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Abstract    

This paper provides an overview of a set of behavioural studies, conducted as 

part of the European project interACT, to understand road user behaviour in cur-

rent urban settings. The paper reports on a number of methodologies used to un-

derstand how humans currently interact in urban traffic, in order to establish what 

information would be useful for the design of future AVs, when interacting with 

other road users, especially pedestrians. In addition to summarising the results 

from a number of observation studies, we report on preliminary results from Vir-

tual Reality studies, investigating if, in the absence of a human vehicle controller, 

externally presented interfaces can be used for communication between AVs and 

pedestrians. Finally, an overview of the mathematical and computational model-

ling techniques used to understand how AV and pedestrian behaviour can be both 

cooperative, and effective is provided. The hope is that future AVs can be de-

signed with an understanding of how humans cooperate and communicate in 

mixed traffic, promoting good traffic flow, user acceptance and user trust. 

1 Introduction  

An inherent challenge in mixed traffic environments of the future is that manually 

driven and automated vehicles (AVs) will need to interact with non-automated 

road users, such as pedestrians and cyclists. This interaction may occur in ambig-

uous scenarios, where the rules of the road may not be clear, either due to lack of 

clear environmental/infrastructural advice, and/or as a result of local or national 

cultural and behavioural “norms”. Here, there is typically a need for cooperation, 

and constructive communication and interaction between these different actors, so 
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that they may reach an agreement regarding safe future motion plans, especially if 

they share the same road space. Such interactions are currently quite frequent in an 

urban environment, and with the introduction of “driverless” AVs, it is important 

for all road users to have a good understanding of the intentions of these vehicles, 

especially in the absence of an accountable human operator. Therefore, there is a 

need to understand how the right cooperation strategy between all road users can 

be developed, to ensure successful deployment and acceptance of AVs by all road 

users, and promote smooth and cooperative flow of traffic.  

 

The vision of the interACT project1 (https://interact-roadautomation.eu), funded 

by the European Commission, is to develop novel, holistic interaction concepts for 

AVs, that will enable the future integration of these vehicles in mixed traffic envi-

ronments, in a safe and intuitive manner. Currently, as road users, humans use 

multiple means of implicit cues, such as approach speed, and explicit communica-

tion, such as eye contact and gestures, as well as vehicle signals, to anticipate the 

intention of the other traffic participants on the road. Although the exact means of 

communication can differ across different regions and cultures, these acts allow 

effective coordination of future motion plans between different road users. How-

ever, currently, AVs are thoroughly lacking such coordination capabilities, and 

their interaction with other road users is often limited to, and mostly dominated 

by, the rational principle of collision avoidance. Therefore, to safely integrate AVs 

in complex, mixed traffic environments in the future, we must ensure that the AV 

can interact with other road users in an intuitive, expectation‐conforming manner. 

This will allow other road users, as well as those on‐board the AVs (who may still 

be required to resume control in case of emergencies), to correctly interpret the in-

tentions of the AV, and coordinate their planned actions accordingly. Results from 

a previous study, conducted during the CityMobil2 project [1], showed that when 

interviewed after interacting with low speed AVs (which operated in a shared 

space setting, and without a driver) pedestrians and cyclists highlighted the im-

portance of some kind of external communication messages from these AVs, to 

compensate for the absence of an accountable operator2. A message that acknowl-

edged they had been detected by the AV was rated highest by this group of 664 re-

spondents, interviewed across Greece, France and Switzerland. As a follow-on to 

some of the human factors questions addressed in the Citymobil2 project, inter-

ACT is conducting further work in this context, to enhance knowledge in the field, 

and improve the interaction of AVs with both the on‐board user and pedestrians 

by: 

 

 
1EU H2020 interACT: Designing cooperative interaction of automated vehicles with other road us-

ers in mixed traffic environments under grant agreement No 723395. 
2For safety reasons, an “operator” was present in these vehicles. This was a trained individual, who 

was responsible for managing the vehicle’s manoeuvres during difficult circumstances, such as inter-
vening when movements were required to avoid obstacles which appeared unexpectedly in the vehi-

cle’s path (such as parked cars).     

