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Abstract. The transformation of graphs and graph-like structures is
ubiquitous in computer science. When a system is described by graph-
transformation rules, it is often desirable that the rules are both ter-
minating and confluent so that rule applications in an arbitrary order
produce unique resulting graphs. However, there are application scenar-
ios where the rules are not globally confluent but confluent on a subclass
of graphs that are of interest. In other words, non-resolvable conflicts can
only occur on graphs that are considered as “garbage”. In this paper, we
introduce the notion of confluence up to garbage and generalise Plump’s
critical pair lemma for double-pushout graph transformation, provid-
ing a sufficient condition for confluence up to garbage by non-garbage
critical pair analysis. We apply our results to language recognition by
backtracking-free graph reduction, showing how to establish that a graph
language can be decided by a system which is confluent up to garbage.
We present two case studies with backtracking-free graph reduction sys-
tems which recognise a class of flow diagrams and a class of labelled
series-parallel graphs, respectively. Both systems are non-confluent but
confluent up to garbage.

Keywords: Graph Transformation · Confluence · Graph Languages ·
Decision Procedures

1 Introduction

Rule-based graph transformation and graph grammars date back to the late
1960s. The best developed theoretical framework is the so-called double-pushout
(DPO) approach to graph transformation [12, 10]. When specifying systems in
computer science by DPO graph transformation rules, it is often desirable that
the rules are both terminating and confluent so that rule applications in an
arbitrary order produce unique resulting graphs. However, there are application
scenarios where the rules are not confluent but confluent on a subclass of graphs
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that are of interest. In other words, non-resolvable conflicts can only occur on
graphs that are considered as “garbage”.

In this paper, we introduce the notions of (local) confluence up to garbage
and termination up to garbage in graph transformation. We generalise Plump’s
Critical Pair Lemma [26, 28] and Newmann’s Lemma [25] and thereby allow
to check confluence up to garbage via non-garbage critical pair analysis. We
apply our results to language recognition by backtracking-free graph reduction,
showing how to establish that a graph language can be decided by a system which
is confluent up to garbage. We present two case studies with backtracking-free
graph reduction systems which recognise a class of flow diagrams and a class
of labelled series-parallel graphs, respectively. Both systems are non-confluent
but confluent up to garbage. Parts of this paper are based on Chapter 4 of an
unpublished report [6], in turn developed from Campbell’s BSc Thesis [5].

2 Preliminaries

We review some terminology for binary relations, the DPO approach to graph
transformation, graph languages, and confluence checking.

2.1 Abstract Reduction Systems

An abstract reduction system (ARS) is a pair (A,→) where A is a set and → a
binary relation on A. We say that:

1. y is a successor to x if x
+
−→ y, and a direct successor if x→ y;

2. x and y are joinable if there is a z such that x
∗
−→ z

∗
←− y. We write x ↓ y;

3. → is confluent if y1
∗
←− x

∗
−→ y2 implies y1 ↓ y2;

4. → is locally confluent if y1 ← x→ y2 implies y1 ↓ y2;
5. → is terminating if there is no infinite sequence x0 → x1 → . . ..

The principle of Noetherian Induction is:

∀x ∈ A, (∀y ∈ A, x
+
−→ y ⇒ P (y))⇒ P (x)

∀x ∈ A,P (x)

Theorem 1 (Noetherian Induction [1]). Given an ARS (A,→), the princi-
ple of Noetherian induction holds if and only if → is terminating.

Theorem 2 (Newman’s Lemma [25]). A terminating relation is confluent
if and only if it is locally confluent.

2.2 Labelled Graphs and Morphisms

We will be working with directed labelled graphs [15]. An alphabet is a pair
Σ = (ΣV , ΣE) of finite sets of node and edge labels from which a graph can be
labelled. A graph (over Σ) is a tuple G = (V,E, s, t, l,m) where V is a finite set
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of nodes, E is a finite set of edges, s : E → V is the source function, t : E → V is
the target function, l : V → ΣV is the node labelling function, and m : E → ΣE

is the edge labelling function. We may write the components as VG, EG, sG, etc.
A graph morphism g : G→ H is a pair g = (gV , gE) of functions gV : VG →

VH and gE : EG → EH such that gV ◦sG = sH◦gE , gV ◦tG = tH◦gE , lG = lH◦gV
and mG = mH ◦ gE . We say g is injective (surjective, bijective) if both functions
gV and gE are. A graph H is a subgraph of G, denoted by H ⊆ G, if there exists
an inclusion morphism i : H → G with i(x) = x for all items x.

