent steady-state 9 
values after constant supply of 500µM at the outer media boundary (disc of radius 750µm) with 10 
default parameters. 11 

 12 

3.3 Translating the multiscale model to a simple continuum model 13 

From Figure 4 it is clear that, when using quantitative, measurable, microscale parameters, 14 

the assumption of a homogenous continuum of hepatocytes in the spheroid will be 15 

insufficient for simulating spatial drug distributions, particularly for wider intercellular 16 

spaces. Therefore, we consider if there are any parameter modifications that can be made 17 

such that the continuum model can be said to sufficiently replicate the simulations provided 18 

by the more spatially complex discretised model. Such a model would be highly beneficial 19 

for the quantification of drug dynamics with greater computational efficiency. For this 20 

µM 
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investigation we compare the average behaviour of the full discrete, multiscale, dimensional 1 

model (“cell-based model”) with the idealised radially symmetric, homogenised sphere 2 

model (“continuum model”) in 2D (cylindrical coordinates) given by: 3 

 𝜕𝐶!

𝜕𝑡
=
𝐷
!

!""

𝑟

𝜕

𝜕𝑟
𝑟
𝜕𝐶!

𝜕𝑟
−
𝑉!"#𝐶!

𝐶! + 𝐾!

 ,  𝑟 ≤ 𝑅! , (15) 

 𝜕𝐶!

𝜕𝑡
=
𝐷!

𝑟

𝜕

𝜕𝑟
𝑟
𝜕𝐶!

𝜕𝑟
 ,  𝑟 > 𝑅! , (16) 

where 𝐶! and 𝐶! represent spheroid and outer drug concentrations respectively, and 𝑅! = 135 4 

µm (the average radius of the hepatocyte sphere slice in Figure 2), with boundary conditions  5 

𝐷
!

!"" 𝜕𝐶!

𝜕𝑟
= 0 ,  𝑟 = 0 , (17) 

𝐷
!

!"" 𝜕𝐶!

𝜕𝑟
= 𝐷!

𝜕𝐶!

𝜕𝑟
 = 𝑄!"" 𝐶! − 𝐶!  ,  𝑟 = 𝑅! , (18) 

for effective parameters 𝐷
!

!""
 and 𝑄!"" which represent the parameters to be modified. These 6 

parameters are logical targets for translation since they determine interior transport via 7 

internal diffusion and translocation across cell membranes in the cell-based model. 8 

Homogenisation here can be thought of as an extreme modification of the spheroid structure 9 

such that we reduce the system to a very large single cell with a single permeable membrane. 10 

The effective parameter values of the continuum model were optimised to fit the average 11 

behaviour of the cell-based models for both intercellular space geometries and a 12 

physicochemically relevant range of permeability coefficients (corresponding to LogD7.4  = 1, 13 

2, 3, 4, 5).  For information regarding parameter optimisation, see the supplementary 14 

material. 15 
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The required modifications of effective parameters, both collectively and individually as 1 

functions of drug lipophilicity and intercellular space, are summarised in Figure 5, as well as 2 

corresponding error metrics. A combined parameter change metric in Figure 5E is introduced 3 

to quantify the relative amount of modification required for each scenario (intercellular width 4 

and lipophilicity) and defined as 5 

Δ𝑃 =
𝐷
!

!""
− 𝐷!

𝐷!

!

+
𝑄!"" − 𝑄

𝑄

!

. (19) 

From Figure 5 it is clear that Δ𝑃 is dominated by relative changes in the effective 6 

permeability coefficient, 𝑄!""(compare Figure 5E with Figure 5A-B). Permeability must be 7 

increased to account for the intercellular space in the cell-based models (all lipophilicities), 8 

i.e., 𝑄!""/𝑄 ≥ 1 for all LogD7.4 (Figure 5B). This effectively makes the spheroid boundary 9 

in the continuum model more porous (virtually simulating gaps between cells) and the 10 

discontinuity at the spheroid boundary is reduced. It should be noted that in the dimensional 11 

cell-based models, while 𝐷! remains constant throughout all simulations, 𝑄 will change 12 

dependent on LogD7.4 (recall equations (10)-(11)). This is seen in Figure 5C-D with absolute 13 

changes in 𝑄!"" and 𝑄. Permeability must be increased by a greater amount for wider 14 

intercellular spaces to be effectively simulated by the continuum model (e.g., Figure 5D) for 15 

all LogD7.4. This is expected due to the increased porosity provided by wider gaps. Finally, 16 

effective permeability must be increased by a greater amount for low lipophilicities. This can 17 

be seen in Figure 5B where the effective permeability 𝑄!"" decreases towards the 18 

dimensional value 𝑄 with increasing lipophilicity, for both gap sizes, in a monotonic fashion. 19 
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This reflects the increased discrepancy between transport through cells and transport between 1 

cells found for drugs that are poorly lipid soluble.  2 

In order for the continuum model to effectively simulate intercellular space, intracellular 3 

diffusion must be decreased for all lipophilicities, i.e., 𝐷
!