https://interact-roadautomation.eu/
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Developing psychological models of interaction as the basis for the devel-

opment of a “Cooperation and Communication Planning Unit”, a central soft-

ware unit for the integrated planning of intuitive AV interaction, based on the 

AV behaviour, and explicit communications with its on‐board user and other 

traffic participants; 

Enhancing methodologies for intention recognition and behaviour predic-

tion of other road users, to allow shared situation awareness, and coordinated 

and safe vehicle behaviour planning;  

Establishing a safety layer for all situations, in which interaction is not 

possible/not safe enough, or in case of interaction failures, i.e. due to misinter-

pretations; 

Developing novel fail‐safe trajectory planning methods, with a special fo-

cus on complex mixed traffic scenarios; 

Establishing new evaluation methods for studying interaction of road us-

ers with AVs, and ensuring user acceptance. 

 

Efforts are currently undergoing by project partners in Germany, United Kingdom, 

Italy and Greece, to achieve the above goals. This chapter reports on the efforts 

achieved in the first year of the project, which has included: (i) extensive observa-

tion and interview studies conducted in current urban environments, noting the 

types of interactions and communications taking place between pedestrians and 

drivers; focusing particularly on low speed environments and un-signalised junc-

tions; (ii) Lidar and video-based analysis to obtain kinematic data regarding road 

users’ interactions in a complex setting; (iii) Human-in-the-loop virtual reality 

studies, to understand pedestrians’ crossing behaviour in response to vehicles 

travelling at various speeds, investigating whether different types, positions and 

colours of externally presented messages from AVs affect crossing behaviour; and 

(iv) mathematical modelling techniques, used to inform AV developers of the 

types of interactions expected by other road users, and how this can be managed 

by the AV, to create better traffic flow, and a fairer, yet more cooperative, rela-

tionship between different road users sharing the same road space. 

 

The next sections provide a short overview of each of the above investigations, 

summarising our current understanding of the state of the art, and briefly compar-

ing these to related studies in this context.  

2 Human interactions and negotiations in current urban 

settings  
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2.1 Pedestrian-driver interaction at un-signalised junctions 

To understand how drivers and pedestrians currently interact with each other at 

un-signalised junctions, where negotiations are necessary in the absence of clear 

infrastructure-based guidelines, such as traffic lights and zebra crossings, we start-

ed our investigations by observing current behaviour in urban settings across three 

European cities. A series of on-road observations were conducted in: Leeds, UK; 

Athens, Greece; and Munich, Germany; which were also accompanied by birds-

eye view video recordings of the junctions3 (see Figure 1).  

 

Following a project workshop amongst the partners, effort was made to find a 

similar setting across the three cities, although practicalities regarding ease of data 

collection, erection of video cameras, and geographical differences, created some 

challenges regarding an exact match. The main criterion here was that observa-

tions should be based at un-signalised locations, encouraging “jay walking”, in or-
der to assess any negotiation tactics used, in the absence of formal traffic rules. 

Extensive effort was then invested by partners to create an easy to administer, 

HTML-based observation app see [2, 4], which was comprehensively piloted be-

fore data collection, to ensure researcher familiarity. Two observers were then po-

sitioned at designated locations in each city, and recorded any observable behav-

iour by the pedestrians, drivers and their vehicles, using the app. Communication 

between the observers took place throughout data collection, and the type of data 

recorded included: body signals from the pedestrians and drivers (hand/looking 

behaviour), observable messages from the vehicle (such as flashing lights or honk-

ing horns), and any “negotiation tactics” by either actor, with regards to the cross-

ing manoeuvre, such as stopping, decelerating, or crossing the road. The app also 

allowed recording of road user demographics (gender and age category), road de-

tails (exact location) and weather. For a more comprehensive overview of the ob-

servation protocol, see [2, 5] for more details).  