It is well known that graphs and morphisms over Σ form a category. Graph
morphisms are bijective if and only if they are isomorphisms in the categorical
sense. Given a graph G, we write [G] for the isomorphism class of G and call [G]
an abstract graph. We denote by G(Σ) the set of all abstract graphs over Σ.

2.3 Double-Pushout Graph Transformation

A rule is a pair of inclusions r = 〈L ← K → R〉, where L is the left-hand
side (LHS), K the interface, and R the right-hand side (RHS). A match of r
in a graph G is an injective morphism L → G. An application of rule r to G

with match g : L → G requires to construct two pushouts as in Figure 1. We
write G ⇒r,g H for this application and call the diagram in Figure 1 a direct
derivation.

L K R

G D H

g d h

Fig. 1. A direct derivation

Given r and the match g : L→ G, the direct derivation of Figure 1 exists if
and only if the dangling condition is satisfied: nodes in g(L − K) must not be
incident to edges in G− g(L). In this case the graphs D and H are determined
uniquely up to isomorphism [10]. We call the injective morphism h the comatch
of the rule application.

Given a set of rulesR, we write G⇒R H if H is obtained from G by applying
any of the rules from R. We write G⇒+

R
H if H is obtained from G by one or

more rule applications, and G⇒∗

R
H if G ∼= H or G⇒+

R
H.

By pushout properties, the relation ⇒R can be lifted to abstract graphs.
Hence we have an ARS (G(Σ),⇒R). This view gives us the definition of (local)
confluence and termination for graph transformation systems.

2.4 Graph Languages

A graph language is simply a set of graphs, in the same way that a string language
is a set of strings. Just like we can define string languages using string grammars,
we can define graph languages using graph grammars, where we rewrite some
start graph using a set of graph transformation rules. Derived graphs are then
defined to be in the language exactly when they are terminally labelled.
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Given a graph transformation system T = (Σ,R), a subalphabet of non-
terminals N , and a start graph S over Σ, then a graph grammar is a tuple
G = (Σ,N ,R, S). We say that a graph G is terminally labelled if l(V )∩NV = ∅
and m(E) ∩NE = ∅. Thus, we can define the graph language generated by G:

L(G) = {[G] | S ⇒∗

R G,G terminally labelled}.

Given G = (Σ,N ,R, S), we have G⇒r H if and only if H ⇒r−1 G, for some
r ∈ R, by using the comatch. Moreover, [G] ∈ L(G) if and only if G⇒∗

R−1 S and
G is terminally labelled. So we have a non-deterministic membership checking.

2.5 Confluence Checking

In 1970, Knuth and Bendix showed that confluence checking of terminating term
rewriting systems is decidable [18]. Moreover, it suffices to compute all critical
pairs and check their joinability [17, 1]. Unfortunately, for (terminating) graph
transformation systems, confluence is not decidable in general, and joinability
of critical pairs does not imply local confluence. In 1993, Plump showed that
strong joinability of all critical pairs is sufficient but not necessary to show local
confluence [26, 28].

The derivationsH1 ⇐r1,g1 G⇒r2,g2 H2 are parallelly independent if (g1(L1)∩
g2(L2)) ⊆ (g1(K1) ∩ g2(K2)). We say two parallelly independent derivations are
a critical pair if additionally G = g1(L1) ∪ g2(L2), and if r1 = r2 then g1 6= g2.
Every graph transformation system has only finitely many critical pairs.

Let G⇒ H be a direct derivation. Then the track morphism is defined to be
the partial morphism trG⇒H = in ′ ◦ in−1, where in and in ′ are the bottom left
and right morphisms in Figure 1, respectively. We define trG⇒∗H inductively as
the composition of track morphisms. The set of persistent nodes of a critical pair
Φ : H1 ⇐ G ⇒ H2 is PersistΦ = {v ∈ GV | trG⇒H1

({v}), trG⇒H2
({v}) 6= ∅}.