!""
< 𝐷! for all LogD7.4 (Figure 5A). 4 

The primary effect of decreasing this parameter in the model is to increase the gradient of 5 

concentrations within the spheroid. For high lipophilicity and narrow intercellular spaces, the 6 

continuum model can provide a representative simulation of the cell-based model by reducing 7 

𝐷
!

!""
 alone. This property is observed by comparing the negligible changes in 𝑄!"" relative 8 

to 𝐷
!

!""
 at high lipophilicity and narrow intercellular spaces. For example, when LogD7.4 = 4 9 

and 5, 𝐷! is decreased by 94% and 86%, while 𝑄 is unchanged (Figure 5A-B). Theoretically, 10 

given a high enough value of LogD7.4, this behaviour is expected for wide spaces too, but this 11 

is beyond relevant parameter space.  12 

Regardless of lipophilicity, the optimised continuum model compares better with the cell-13 

based model of narrow intercellular gaps (Figure 5F, solid lines). This is likely due to the 14 

relatively lower amount of fluctuations in the mean 1D profiles as there is less extracellular 15 

space in general within the spheroid. These fluctuations represent the local drug 16 

concentration variation at the cellular scale due to discrepancies between intra- and extra-17 

cellular phases, which can be very high for drugs that are poorly lipid soluble (e.g., see Figure 18 

3 1D profiles). Prior to any optimisation and re-scaling of dimensional parameters to their 19 

effective counterparts (𝐷! → 𝐷
!

!""
,𝑄 → 𝑄!""), there was a clear pattern in the fit quality 20 

between the simple continuum model approximation and the cell-based models of different 21 

sized intercellular spaces (Figure 5F, dashed lines). Generally, the continuum model fits the 22 
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narrow spaces better for low membrane permeability and wider spaces better for high 1 

permeability. This feature appears to be correlated to the overall higher intracellular drug 2 

concentrations found in spheroids with wider spaces (since there is proportionally less 3 

transport across metabolising cells). The (pre-optimised) continuum model exhibits very low 4 

drug concentration within the spheroid at low permeability and so fits the narrow spaced 5 

model better. At higher permeabilities the continuum model has relatively high interior 6 

concentration and so fits the wide spaced cell-based model better (Figure S1 in the 7 

supplementary material). This switch in behaviour is likely due to the continuum model only 8 

providing a single barrier to permeation (spheroid boundary), which, once penetrated, 9 

facilitates drug penetration via diffusion solely.  10 

Interestingly, Figure 5E indicates that the cell-based model with wider intercellular spaces 11 

requires more parameter modification for all drug lipophilicities. Despite the intra-spheroidal 12 

gradients being vastly different between the (pre-optimised) continuum and narrow cell-based 13 

model at high permeabilities (Figure S1), the boundary intracellular drug concentrations are 14 

similar. Therefore the continuum model can be optimised via sufficient reduction in 𝐷
!

!""
 15 

whilst maintaining the original permeability coefficient (𝑄!"" = 𝑄). However, in order to 16 

simulate the wide cell-based model, and account for different concentrations in boundary 17 

cells, a relatively greater change in 𝑄!"" was required (compare relative changes in effective 18 

parameters at LogD7.4 = 4 and 5 for 𝐷
!

!""
 and 𝑄!"" for both models, Figure 5A-B). 19 
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A B 

  
C D 

  
E F 

  
Figure 5: Emulating the cell-based models with a simple, symmetric continuum model. Effective 1 

parameters for intracellular diffusion and permeability (𝐷
!

!""
 and 𝑄!"") were optimised in the 2 

continuum model to fit the output for the cell-based models for a range of drug lipophilicities. (A): 3 

The optimised 𝐷
!