 

Data from 989 pedestrian interactions were collected by these observations. Over-

all, results from these studies showed quite similar behaviour by all road users, re-

gardless of country studied. An interesting observation, also confirmed by the 

work of others in this context [7, 9, 10], was the distinct lack of explicitly observ-

able gestures by the pedestrians and drivers, with less than 4% of pedestrians and 

3% of drivers using hand or head gestures during the negotiations. Honking and 

flashing lights were only seen for 1% of the interactions. Instead, results suggest 

that pedestrians may use the vehicle’s behaviour to determine their crossing deci-

sion, crossing when they ascertained yielding by the vehicle. Indeed, a follow on 

questionnaire study, administered to a subset of the pedestrians (~20%), after they 

crossed the junction, confirmed this prediction [2]. An interesting observation 

across all sites was that, overall, only 72% of pedestrians looked towards the vehi-

 
3Ethical approval was granted by the University of Leeds ethics committee (Ref: LTTRAN-097).  
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cle as they crossed the road. Therefore, this could provide an interesting challenge 

for the AV, if it is to establish whether pedestrians have identified its presence, be-

fore approaching a shared location, where there is no obvious clue from their body 

language.  

 

 

 
 

Figure 1 – An aerial view of the intersections used at Leeds (left), Athens 

(middle) and Munich (right). Yellow arrows represent the location and direction of 

pedestrians’ crossings. The blue and green lines represent the direction of travel 

for vehicles. The red stars represent the location of a group of two observers who 

used the mobile app to record observed behaviour (for further details see [2]). 

2.2  Results from video- and Lidar-based data analysis 

In addition to the observation studies outlined above, video recordings of the in-

teractions were conducted, by placing cameras in an elevated position, overlook-

ing the junctions, as shown in Figure 1. Computer vision was used for developing 

detection, classification and tracking algorithms, combined with camera calibra-

tion and homography, to extract kinematic data from observed traffic participants 

(see also section 4.2). A ground based LiDAR was used to record the positions of 

traffic participants over time, reducing the use of kinematic movements from vid-

eos, and removing any personal data. However, challenges existed for use of this 

ground based LiDAR, due to occasional obstructions.  Therefore, the link between 

these recordings and manual observations were key, to provide a more holistic 

overview of the interactions.  

 

Analyses from the LiDAR and video data are currently ongoing, although prelimi-

nary results suggest that there was a velocity threshold for interactions, where 

drivers mostly provided pedestrians with a right of way, when their travelling 

speed was already well below the allowed speed limit. This, more cooperative, 

behaviour from drivers was mostly observed in congested traffic, and during tail-

backs at signalised intersections, because drivers had already reduced their travel-

ling speed, and it was therefore easier to offer a clear path for the jaywalking pe-

destrians. As discussed further below in section 4.2, such an interaction will be 

quite problematic for current AVs, as an approach from jaywalking pedestrians 

will likely result in a yielding action by the AV, to avoid collision, which will 

likely cause more erratic flow of traffic, especially for other, human-controlled, 

non-automated, vehicles. 
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3 Using Virtual Reality to study human interaction with 

future AVs  

Recently, a number of vehicle manufacturers, keen to deploy driverless “ro-

botaxi”–style AVs without a responsible human controller, have begun discussing 

the benefit of implementing some type of external message on an AV, which will 

inform pedestrians about its behaviour – replacing any human-based communica-

tion [3]. Our human factors work from the CityMobil2 project provides rather 

mixed results about the best type of message used in this context. This study 

showed that, although pedestrians in Greece, Switzerland and France were all 

keen to receive some sort of information from the AV, preference for visual versus 

auditory messages was rather mixed across different groups. The type of message 

preferred was also linked to the behaviour depicted by the AV, and varied due to 

cultural norms, as well as the different infrastructures available to the AV [8].  