That is, those nodes that are not deleted by the application of either rule.
A critical pair Φ : H1 ⇐ G⇒ H2 is strongly joinable if it is joinable without

deleting any of the persistent nodes, and the persistent nodes are identified when
joining. That is, there exists a graph M and derivations H1 ⇒

∗

R
M ⇐∗

R
H2 such

that ∀v ∈ PersistΦ, trG⇒H1⇒
∗M ({v}) = trG⇒H2⇒

∗M ({v}) 6= ∅.

Theorem 3 (Critical Pair Lemma [26, 28]). A graph transformation system
T is locally confluent if all its critical pairs are strongly joinable.

The original proof of the Critical Pair Lemma needs the Commutativity,
Clipping and Embedding Theorems, and some auxiliary definitions. We will need
these intermediate results when we come to prove our generalised version.

Theorem 4 (Commutativity [11]). If H1 ⇐r1,g1 G ⇒r2,g2 H2 are parallelly
independent, then there is a graph G′ and derivations H1 ⇒r2 G′ ⇐r1 H2.

Let the derivation ∆ : G0 ⇒
∗ Gn be given by pushouts (1), (1′), . . . , (n), (n′)

and suppose there are pushouts (1), (1′), . . . , (n), (n′) whose vertical morphisms
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are injective. Then, the derivation ∆′ : G′
0 ⇒

∗ G′
n consisting of the composed

pushouts (1+ 1), . . . , (n′ +n′) is an instance of ∆ based on the morphism G0 →
G′

0. Moreover, we define the subgraph Use∆ to be all items x such that there is
some i ≥ 0 with G0 ⇒

∗ Gi(x) ∈ Match(Gi ⇒ Gi+1) where Match(Gi ⇒ Gi+1) is
the image of the associated rule’s left hand side graph under the match L→ Gi.

L1 K1 R1 L2 K2 R2

(1) (2) (3) (4)

G0 D1 G1 D2 G2 · · ·

(1′) (2′) (3′) (4′)

G′

0 D′

1 G′

1 D′

2 G′

2

Fig. 2. Derivation instances

Theorem 5 (Clipping [27]). Given a derivation ∆′ : G′ ⇒∗ H ′ and an in-
jective morphism h : G→ G′ such that Use∆′ ⊆ h(G), there exists a derivation
∆ : G⇒∗ H such that ∆′ is an instance of ∆ based on h.

Given a derivation ∆ : G⇒∗ H the subgraph of G, Persist∆, consists of all
items x such that trG⇒∗H(x) is defined.

Theorem 6 (Embedding [27]). Let ∆ : G⇒∗ H be a derivation, h : G→ G′

an injective graph morphism, B∆ be the discrete subgraph of G consisting of all
nodes x such that h(x) is incident to an edge in G′ \ h(G). If B∆ ⊆ Persist∆,
then there exists a derivation ∆′ : G′ ⇒∗ H ′ such that ∆′ is an instance of ∆
based on h. Moreover, there exists a pushout of t : B∆ → H along h′ : B∆ → C∆

where C∆ = (G′ \ h(G)) ∪ h(B∆) and t is the restriction of trG⇒∗H to B∆.

3 Closedness and Confluence up to Garbage

In this section, we introduce (local) confluence and termination up to garbage,
and closedness. We show that if we have closedness and termination up to
garbage, then local confluence up to garbage implies confluence up to garbage:
the Generalised Newmann’s lemma. Moreover, we recap that closedness is un-
decidable in general, in the context of DPO graph transformation.

3.1 Closedness and Garbage

Definition 1. Let T = (Σ,R) be a GT system, and D ⊆ G(Σ) be a set of
abstract graphs. Then, a graph G is called garbage if [G] 6∈ D and D is closed
under T if for all G, H such that G⇒R H, if [G] ∈ D then [H] ∈ D.

The idea is that a set of abstract graphs D represents the good input, and the
garbage is the graphs that are not in this set. D need not be explicitly generated
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by a graph grammar. For example, it could be defined by some (monadic second-
order [8]) logical formula.

Example 1. Consider the reduction rules in Figure 3. The language of acyclic
graphs is closed under the GT system (({�}, {�}), {r1}), and the language of
trees (forests) and its complement are both closed under (({�}, {�}), {r2}).

r1: ← →
1 2 1 2 1 2

r2: ← →
1 1 1

Fig. 3. Example Reduction Rules

Definition 2 (Closedness Problem).

