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Abstract

In a population-based structural health monitoring setting, data from one structure in a population, where the health
state is known, may be used to make inferences about the health state in any nominally-identical structure. Any
deviation from the learned ‘healthy response’ potentially indicates damage. However, as in standard applications
of structural health monitoring, the healthy response from different structures also varies with the changes in
environmental conditions across the population. This paper investigates the modelling of the change in environment
across a population of structures located in one geographical region, such as a wind turbine farm. A data-driven
mapping method (based on Gaussian process regression) will be introduced that aims to quantify and normalise
variation stemming from the environment, such that the remaining response is only sensitive to damage or performance
anomalies. The way in which environmental maps are constructed and implemented is demonstrated via a case study
from an offshore wind farm. The ideas introduced here will constitute a field in the framework of population-based
structural health monitoring presented elsewhere in the conference.
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1 Introduction

Population-based structural health monitoring ((PB)SHM) extends the subject of SHM from an individual structure
to a group (or population) of structures. One of the motivations behind this is to address the issue caused by the lack
of damage state data. Many would agree that supervised learning is one of the most well-suited approaches to damage
identification tasks at the higher levels of Rytter’s hierarchy, i.e. damage classification, assessment and prediction [1].
To this end, labelled data for various damage cases are crucial in inferring detailed diagnostic information about a
structure. However, it is often difficult to obtain these data, especially for high-value structures such as wind turbines
and aircraft. A possible solution can be provided by the population-based approach as it allows the damage state
data from one structure to aid inference on damage states for all structures in the population [2]. In this paper, the
discussion is focussed on the knowledge transfer between nominally-identical structures, referred to as a homogeneous
population [3]. An almost ideal example is given by an offshore wind farm, based on which, the analysis in this paper
is carried out.

The data collected from operating structures, unlike that from highly-controlled laboratory experiments, are subject
to complex environmental and operational variations (EOVs). The influence on measured responses due to EOVs can
be comparable to, or sometimes more significant than, that due to damage [4]. Since it is almost impossible to find a
damage-sensitive response that is not heavily influenced by EOVs [5], understanding and normalisation of the effect
due to EOVs become necessary steps to implement SHM in reality.



Much effort has gone into studying how EOVs may affect the responses of aerospace and civil structures. Some
EOVs directly affect how a structure vibrates. This is demonstrated by the flutter or buffeting in long-span bridges
as a result of wind-induced vibrations [4, 6]. There are also factors that tend to alter the material properties and
boundary conditions of a structure, which then lead to a different dynamic response. For example, [4] summarised
that thermal-induced vibrations in bridges may stem mainly from changes in stiffness and boundary conditions (e.g.
thermal contraction). In the case of wind turbines, various EOVs exhibit a combined effect on the dynamic responses
of components. An example discussed in [7] showed how modal frequencies negatively correlated with temperature
(given a rotor speed within a specific range), and how this negative correlation could also be moderated by the
wind-induced aerodynamic damping.

When an individual structure is assessed, as in traditional SHM, the changes in EOVs are often mainly thought of as
temporal. For example, in the monitoring campaigns of bridges, the EOVs can be considered as the daily or seasonal
variations in temperature, wind loading, and traffic loading [6]. However, in PBSHM, the spatial dimension also needs
to be considered. As well as the temporal trends, the structures in a population can also be subject to different EOVs
based on where they are located.

The additional difficulties in the wind farm case arise from the fact that, the homogeneous population of nominally-
identical structures, may have significant differences in their responses as a result of their positions within the EOV
field. An example can be seen in a wind farm; although the turbines are all located in the same geographical region,
the wind conditions at different turbines can still differ due to wake effects. This issue adds to the complexity of
the problem, and new methods are called for. In particular, this issue means that a more sophisticated approach
to the transfer of information between the structures may be needed [3, 8]. If a population is heterogeneous [9, 10],
the problem of transfer is compounded. As observed in [9, 8], individuals in a heterogeneous population may differ
in terms of topology, geometry or structure, and all of these characteristics are sensitive to EOVs. For example,
geometrical dimensions may change with thermal expansion and material properties can be sensitive to temperature
and humidity (as noted above). It is not so obvious how EOVs might induce topology change; however, this is possible,
e.g. a bridge may change its topology if an expansion joint closes due to temperature increase, and a new ground
node (boundary condition) appears in the representation [9]. In summary, the Venn diagram from [8], on sensitivity
of transfer, is modified to that in Figure 1.
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Fig. 1: Categories of heterogeneous population within population-based SHM [8], amended for EOV effects.