 

Overall, however, respondents from this project preferred the use of conven-

tional signals (lights and beeps) to text and spoken words, and wished to receive 

either visual or auditory signals that would announce information about whether 

or not the vehicle was turning/yielding/beginning to move. Other work in this area 

has begun to investigate the matter further, testing a variety of driving conditions, 

to establish the efficacy of such external messages [e.g. [6]. In addition to the 

above examples, studies have investigated the value of messages that are used to 

express: whether or not it is safe for the pedestrian to cross, whether AVs that look 

like a conventional vehicle should signify their automation status, and whether 

particular types, colours, and locations of lighting are better than others [9, 10, 

11]. Results have been mixed, with some showing major changes in crossing be-

haviour, such that pedestrians’ receptivity towards AVs significantly increased 

with the presence of external HMIs [12], and others, for example [10], suggesting 

that pedestrians rely on the behaviour of the vehicles rather than the information 

on the external HMI.  

 

In the absence of easily accessible (fully) driverless vehicles, which can be 

used to portray different types of external interfaces for communication with pe-

destrians, novel tools such as Wizard-of-Oz techniques [14], human-in-the-loop 

pedestrian simulators [14], and immersive Virtual Reality (VR) Head-Mounted 

Displays [16] are used to provide a suitable alternative for cost-effective, con-

trolled and repeatable research studies in this context. In the interACT project, VR 

has been very effective for such research, evaluating and improving potential in-

teraction strategies between humans and future AVs. Here, design-focused work-

shops with expert and naïve participants have been used for visualisation of poten-

tial solutions, with relatively minimal effort spent on defining and refining 

external HMIs (eHMIs), before deploying them for actual user studies on proto-

type vehicles [17].  
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VR offers the opportunity to study human-AV interaction for assessing the 

speed and quality of comprehension of AV behaviour, or for assessing the traffic 

participants’ behaviour or emotions in response to the AV. For example, Head- 

Mounted Displays (HMDs) have been used in the project to assess pedestrians’ ac-
tual crossing behaviour in VR, in response to vehicles with different kinematic 

features [2]. This type of manipulation is useful for evaluating participants’ feel-
ings of safety when interacting with an AV, and assessing the efficien-

cy/receptivity/learning effect of different eHMI designs. They also provide 

knowledge on choosing the most appropriate time gaps and conditions for testing 

future eHMIs.  

 

For example, in a study by [18], participants saw a pair of vehicles approaching 

from the right, and were asked to cross the road, after the first vehicle had passed. 

The approaching speed of the second vehicle was manipulated (25mph, 30mph or 

35mph) and the time gap between the two vehicles ranged between 1-8 seconds 

(with 1 second increments). In addition, the second vehicle was either decelerating 

as it approached the pedestrian, or not. Data from the decelerating trials showed 

that 51% of crossings happened before the second vehicle decelerated, and 31% of 

crossings happened after the approaching vehicle had stopped, with only 18% of 

crossings happening during the deceleration. Results which are also confirmed by 

the modelling work of [33] in this context.  

 

Previous Wizard-of-Oz studies investigating pedestrian response to “fake 
AVs”, have shown that pedestrians did not feel comfortable, or safe, crossing the 

road in front of the specially customised vehicle, where the driver (sitting behind a 

fake steering wheel in the passenger seat of the modified vehicle) was seen to be 

asleep or deeply engaged in reading a newspaper [19]. In the interACT project, we 

investigated this matter further, using an HMD VR-based study, where partici-

pants were asked to cross the road in a set-up similar to [18] described above [see 

21]. To establish if driver presence and attention affected crossing behaviour, the 

second vehicle in this study (which was always travelling at 30 mph) was present-

ed in three different conditions (no driver, distracted driver – looking down, and 

attentive driver – looking straight ahead). To ensure the VR setup was realistic, 

and the drivers were actually visible, all participants completed a short set of trials 

at the end of the experiment, pressing a button on the controller to confirm the 

presence or absence of drivers in the vehicle. Although pedestrian crossing behav-

iour was not affected by the three conditions, follow-on questionnaires on per-

ceived behavioural control and perceived risk [20], showed that the “driver pre-

sent” conditions were rated higher than driver distracted/driver absent trials [21]. 