Input : A GT system T = (Σ,R) and a graph grammar G over Σ.
Question: Is L(G) closed under T?

It turns out that closnedess is undecidable in general, even if we restrict
ourselves to recursive languages and terminating GT systems. In 1998, Fradet
and Le Métayer showed the following result:

Theorem 7 (Undecidable Closedness [14]). The closedness problem is un-
decidable in general, even for terminating GT systems T with only one rule, and
G an edge replacement grammar.

3.2 Confluence up to Garbage

We can now define (local) confluence and termination up to garbage, allowing
us to say that, ignoring the garbage graphs, a system is (locally) confluent.

Definition 3. Let T = (Σ,R), D ⊆ G(Σ). Then:

1. if for all graphs G, H1, H2, such that [G] ∈ D, H1 ⇐R G ⇒R H2 implies
that H1, H2 are joinable, then T is locally confluent (up to garbage) on D;

2. if for all graphs G, H1, H2, such that [G] ∈ D, H1 ⇐
∗

R
G ⇒∗

R
H2 implies

that H1, H2 are joinable, then T is confluent (up to garbage) on D;
3. if there is no infinite derivation sequence G0 ⇒R G1 ⇒R G2 ⇒R · · · such

that [G0] ∈ D, then T is terminating (up to garbage) on D.

The following is an immediate consequence of set inclusion:

Proposition 1. Let T = (Σ,R), D ⊆ G(Σ), E ⊆ D. Then (local) confluence
on D implies (local) confluence on E, and similarly for termination.

Example 2. Looking again at r1 and r2 from our first example, it is easy to see
that r1 is terminating and confluent up to garbage on the language of acyclic
graphs, but is not confluent on all graphs. Similarly, r2 is terminating and con-
fluent up to garbage on the language of trees.
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Example 3. Consider the rules in Figure 4. Clearly they are terminating, since
they are size reducing. Moreover, the language of all linked lists with edge labels
a or b and its complement are closed under the rules. The rules are not locally
confluent. To see this, consider the 3-cycle with edges labelled with a, a, b. It is
possible for the cycle to be reduced to either the 2-cycle with edges a and a or
the 2-cycle with edge a and b. Neither of these cycles can be reduced further, and
so we have a counter example to confluence. These rules are locally confluent on
linked lists. Moreover, an input graph G is a linked list if and only if it can be
reduced using these rules to a length one linked list.

ri: ← → ∀x, y ∈ {a, b}
1 2 1 2 1 2

x y a

Fig. 4. List Reduction Rules

Theorem 8 (Generalised Newman’s Lemma). Let T = (Σ,R), D ⊆ G(Σ).
If T is terminating on D and D is closed under T , then T is confluent on D if
and only if it is locally confluent on D.

Proof. This can be seen by Noetherian Induction (Figure 5), due to the fact that
closedness ensures applicability of the induction hypthesis. ⊓⊔

Fig. 5. Induction Step Diagram

4 Generalised Critical Pair Lemma

In this section, we generalise Plump’s Critical Pair Lemma, providing a machine
checkable sufficient condition for local confluence up to garbage. For this, we
need to define a notion of subgraph closure and non-garbage critical pairs.

4.1 Subgraph Closure

In the proof of the traditional critical pair lemma for (hyper)graphs, the argu-
ment is that if a pair of derivations is not parallelly independent, then it must
be the case that a critical pair can be embedded within it. In our new setting,
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the possible start graphs will be restricted, since some of the graphs will be
garbage. We are only interested in those critical pairs with start graphs that can
be embedded in non-garbage graphs. This is exactly the statement that the start
graph of the critical pair is in the subgraph closure of the non-garbage graphs.

Definition 4. Let D ⊆ G(Σ) be a set of abstract graphs. Then D is subgraph
closed if for all graphs G, H, such that H ⊆ G, if [G] ∈ D, then [H] ∈ D.

The subgraph closure of D, denoted D̂, is the smallest set containing D that is
subgraph closed.

Proposition 2. Given D ⊆ G(Σ), D̂ always exists, and is unique. Moreover,

D = D̂ if and only if D is subgraph closed.