!""
 value provides the required relative changes in intracellular diffusion for the 4 

continuum model to match the cell-based models with narrow (blue) and wide (red) intercellular 5 

space geometries. (B) Required relative changes in permeability identified by optimising 𝑄!"". 6 
Absolute values of 𝑄!"" optimised for each cell-based model and drug lipophilicity (LogD7.4) are 7 
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plotted in (C). (D): Optimised 𝑄!"" on a log scale (y-axis). (E): A combined parameter change metric 1 
(Δ𝑃) indicates the summarised amount of model modification required for the continuum model to 2 
effectively simulate the cell-based models. (F): Comparisons between model outputs are calculated by 3 
using the R

2
 error metric to determine relative quality of fits (see supplementary material for 4 

definition). Comparisons are made both prior to optimisation (“pre”, direct comparison using 5 

dimensional parameters, i.e., 𝐷
!

!""
= 𝐷! ,𝑄

!""
= 𝑄) and post-optimisation (“post”).  6 

 7 

3.4 Investigating the impact of permeability on the dynamic process of drug delivery in 8 

different regions of the spheroid for a bolus dose 9 

 Intercellular space has a discernible impact on the spatiotemporal drug dynamics in the in-10 

vitro spheroid environment and moreover, a non-linear effect was revealed for local 11 

concentrations within intercellular space as permeability is increased (Figure 3). Since this 12 

phenomenon (i.e., a monotonic decrease in intracellular drug concentration with decreasing 13 

permeability, but a non-monotonic response in the intercellular regions) cannot be described 14 

by the simple continuum model, it is worth considering the potential impact of this feature on 15 

drug penetration. Here we choose to examine drug delivery and subsequent effects by 16 

calculating the total uptake/metabolism of the drug in different regions of the spheroid. To 17 

investigate drug delivery via metabolism, we introduce the following “metabolism” variable, 18 

𝑀, with dynamics:  19 

 𝜕𝑀

𝜕𝑡
=
𝑉!"#𝐶

𝐶 + 𝐾!

 ,  𝐶 = 𝐶!  , (20) 

which corresponds to accumulated drug metabolised and is only relevant inside model cells. 20 

Corresponding model simulations are conducted with a finite bolus dose initially supplied in 21 

the outer medium, uniformly distributed in the extracellular space outside the spheroid, and 22 

zero-flux boundary conditions are imposed on the outer boundary of the media phase.  23 
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Two separate regions are defined, “outer” and “inner”, corresponding to cells of comparable 1 

size in the outer boundary layer of the spheroid, (x, y) = (-10µm, 110µm), and the spheroid 2 

centre, (x, y) = (0µm, 0µm). Simulations are run to the drug-free steady-state whereby all of 3 

the initial dose has been removed from the system and accumulated in the effective sink 4 

variable, 𝑀. For highly lipophilic drugs, the concentration dynamics are relatively similar 5 

between inner and outer regions as the drug is able to be transported throughout the spheroid 6 

quickly, unrestricted by permeability. However, the outer cells are exposed to slightly higher 7 

concentrations and consequently more drug is metabolised in this region, demonstrated by 8 

similar rates of metabolism (Figure 6A). Simulations of lowly lipophilic drugs require much 9 

longer timespans in order to reach equilibrium due to the reduced uptake rate at the cell 10 

membranes. However, due to the intercellular transport via diffusion, even centrally located 11 

cells receive relatively high local drug exposure and metabolise at a similar rate to outer cells 12 

(Figure 6C). It is the in-silico drugs of intermediate lipophilicity in this model scenario that 13 

exhibit the most striking discrepancies between inner and outer cells (Figure 6B). The impact 14 

of these varying rates of metabolism between drug lipophilicities and regions of the spheroid 15 

can be evaluated by comparing the total drug metabolised (Figure 6D). The greatest 16 

discrepancy in drug uptake between outer and inner hepatocytes is revealed for drugs of 17 

intermediate permeability (1,250% increase from inner to outer cells for LogD7.4 = 4 18 

compared to just +13% for LogD7.4 = 1 and +219% for LogD7.4 = 6).  Furthermore, outer 19 

cells in this case receive the most drug out of all three cases studies and the inner cells receive 20 

the least (Figure 6D). This effect can potentially be exacerbated when carrier-mediated 21 

transport kinetics are modelled at the cell membrane, due to the saturating effects of this 22 