 

Finally, the interACT project’s VR studies on explicit communication by AVs, 

which have utilised various visual message strategies such as ground projections, 

directed signal lamps and LED bands, have thus far shown a reduced initiation 

time for pedestrians to cross the road. Although objective studies showed little dif-



8  

ference in crossing initiation time between the different concepts, participants re-

portedly preferred animations and symbols to static images [22].  

   

  
 

Figure 2 – Depiction of one of the VR studies, showing participant with the 

HMD and the road environment used for studying crossing behaviour 

4 Computational models 

4.1 Neurobiologically-informed mathematical models  

Another, even more concrete, way of describing how road users behave when they 

interact with each other in shared space, is to develop mathematical models that 

permit computer simulations of the interaction behaviour. Traffic microsimulation 

is a well-established field of research, and commercial software products exist that 

permit traffic simulations that are accurate on the scale of a large junction or a city 

centre, for example, to predict how a range of alternative road infrastructure de-

signs will affect traffic throughput [23, 24]. The road user behaviour models in 

these traffic simulations are, however, not designed to capture the details of local 

interactions, and this underdeveloped area is now garnering increasing attention, 

with some modellers approaching it from a traffic microsimulation starting point 

[26, 27], and others addressing it as a data-driven machine learning challenge [28, 

29, 30].  

 

In the interACT project, a third type of approach has been taken, partly because 

the aim has been very specific: to generate useful insights and tools for the AV-

human interaction design work in the project. To this end, a novel modelling 
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framework has been proposed [31], building on psychological and neuroscientific 

models of decision-making, such as evidence accumulation [25, 31, 32]. The ben-

efit of this type of framework is that it allows the model to integrate sensory evi-

dence, both from AV movement and eHMI messages, in a manner that is both 

mathematically straightforward, and neuro-biologically plausible. This model has 

been applied to a pedestrian crossing decision, qualitatively reproducing the em-

pirically observed tendency of pedestrians to either cross early in front of a yield-

ing vehicle, or otherwise wait until the vehicle has come to a complete stop [18, 

33]. This type model can also be used to study efficiency of AV-human interac-

tions [33]. Figure 3 shows how this tentative model predicts a considerable traffic 

flow benefit, both of the AV providing an eHMI message which signals yielding 

(panel b compared to panel a), and of the AV slightly exaggerating its yielding de-

celeration (moving upward along the y axis). Currently ongoing, but not yet pub-

lished work, has shown that this type of model can be successfully fitted to ob-

served human behaviour, both in vehicle-pedestrian and vehicle-vehicle scenarios.  

 

 

Figure 3. Results of simulations with the pedestrian crossing model proposed 

by [33], showing how the 80 percentile of lost time for the AV due to the interac-

tion (i.e., how much earlier the AV would have arrived at its destination, had the 

pedestrian not been present), as a function of time left to the pedestrian crossing 

when the vehicle initiates yielding (TTC), and the magnitude of the yielding de-

celeration. Panels (a) and (b) show results without and with an eHMI indication of 

yielding, respectively. Figure from [33]. Copyright © 2018 National Academy of 

Sciences. Reprinted by Permission of SAGE Publications, Inc. 