Proof. The key observations are that the subgraph relation is transitive, and
each graph has only finitely many subgraphs. Clearly, the smallest possible set
containing D is just the union of all subgraphs of the elements of D, up to
isomorphism. This is the unique subgraph closure of D. ⊓⊔

D̂ always exists, however it need not be decidable, even when D is! It is
not obvious what conditions on D ensure that D̂ is decidable. Interestingly, the
classes of regular and context-free string languages are actually closed under
substring closure [4].

Example 4. ∅, G(Σ), and the language of discrete graphs are subgraph closed.

Example 5. The subgraph closure of the language of trees is the language of
forests. The subgraph closure of the language of connected graphs is the language
of all graphs.

4.2 Non-Garbage Critical Pairs

We now define non-garbage critical pairs, which allow us to ignore certain pairs,
which if all are strongly joinable, will allow us to conclude local confluence up
to garbage, even in the presence of (local) non-confluence on all graphs.

Definition 5. Let T = (Σ,R), D ⊆ G(Σ). A critical pair H1 ⇐ G ⇒ H2 is

non-garbage if [G] ∈ D̂.

Lemma 1. Given a GT system T = (Σ,R) and D ⊆ G(Σ), then there are only

finitely many non-garbage critical pairs up to isomorphism. Moreover, if D̂ is
decidable, then one can find them in finite time.

Proof. There are only finitely many critical pairs for T , up to isomorphism, and
there exists a terminating procedure for generating them. It then remains to
filter out the garbage pairs, which can always be done if D̂ is decidable. ⊓⊔

Corollary 1. Let T = (Σ,R), D ⊆ G(Σ) be such that T is terminating on D

and D̂ is decidable. Then, one can decide if all the non-garbage critical pairs are
strongly joinable.
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Proof. By Lemma 1, we can generate all the pairs, but then since T is termi-
nating on D, there are only finitely many successor graphs to be generated. We
can then test each for strong joinability in finite time. ⊓⊔

Theorem 9 (Generalised Critical Pair Lemma). Let T = (Σ,R), D ⊆
G(Σ). If all its non-garbage critical pairs are strongly joinable, then T is locally
confluent on D.

Proof. Our proof is a generalisation of Plump’s original proof of the Critical
Pair Lemma for (hyper)graphs (Theorem 3) [26, 28]. We need to show that every
pair of derivations H1 ⇐r1,g1 G ⇒r2,g2 H2 such that G is non-garbage can be
joined. There are two cases to consider. Firstly, if the derivations are parallelly
independent, then by Theorem 4, the result is immediate. Otherwise, we must
consider the case that they are not parallelly independent.

By Theorem 5, we can factor out a pair T1 ⇐ S ⇒ T2. Since critical pairs are,
by construction, the overlaps of rule left hand sides, it must be the case that this
pair is actually a critical pair. Moreover, since [G] ∈ D, then [S] ∈ D̂ and so the
critical pair must be non-garbage, and must be strongly joinable to U . We can
now apply Theorem 6 to T1 ⇒

∗ U and T2 ⇒
∗ U , separately, giving result graphs

M1 and M2 (applicability of the theorem is a consequence of strong joinability).
To see that M1 and M2 are isomorphic follows from elementary properties of
pushouts along monomorphisms [28]. ⊓⊔

Fig. 6. Generalised Critical Pair Lemma Diagram

Corollary 2. Let T = (Σ,R), D ⊆ G(Σ). If T is terminating on D, D is closed
under T , and all T ’s non-garbage critical pairs are strongly joinable, then T is
confluent on D.

Proof. By the above theorem, T is locally confluent up to garbage, so by the
Generalised Newman’s Lemma (Theorem 8), T is confluent up to garbage. ⊓⊔

Obviously, checking for local confluence up to garbage is undecidable in gen-
eral, even when D̂ is decidable and the system is terminating and closed. What
is remarkable though, is that local confluence up to garbage is actually undecid-
able in general for a terminating non-length-increasing string rewriting systems
and D a regular string language [7]!
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4.3 Checking for Confluence up to Garbage

Given a GT system T and a language D (possibly specified by a grammar), the
process is to:

1. Establish (by means of direct proof) that T is terminating on D and D
is closed under T . If this is not true, one may want to restart with some
language containing D to try to establish closedness.