The spatial distribution of environmental conditions across a wind farm has been the subject of numerous studies
in the field of wind turbine aerodynamics. A large number of computer experiments have been carried out to
model the process when turbine rotors extract kinetic energy from the wind, referred to as wake modelling. These
physics-based models typically consist of two parts: the first part of the model characterises the aerodynamics of
turbine rotors [11, 12, 13], and the second part simulates the entire turbulent wind field and provides the input blade



loads to all rotors in the modelled farm [14, 13]. As a result, the models simulate how much power each turbine
can generate, given a specific wind farm configuration, and in other words, how the wind is disturbed due to the
existence of operating turbines. However, such models are primarily developed with the purpose of improving the
rotor aerodynamic efficiency or optimising wind farm configuration. In this context, a model is usually considered
as sufficient so long as it is able to reproduce most of the physical phenomena, i.e. the simulated environment can
produce an effect similar to the real wind field over a period of time. In contrast, models with higher accuracies are
required for the purpose of SHM, where ideally the model would be able to predict the exact time and location of a
physical phenomenon. Such high level in accuracy is difficult to achieve through physics-based models alone (if at all)
without a high computational cost. On this account, a data-driven approach to modelling the wind farm environment
has been considered here.

This paper aims to understand, through data-based modelling, how EOVs vary temporally and spatially across a
population. It is the first step towards understanding the effect of spatially changing EOVs on dynamic responses,
after which a new method to remove the EOV-induced trends can be attempted. The work in this paper is based
on data from an operating wind farm, Lillgrund, with a brief introduction given in the next section. Section Two
will provide a detailed description of the field-mapping approach and the associated data-driven algorithm that are
used to model the spatially changing EOVs. The section that follows will present and discuss the results from the
environmental mapping model. The paper will finish with conclusions and future implications.

1.1 Lillgrund Wind Farm

The Lillgrund offshore wind farm is located in the middle of the Öresund region between Denmark and Sweden.
It consists of 48 turbines rated at 2.3MW, with the farm arrangement seen in Figure 2. The turbines are spaced
slightly further away (4.3D) in the prevailing wind direction of 225◦-255◦compared to the spacing in the perpendicular
direction (3.3D). Such spacings are generally considered dense, because the layout was originally designed for smaller
turbines [15]. This compact layout was preserved so as to facilitate the investigation into how turbine wakes can
affect power production.

Fig. 2: Turbine arrangement in Lillgrund wind farm [15]



The data used in this paper were collected during a year of operation from the Supervisory Control and Data
Acquisition (SCADA) system in Lillgrund. The SCADA data are presented as a statistical summary, including the
mean, maximum, minimum, and standard deviation, of the actual recorded data every ten minutes. In the analysis
that follows, the ten-minute mean values are used as an indication of the actual measured quantities.

2 Environmental Mapping

2.1 Motivation

According to the unique mechanism in wind turbines, most operational factors are driven by the environmental
conditions. In particular, turbine rotor speed is directly proportional to wind speed across a specified operational range,
and nacelles should be facing the incoming wind direction by default. The strong correlation between environmental
and operational factors indicates that, in the first instance, the environment can be viewed as the dominant driving
force behind the variations in an EOV field. As such, the method presented here is called an environmental mapping
as it creates a spatial map of the environment across a farm as an indication of the changing EOV field across a
population.

As well as being an important step in understanding the effect of EOVs on vibration signals, the environmental
map can be applied in two other ways: for SHM purposes, this map can be used as the environmental input to
individual turbine models in order to predict the normal, yet different, responses across a farm; another possibility
lies in adapting it to a model that optimises the overall power production of the farm by means of wake steering
or induction control. Taking into account these potential applications, wind loading becomes the most important
aspect in the environment as it has the most direct impact on the structures and the strongest correlation with power.
Therefore, the environmental mapping method described here focusses on modelling the spatial variations of wind
conditions in a farm.

2.2 Wake Pattern in Wind Farms

Wind conditions vary across an offshore wind farm mainly due to wake effects. The fact that turbines are designed to
extract kinetic energy from the wind explains why the wind becomes slower after passing through a turbine rotor.
The moving rotor also brings extra turbulence into the wind, resulting in a region behind the rotor with reduced wind
speed and intensified turbulence. Further downstream, the wake tends to spread and eventually return to free stream
condition, yielding a cone-shaped wake region [16]. In Figure 3a, the different shades of red indicate the variation in
characteristics of the wake, which means that the wake effect on any downstream turbine is highly dependent on the
relative position of the turbine in shadow with respect to its upstream neighbour. When multiple wakes superimpose
on one another, with an example given in Figure 3b, the combined effect needs to be considered.

(a) Single turbine wake (top view). (b) Wake superposition (top view).

Fig. 3: Schematic illustration of turbine wakes, adapted from [16].