uptake mechanism (arbitrary transporter  parameterisation, data not shown). This feature has 23 
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the potential to significantly impact experimental design considerations and in-vitro drug 1 

efficacy and toxicity evaluation.  2 

 
Figure 6: Impact of drug lipophilicity on uptake and metabolism in different regions of the 3 
spheroid. Metabolism rates are plotted against time as a result of model simulations following a bolus 4 
dose of 100µM, initially uniformly distributed in the medium for varying drug lipophilicities (LogD7.4 5 
= 6 (A), 4 (B), 2 (C)). (D): Total metabolised drug (after complete clearance) is compared for inner 6 
and outer hepatocytes within the spheroid for a range of drug lipophilicities (LogD7.4 = 1-6). 7 

 8 

4 Discussion 9 

The enhanced sophistication of current cell culture methodologies due to increasing 10 

advancements in scientific understanding and technological developments has allowed for in-11 

vitro studies to become more physiologically relevant. There are a range of different in-vitro 12 

models that span varying levels of complexity, reproducibility, high-throughput potential, and 13 
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cost. Spheroids represent an intermediate experimental model that allows for increased 1 

physiological relevance over 2D monolayers due to the 3D environment, as well as more 2 

appropriate cell morphology and functionality while remaining cost-effective, consistent, and 3 

easy to use (1). The subsequent prevalence of liver spheroid cultures for studying hepatocyte 4 

behaviour in-vitro is evident and represents a key component of drug development such that 5 

drug candidates can be tested for efficacy and toxic potential in a 3D environment with 6 

physiological gradients (31, 33-35). However, such sophisticated adaptations offered by 7 

technological advancements are often prone to rapid widespread adoption, misuse and 8 

consequent distrust due to a lack of deep mechanistic understanding of the new tool. This is 9 

related to what is sometimes known as the hype cycle for emerging technologies (36). Data-10 

driven multiscale mathematical models provide an ideal platform from which to try and 11 

enhance mechanistic understanding of new biotechnologies by simulating the underlying 12 

physical processes. Additionally, the development of spatiotemporal data generated by 3D 13 

cell imaging offers tremendous opportunities for developing, parameterising and testing 14 

multiscale mathematical models and in response, mathematical modelling can be successfully 15 

used to optimise these developing technologies.  16 

In this study we developed a mathematical model of drug transport and metabolism in a 17 

multiscale spheroid framework, accounting for microscale processes such as membrane 18 

transport kinetics and how they relate to the physicochemical properties of a drug, and 19 

macroscale features such as the geometry of a hepatocyte spheroid, informed by imaging 20 

data. Cellular uptake of drugs was modelled by the two major processes of transport across 21 

the cell membrane, passive diffusion and carrier-mediated transport (17). The carrier-22 

mediated transport microscale model was innately more complex, depending on quantities 23 
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such as transporter protein expression, binding kinetics and rates of conformational change 1 

and this complexity allowed for a wider array of dynamic mechanisms such as enzymatic 2 

saturation and active processes. The extensive parameterisation required to quantify the 3 

carrier-mediated transport model depends on more compound-specific information, and so 4 

the passive diffusion case became the main focus of investigations within the generalised 5 

multiscale framework, more relevant for relatively lipophilic compounds. 6 

The explicit representation of individual hepatocytes based on imaging data allowed for an 7 

investigation into the effects of including a distinct cell-based geometry in the model. The 8 

model suggests that steady-state intracellular drug concentrations increase monotonically 9 

with increasing drug lipophilicity. However, a non-monotonic relationship was revealed 10 

between drug lipophilicity and intercellular drug concentration (Figure 3), while the width of 11 

the intercellular space further impacted spatial drug distribution (Figure 4). Intercellular space 12 

geometry, or spheroid porosity, is therefore a key physiological feature of the multicellular 13 

structure but is both difficult to accurately quantify and known to vary widely between cell 14 

types. This is particularly relevant in the case of tumour-derived spheroids, whose 15 

morphology tends to be more porous (32), and organoids that are increasingly being used in 16 

efficacy testing for tumour cells (37). We therefore studied two different average intercellular 17 

widths informed by TEM data and the literature which suggested a range of 10
2
-10