2. Generate the finitely many non-garbage critical pairs of T .
3. Check if each generated pair is (strongly) joinable.

If all the pairs are strongly joinable, then we have confluence up to garbage
due to Corollary 2. If all the pairs are joinable, but not all strongly, then we
cannot draw any conclusions, but one may be able to construct a counter example
to confluence by attaching context to nodes. Finally, if one of the pairs is not
joinable at all, then we have a direct counter example to confluence, and we can
conclude non-confluence up to garbage.

5 Language Recognition

In this section, we introduce a general notion of what it means to recognise a
language, and what it means to be a confluent decider. We then demonstrate the
applicability of our earlier results by showing that there are confluent deciders
for Extended Flow Diagrams and Labelled Series-Parallel Graphs, even in the
absence of confluence. We thus have algorithms, specified by reduction rules,
that can check membership of these languages without needing to backtrack.

5.1 Confluent Recognition

One can think of graph transformation systems in terms of grammars that define
languages. If they are terminating, then membership testing is decidable, but
in general, non-deterministic in the sense that a deterministic algorithm must
backtrack if it produces a normal form not equal to the start graph, to determine
if another derivation sequence could have reached it. If the system is confluent
too, then the algorithm becomes deterministic.

In general, the requirement of confluence is too strong, and one only re-
quires confluence on the language we are recognising. Using the results from the
last section, it is often possible to prove local confluence up to garbage using
the Generalised Critical Pair Lemma, and then, in the presence of termination
and closure, use the Generalised Newman’s Lemma to show confluence up to
garbage. Closedness and language recognition has actually been considered be-
fore by Bakewell, Plump, and Runciman, in the context of languages specified
by reduction systems without non-terminals [3], but without the development of
the theory we have provided.

Before continuing, we must provide a formal definition of what it means to
recognise a language, and that grammars satisfy our definition by considering
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their rules in reverse, abstracting away from grammars, with a more general
definition that accounts for the fact that reduction systems may need auxiliary
symbols, not in the input, in the same way grammars can use non-terminals.

Definition 6 (Language Recognition). Let T = (Σ,R) be a GT system,
I ⊆ Σ an input alphabet, and S a finite set of graphs over Σ. Then we say that
(T,S) recognises a language L over I if for all graphs G over I, [G] ∈ L if and
only if G⇒∗

R
S for some S ∈ S.

Theorem 10 (Membership Checking). Given a grammar G = (Σ,N ,R, S),
[G] ∈ L(G) if and only if G ⇒∗

R−1 S and G is terminally labelled. That is,
((Σ,R−1), {S}) recognises L(G) over Σ \ N .

Proof. The key is that rules and derivations are invertible, which means that if
S can be derived from G using the reverse rules, then G can be derived from
S using the original rules so is in the language. If S cannot be derived from G,
then G cannot be in the language since that would imply there was a derivation
sequence from S to G which we could invert to give a contradiction. ⊓⊔

We are now ready to define confluent deciders, and show that such systems
can test for language membership without backtracking.

Definition 7 (Confluent Decider). Let T = (Σ,R) be a GT system, I ⊆ Σ

an input alphabet, and S a finite set of graphs over Σ. Then we say that (T,S)
is a confluent decider for a language L over I if (T,S) recognises L over I, T is
terminating on G(I), and T is confluent on L.

Theorem 11 (Confluent Decider Correctness). Given a confluent decider
(T,S) for a language L over I ⊆ Σ and an input graph G over I, the following
algorithm is correct: Compute a normal form of G by deriving successor graphs
using T as long as possible. If the result graph is isomorphic to S, the input
graph is in the language. Otherwise, the graph is not in the language.

Proof. Suppose G is not in L. Then, since T is terminating on G(I) our algorithm
must be able to find a normal form of G, say H, and because T recognises L, it
must be the case that H is not isomorphic to S, and so the algorithm correctly
decides that G is not in L.

Now, suppose that G is in L. Then, because T is terminating, as before, we
must be able to derive some normal form, H. But then, since T is both confluent
on L and recognises L, it must be the case that H is isomorphic to S, and so
the algorithm correctly decides that G is in L. ⊓⊔

What we really want is a version of Theorem 10 for instantiating confluent
deciders. We really want is a Since both termination and confluence testing is
undecidable in general, we cannot hope for an effective procedure, even for a
terminating system, however the theory we introduced in the previous sections
will help by automating local confluence checking. It just remains for us to choose
a suitable set D, and proceed in a similar way to as described in Subsection 4.3.