It is self-explanatory that the turbine layout and wind direction play important roles in the overall wake pattern, as
they affect the position and direction of individual turbine wakes. Given a fixed wind farm layout in this analysis,
Figure 4 shows some examples of the wind speed patterns based on different wind directions, visualising the mean



wind speed deficit. The turbulence variations will be accounted for later in the modelling process. It is to be noted
that the wind direction at each turbine location is estimated by the nacelle position, given that a good match is found
between the wind direction measured on the available weather mast and the nacelle position at the nearest turbine
location [15].

(a) 22◦to 62◦. (b) 100◦to 140◦.

Fig. 4: Mean wind speed distribution across the Lillgrund farm for two incoming wind directions.

2.3 Data-Based Model

To the best of the authors’ knowledge, this paper demonstrates the first attempt to build a model that predicts
the temporally and spatially-changing EOV fields for SHM purposes. In line with the recent trend in SHM [1], a
data-driven approach is preferred for environmental mapping, since it allows for easier integration with other steps
in the process of damage identification. Another reason is that, as the physics-based approach has been developed
for decades, the current advancement in this field favours the inclusion of more data for better model calibration,
namely data-enhanced physics-based models. Given the abundant availability of data in this analysis, an opportunity
is given to explore the fully data-based approach in an attempt to achieve relatively high accuracy at a much lower
computational cost compared to the physics-based alternatives. As the first step in constructing a reliable model, the
model described in this paper is trained to predict only one spatial pattern in wind speed, with the wind coming from
100◦to 140◦(Figure 4b) specifically.

The relation between wind speeds at various turbine locations is considered nonlinear due to the complex wake effects,
especially with regard to turbulence. Gaussian process (GP) regression is used here as it provides an efficient way to
learn the nonlinear dependence between continuous variables. GP regression is also a stochastic method that gives a
prediction distribution based on which a mean prediction and its associated confidence interval can be computed. The
simplest version of the GP is applied here, with a zero mean function and a squared-exponential covariance function.
Detailed explanations for GP training and inference are provided by [17].

3 Wind Speed Predictions

The GP model seeks to predict a map of wind conditions by interpolating across the space. That is, it aims to predict
the wind speed at all turbine locations, given the wind speed from a fixed subset of the locations as inputs. In the
following, the training and testing data sets correspond to different time windows, ranging from 13 to 14 hours’ worth
of data, that are subjected to similar wind directions (100◦to 140◦) and wind speeds (4 m/s to 8 m/s). This choice is
to make sure that the training and testing sets indicate similar spatial patterns on separate occasions. The training



set is also selected such that the model prediction represents the wind speed variations under normal operational
conditions.

It is a standard practice in SHM to use the error of predictive models as an indicator of structural performance. One
of the most commonly-used error metrics is the normalised mean-square error (MSE) [6, 18], which is defined as,

MSE =
100

Nσ2
y

N∑

i=1

(yi − ŷi)
2

(1)

where y and ŷ represent target data and model prediction respectively, each with a size N . The error is normalised
by the variance of the target data, σ2

y, in order to marginalise the effect due to discrepancy between training and
testing data. The scaling factor of 100 ensures that the mean of the data will score 100% if used as the model. This
serves as a threshold below which correlation is indicated between prediction and target. On a similar note, error
values higher than 100% potentially indicate performance anomalies.

(a) Distribution of normalised MSE. (b) Prediction with a low error (turbine D2).

(c) Prediction with a medium error (turbine D1). (d) Prediction with a high error (turbine E1).

Fig. 5: Prediction error distribution, (a), and examples of time series predictions, (b)-(d), for a testing data set.

The error distribution for a testing data set can be seen in Figure 5a. It is worth noting that the heat map is created
to reflect on the relative positions between turbines rather than the exact wind farm layout, therefore the map appears
to be a rotated and distorted version of the farm. Based on this view, the incoming wind of 100◦to 140◦appears to
proceed from right to left in the heat map. The first thing to be observed was that the normalised MSEs at the ten



reference turbine locations, as indicated by pink circles in Figure 5a, were generally small. This gives an idea of how
accurate the GP predictions can possibly be – a mean MSE of about 2.5% was obtained when the model attempted
to predict what were given as inputs. For the region where the GP had to interpolate, the majority, except for the
highlighted turbine with an error greater than 100%, demonstrated reasonably good predictability, with a mean error
of 24%.

In respect of the testing set shown in Figure 5a, examples of time-series predictions with low, medium and high errors
are demonstrated in Figures 5b to 5d. In the low-error case (Figure 5b), the predicted line followed the trend of
the target data well, with most of the data fluctuations captured by the confidence interval of ± twice the standard
deviation. A short period of slight under-prediction could be seen from time point 0 to 10. The fact that most data
points in this period are bounded by the confidence limits means that they are considered by the GP as fluctuations
within the acceptable range.