 

4.2 Using game theory to understand the interaction between pedestrians and 

AVs 
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Controlling autonomous vehicles in the presence of pedestrians, when they are 

competing for the same space, requires an understanding of the processes of inter-

action and negotiation between them. Game theory provides a formal basis for 

modelling multi-agent competitive interactions. For instance [34] constructed a 

mathematical model of interactions between two such agents approaching an un-

marked intersection, a technique which can be modified to a range of scenarios, 

such as pedestrians crossing the road, vehicle-vehicle interactions, and pedestrian-

pedestrian interactions. The model is based on the “game of chicken” of Game 
Theory, extended to a temporal model, and is deliberately simplified as much as 

possible, to illustrate the core idea, using heavy quantification of both space and 

time. Here, at each “tick”, a game is played in discrete time, in which the two 

agents can choose to yield, by moving forward slowly, or asserting themselves by 

moving forward quickly. They approach each other in this way, and will collide, 

unless one of them yields. The mathematics of the model shows that the optimal 

strategy when both players have the same utilities, is the same for both players, 

and is probabilistic. At each time, they should flip a biased coin and yield if they 

get heads; with the bias of the coins increasing towards heads with certainty, as 

time runs out. The incentive to cooperate and avoid a disaster thus grows with 

time. The model further shows that if the utilities are modified to make one player 

survive better in a collision – such as being a vehicle vs a pedestrian, or an SUV 

vs a smaller car – then even a small change in these utilities will break the sym-

metry of the model, and give them a relatively high chance of winning every in-

teraction.  

 

The above model has been tested in experimental laboratory settings e.g. [35], 

where a board game was played by seated participants, to model the same colli-

sion scenario. This study showed that the behaviour of the players can be fitted via 

a Gaussian Process over parameters, using the model. The authors then extended 

this setup to a more realistic, but still heavily constrained, physical laboratory ex-

periment, with participants walking towards each other in discrete time and space, 

using the same methods to fit the model parameters. 

 

Overall, results from this model suggests that AVs must retain an ability to de-

liberately cause harm of some sort to other road users, in order to make any pro-

gress at all. The value of this model has been included in a consultation paper, cur-

rently out in circulation by the UK Law Commission, on Autonomous Vehicles 

[36], and may contribute to changing the law of the UK, to ensure a fairer rela-

tionship between AVs and other road users.   

 

It can be argued that the “chicken model” described above is quite crude in its 

assumptions, especially as it does not yet include any ability for the players to sig-

nal information to each other than via their speeds and positions. However, it has 

been argued that real-world interactions may include many such signals, such as 

eye contact, head direction, and body language, which, as shown in our own ob-

servations is particularly useful for solving conflicts. To begin to form an under-
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standing of these signals for later use in the chicken model, we used the video re-

cordings from Leeds outlined in section 2.2, to investigate which of a bank of such 

signals are useful to predict the final outcome of pedestrian-car interactions [37].  

 

This basic model was later extended to a temporal filtration model, which 

shows how the probability of the game winner evolves over time as a function of 

the signals provided [38]. Future work will try to integrate these models, using 

signalling behaviour as an additional input to the game theory mathematics, to re-

fine its solutions, then test them in virtual reality, and physical AV human experi-

ments. 

5 Summary and Conclusions 

This paper provides an overview of the complex relationship that exists be-

tween different road users in a mixed traffic environment, and summarises the pre-

liminary results of a set of behavioural studies conducted in this context, as part of 

the European interACT project. It highlights the value of using different method-

ologies to understand the behaviour of road users in current traffic settings, illus-

trating the complexity of road user behaviour, and the influence of infrastructural, 

social, and cultural norms, in this context. Knowledge is currently building on 

how new methods can be used to help towards innovation of new forms of com-

munication and interaction for future AVs, such as the value of external Human 

Machine Interfaces to replace the communication currently provided by human 

drivers. The challenge here is to ensure that AVs’ manoeuvres in mixed settings 

are safe, and therefore acceptable by all road users. However, it is also important 

to ensure that AVs’ behaviour and progress is not restricted by their, currently lim-

ited, obstacle detection rules, which will reduce their ability to achieve a smooth 

and uninterrupted journey. As more AVs are introduced for testing in such set-

tings, it is likely that human interactions with them will also change, following 

some level of Behavioural Adaptation [[39]. This allows the likelihood of more 

knowledge to be gained by both AV developers, and human road users, ensuring 

that these two actors can cooperate more efficiently with each other in the future 

urban environment.  
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