12 G. Campbell and D. Plump

For the remainder of this section, we will look at two examples that demonstrate
how we can use the Generalised Newman’s Lemma and Generalised Critical Pair
Lemma to show that we have a confluent decider for a language, given a grammar
that generates the language.

5.2 Extended Flow Diagrams

In 1976, Farrow, Kennedy and Zucconi presented semi-structured flow graphs,
defining a grammar with confluent reduction rules [13]. Plump has considered
a restricted version of this language: extended flow diagrams (EFDs) [28]. The
reduction rules for extended flow diagrams are a confluent decider for the EFDs,
despite not being confluent.

Definition 8. The language of extended flow diagrams is generated by EFD =
(Σ,N ,R, S) where ΣV = {•,�,♦}, ΣE = {t, f,�}, NV = NE = ∅, R =
{seq, while, ddec, dec1, dec2}, and S = .

In the next figure, the shorthand notation with the numbers under the nodes
places such nodes in the interface graph of the rules. We assume that the interface
graphs are discrete (have no edges).

Fig. 7. EFD Grammar Rules

Lemma 2. Every directed cycle in an EFD contains a t-labelled edge

Proof. By induction. ⊓⊔

Theorem 12 (Confluent EFD Decider). Let T = (Σ,R−1). Then (T, {S})
is a confluent decider for L(EFD) over Σ.

Proof. By Theorem 10, T recognises L(EFD) over Σ, and one can see that it is
terminating since each rule is size reducing.
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We now proceed by performing critical pair analysis on T . There are ten
critical pairs, all but one of which are strongly joinable apart from one (Figure
8). Now observe that Lemma 2 tells us that EFDs cannot contain such cycles.
With this knowledge, we define D to be all graphs such that directed cycles
contain at least one t-labelled edge. Clearly, D is subgraph closed, and then by
our Generalised Critical Pair Lemma (Theorem 9), we have that T is locally
confluent on D.

Next, it is easy to see that D is closed under T , so we can use Generalised
Newman’s Lemma (Theorem 8) to conclude confluence on D and thus, by Propo-
sition 1, T is confluent on L(EFD).

Thus, T is a confluent decider for L(EFD) over Σ, as required. ⊓⊔

Fig. 8. Non-Joinable EFD Critical Pair

5.3 Series-Parallel Graphs

Series-parallel graphs were introduced by Duffin [9] as a model of electrical net-
works. A more general version of the class was introduced by Lawler [23] and
Monma and Sidney [24] as a model for scheduling problems.

Definition 9. Series-parallel graphs are inductively defined:

1. P is a series-parallel graph where s is the source and t the sink.
2. The class of series-parallel graphs is closed under parallel composition and

sequential composition.

where P = s t , parallel composition identifies the two sources and the two
sinks, and sequential composition identifies the sink of one with the source of
another.

Duffin showed that a graph is series-parallel if and only if it can be reduced
to P by a sequence of series and parallel reductions. We can rephrase this in
terms of a graph grammar.

Theorem 13 (SP Recognition [29]). The class of series-parallel graphs is
the language generated by grammar SP = (({�}, {�}), (∅, ∅), {s, p}, P ).

s: ← →
1 2 1 2 1 2

p: ← →
1 2 1 2 1 2

Fig. 9. Series-Parallel Grammar Rules
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By traditional critical pair analysis, one can establish that the reversed rules
are confluent, however, we run into a problem if we want to consider arbitrarily
labelled graphs. Consider the case where the edge alphabet is of size 2, rather
than size 1. The obvious modification to the rules is to use all combinations of
labels in LHS graphs (Figure 10), however Hristakiev and Plump [16] observed
that when doing (the equivalent of) this in GP2, we no longer have confluence.
We exhibit a counter example to confluence in Figure 11.

si: ← → ∀x, y ∈ {a, b}
1 2 1 2 1 2

x y a

pi: ← → ∀x, y ∈ {a, b}
1 2 1 2 1 2

x

y

a

Fig. 10. Labelled Series-Parallel Reduction Rules

⇐ ⇒
b

a a a

b
a

a

⇐ ⇒
a

b b b

a
a

a

Fig. 11. Non-Joinable Labelled Series-Parallel Pairs

All is not lost, however, because we can use our new theory to show that, via
non-garbage critical pair analysis, the new system is confluence up to garbage,
and so we can show that we have a confluent decider. Moreover, our system for
two edge labels can be easily generalised for any finite edge alphabet.