When these fluctuations grew out of the confidence bounds, as seen in Figure 5c, a higher error was assigned by
the GP, showing an example of a medium-error prediction. In addition to the under-prediction at the beginning of
the time window, the higher error can also be attributed to the over-prediction during time instances 35-50 and the
under-prediction during 55-60. Since turbine D2 (Figure 5b) and D1 (Figure 5c) are the same distance away from
the first row of turbines encountered by free-stream wind (i.e. D1 and D2 are both in Row D), it is reasonable that
predictions with similar trends are made at these two turbine locations. However, such predictions provide a worse
fit at D1 than at D2 because they do not take into account how the turbines on the edge of a wind farm may be
influenced by the environment from the outside. In this instance, the influence from the outside manifests itself as
larger-scale fluctuations in wind speed. This explains the relatively-higher errors at turbine locations along Row 1
(Figure 5a), demonstrating an edge effect.

The most prominent edge effect was found at turbine E1, where the largest-scale fluctuations occurred (Figure 5d).
Once again the GP does not expect the fluctuations due to the outside environment, and tends to make a prediction
that is similar to that in the neighbourhood (e.g. at turbine location E2). However, in most (if not all) testing data
sets that correspond to the same spatial pattern, the highest normalised MSE along Row 1 is found at turbine E1,
which suggests a change (in structure or control strategy) at this location. Although the reasons behind it require
further investigation, given that very few reference turbines are placed on the edge of the farm and/or that only
the information about wind speed is used to train the GP, it is understandable that the model gives a high error to
address the unexpected change at turbine E1. To take a step back, putting aside the explanations, it is evident in
Figure 5d that the model has the ability to highlight a location, with a prediction error higher than 100%, where an
unexpected trend in wind speed occurs.

4 Conclusions

This paper has introduced environmental mapping as a data-based method to understanding the temporally and
spatially-changing EOVs for the implementation of PBSHM. The work is based on data from an offshore wind farm,
Lillgrund, which exemplifies the concept of homogeneous population. At this stage, an environmental map can be
produced by a data-driven model, based on GP regression, which is trained on data from one specific spatial pattern.
The GP model has demonstrated its ability to interpolate across the space, obtaining a full map of wind speed on the
basis of inputs from a few reference points. Furthermore, if the training data represents the normal wind/operating
conditions, the model can also be used to indicate unexpected environmental conditions that might result from
different control sequences not present in the training set.

The data-based environmental mapping introduced here can be applied in a manifold manner. Firstly, for the purpose
of SHM, environmental mapping can be used as a cost-efficient wind field model for the specific wind farm(s) that the
model is trained on. The wind speed predictions can be served as environmental inputs to individual turbine models,
allowing them to predict normal structural responses subject to environmental variations. A second opportunity
that the authors will be working on is to use a similar mapping approach on power production data, creating a map
that aims to establish the relations between power and a number of environmental (e.g. wind speed and direction)
and operational (e.g. nacelle position, pitch angle and rotor speed) factors. This new map is then applicable to
the optimisation of wind farm power production through wake steering and/or induction control. Similarly, the
methodology developed here can be adapted to damage sensitive features (e.g. derived from acceleration data), with
the intention of building a more reliable indicator of structural conditions.



Taking a step further, it is also planned to modify the current model to account for a range of various spatial patterns
in the environment, aiming for a more generalised model.

Acknowledgements

The authors would like to acknowledge the support of the EPSRC, particularly through grant reference numbers
EP/R004900/1, EP/S001565/1 and EP/R003645/1.

References

[1] C.R. Farrar and K. Worden. Structural Health Monitoring: A Machine Learning Perspective. John Wiley and
Sons Ltd, 2013.

[2] K. Worden, E.J. Cross, N. Dervilis, E. Papatheou, and I. Antoniadou. Structural health monitoring: From
structures to systems-of-systems. IFAC, 48:1–17, 2015.

[3] L.A. Bull, P.A. Gardner, J. Gosliga, A.E. Maguire, C. Campos, T.J. Rogers, M. Haywood-Alexander, N. Dervilis,
E.J. Cross, and K. Worden. Towards population-based structural health monitoring, Part I: Homogeneous
populations and forms. In Proceedings of IMAC XXXVIII – the 38th International Modal Analysis Conference,

Houston, TX, 2020.

[4] H. Sohn. Effects of environmental and operational variability on structural health monitoring. Philosophical

Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365:539–560, 2007.

[5] K. Worden, C.R. Farrar, G. Manson, and G. Park. The fundamental axioms of structural health monitoring.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463:1639–1664, 2007.

[6] E.J. Cross. On Structural Health Monitoring in Changing Environmental and Operational Conditions. PhD
thesis, Department of Mechanical Engineering, University of Sheffield, 2012.
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