3
nm-scale, 18 

with results varying due to cell type, tumour phenotype and experimental artefacts such as 19 

fixation (29, 30, 38). 20 

While it is important to account for intercellular space within spheroids to correctly model 21 

drug delivery, the consequent increase in complexity by modelling this feature explicitly 22 

renders detailed analytic work intractable and deriving numerical solutions is costly with 23 
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respect to time and computational power requirements. Therefore it is appropriate to consider 1 

the application of simplified models that consider averaged or homogenised system 2 

behaviour and under what conditions they can provide valid approximations (39). We have 3 

shown how to approximate the cell-based models using a simple, symmetric, continuum 4 

model by reparameterising dimensional parameters to re-scaled effective counterparts. For 5 

relatively narrow intercellular gaps, these approximations are more accurate and the required 6 

parameter changes are reduced. The differences between the models, due to the explicit 7 

representation of intercellular space (porosity) within the cell-based model, are largely 8 

accounted for by increasing the effective permeability parameter. This parameter determines 9 

the translocation of drug at the boundary between intra- and extracellular phases and, as a 10 

result, the degree of discontinuity in drug concentration across the cell membrane. This is 11 

particularly important at lower lipophilicities when permeability limitations are maximised. 12 

For higher lipophilicities and narrow intercellular space, the spatially averaged dynamics of 13 

the cell-based model can be effectively simulated with the symmetric continuum model by 14 

appropriate reductions in the effective internal diffusion parameter only. Further work is 15 

required to determine the impact of spatially varying quantities that might exist within a 16 

spheroid such as intercellular space or transporters that vary zonally (40), and how these 17 

might compare between continuum models and cell-based models. Metabolic rates are also 18 

known to vary in space throughout multicellular structures due to gradients in environmental 19 

factors such as oxygen and glucose (41). Alternative model simplifications that might 20 

expedite analysis can be made by careful consideration of potentially redundant model 21 

complexities such as intracellular diffusion, which may be neglected in some scenarios. The 22 

model currently neglects any intracellular binding of the drug for simplicity, focusing on the 23 
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dominant mechanisms of transport and removal (metabolism) that drive the spatiotemporal 1 

dynamics. However, for specific future applications of the model, intracellular binding could 2 

be considered by ascertaining the relevant fraction unbound for a particular drug, as this will 3 

lower the rate of metabolism for those drugs which bind strongly to intracellular proteins and 4 

nuclear structures. 5 

The discovery of an apparent local minimum in drug penetration, whereby intercellular 6 

concentrations are lower for intermediate membrane permeation, motivated an investigation 7 

into corresponding effects on drug delivery, uptake and metabolism in spheroid centres for a 8 

bolus dose (Figure 6). The results of this investigation indicated that indeed, it is feasible to 9 

observe minimal drug uptake at the spheroid centre for drugs of intermediate lipophilic 10 

properties (with the majority of drug being metabolised at the outer regions). These 11 

mechanistic insights and modelling results have potential impact for the dosing of spheroid 12 

systems in-vitro as well as relevance for analogous in-vivo systems such as avascular 13 

tumours. It is not necessarily sufficient to assume that increasing a chemical’s lipid solubility 14 

will enhance its metabolism at the spheroid centre. Lowly lipid soluble drugs may require a 15 

much longer time in culture but ultimately metabolise the drug more uniformly throughout 16 

the spheroid. Accounting for reduced penetration due to the intermediate lipophilic property 17 

may be alleviated somewhat by increasing the dose, but this could have potentially toxic 18 

consequences from overdosing cells at the spheroid boundary. Other experimental design 19 

options include manipulating permeability (by chemical modification or intervention, but this 20 

could potentially further increase the divergent amounts of drug being metabolised in 21 

different regions of the spheroid) or using smaller spheroids. These investigations could be 22 

conducted within the in-silico framework, in the first instance, to guide strategy. The 23 
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implications of drug delivery characteristics based on permeability parameters could 1 

potentially be translated to targeting delivery in tissues of multiple cell types expressed 2 

zonally. For example, targeting the central zone of a spheroid that contains cells of a different 3 

phenotype (e.g. cancerous/hypoxic) may be aided by manipulating these properties regarding 4 

permeability, i.e., making certain that the permeability is either relatively high or relatively 5 

low to ensure delivery to the spheroid centre. The combination of mathematical modelling 6 

with experimental imaging provides a convenient in-silico testing toolkit to optimise the use 7 

of 3D cell culture systems in the laboratory and maximise the potential of spheroid models 8 

aiding drug discovery, toxicity testing and dose optimisation. 9 
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