Definition 10. The class of labelled series-parallel graphs (LSPs) is all series-
parallel graphs, but with arbitrary edge labels chosen from ΣE = {a, b}.

Theorem 14 (Confluent LSP Decider). Let Σ = ({�}, {a, b}), T = (Σ,

{si, pi | i ∈ I}) (where I indexes label choice), Pa = a and Pb = b . Then
(T, {Pa, Pb}) is a confluent decider for the labelled series-parallel graphs over Σ.

Proof. We denote by L the language of all labelled series-parallel graphs.
Our rules are structurally the same as the unlabelled rules, so because our

LHS graphs are arbitrarily labelled, language recognition of L over Σ follows
from Theorem 13. Termination follows from the fact that the combined metric of
graph size plus number of b-labelled edges strictly decreases with each derivation.

We now proceed by performing critical pair analysis on T . We find that we
have two non-isomorphic critical pairs that are not joinable (Figure 11). These
pairs have a cyclic start graph, but the series-parallel graphs are acyclic, so we
can define D to be the language of acyclic graphs over Σ, thus classifying these
two pairs as garbage. The remaining critical pairs are strongly joinable, so by
Theorem 9, we have that T is locally confluent on D.
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We find that all the non-garbage critical pairs are strongly joinable. We have,
up to isomorphism, two garbage critical pairs. These are not even joinable, which
give us a counter example to (local) confluence, but since all our non-garbage
pairs are strongly joinable, we can claim local confluence up to garbage.

Next, it is easy to see that D is closed under T , so we can use Theorem 8 to
conclude confluence on D and thus, by Proposition 1, T is confluent on L. ⊓⊔

6 Conclusion and Future Work

In this paper we have introduced (local) confluence and termination up to
garbage for DPO graph transformation systems, and shown that Newmann’s
Lemma and Plump’s Critical Pair Lemma can be generalised, providing us with
machine checkable conditions for confluence up to garbage, using only critical
pairs. Of course, confluence up to garbage of terminating graph transformation
systems is undecidable in general, however, now we can detect more positive
cases of confluence up to garbage using non-garbage critical pair analysis, where
we previously would have been unable to draw a conclusion due to non-strong
joinability of some critical pairs.

In particular, our results can be directly applied to recognition of languages,
which we have demonstrated with Extended Flow Diagrams and Labelled Series-
Parallel Graphs. We have backtracking-free algorithms that apply reduction rules
as long as possible, with correctness established via non-garbage critical pair
analysis. We also anticipate there to be other applications, since there are many
other reasons one would want to show confluence up to garbage, such as consider-
ing GT systems as computing functions where we restrict [15]. Indeed, one might
only be interested in the non-garbage critical pairs themselves, and classification
of conflicts [20, 22].

Confluence analysis of GT systems (and related systems) still remains a gen-
erally under-explored area. One obvious piece of future work is to investigate the
connection to the work by Lambers, Ehrig and Orejas on essential critical pairs
[21] and the continued work by others including Born and Taentzer [20]. It is also
not obvious if there is a relation between confluence up to garbage and graphs
satisfying negative constraints [19]. Moreover, developing a stronger version of
the Generalised Critical Pair Lemma that allows for the detection of persistent
nodes that need not be identified in the joined graph would allow conclusions of
confluence up to garbage where it was previously not determined.

Future work also includes developing checkable sufficient conditions under
which one can decide if a graph is in the subgraph closure of a language. Finally,
applying our theory in a rooted context and to GP2 is future work [2]. It is
likely that the theory will be applicable there, since program preconditions cor-
respond exactly to non-garbage input, and so it is only natural to be interested
in confluence up to garbage, rather than confluence. We would also expect there
to be analogues of our results for other kinds of rewriting systems such as string
and term rewriting.
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