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Abstract 1 

Conversion of inorganic mercury (Hg(II)) to methylmercury (MeHg) is central to the 2 

understanding of Hg toxicity in the environment. Hg methylation occurs in the cytosol of certain 3 

obligate anaerobic bacteria and archaea possessing the hgcAB gene cluster. However, the processes 4 

involved in Hg(II) biouptake and methylation are not well understood. Here we examined the role 5 

of cell surface thiols, cellular ligands with the highest affinity for Hg(II) that are located at the 6 

interface between the outer membrane and external medium, on the sorption and methylation of 7 

Hg(II) by Geobacter sulfurreducens. The effect of added cysteine (Cys), which is known to greatly 8 

enhance Hg(II) biouptake and methylation, was also explored. By quantitatively blocking surface 9 

thiols with a thiol binding ligand (qBBr), we show that surface thiols have no significant effect on 10 

Hg(II) methylation, regardless of Cys addition. The results also identify a significant amount of 11 

cell-associated Hg-S3/S4 species, as studied by high energy-resolution X-ray absorption near edge 12 

structure (HR-XANES) spectroscopy, under conditions of high MeHg production (with Cys 13 

addition). In contrast, Hg-S2 are the predominant species during low MeHg production. Hg-S3/S4 14 

species may be related to enhanced Hg(II) biouptake or the ability of Hg(II) to become methylated 15 

by HgcAB and should be further explored in this context. 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 
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Introduction 24 

Mercury (Hg) is a global pollutant that is highly bioaccumulative and neurotoxic in its chief 25 

environmental organic form (i.e., methylmercury – MeHg or CH3Hg+). Certain obligative 26 

anaerobic bacteria and archaea are the primary source of MeHg,1-3 which is produced from 27 

inorganic Hg(II) in the cell cytosol.4 Thus, understanding the biogeochemical factors that lead to 28 

the microbial biouptake and subsequent methylation of Hg(II) is crucial to develop models for 29 

determining the potential for MeHg production in the environment. 30 

Chemical Hg(II) speciation is a critical factor that controls whether Hg(II) biouptake and 31 

methylation can occur in the environment. Hg(II) has a high affinity for reduced sulfur (i.e., thiols 32 

and sulfides), and the formation constants of Hg(II)-thiol and inorganic Hg(II)-sulfide species can 33 

be at least 20 orders of magnitude greater than those of Hg(II) complexes with carboxyls, amines, 34 

and most inorganic ligands.5, 6 Thus in natural environments, Hg(II) is expected to be bound to 35 

thiols (e.g., natural organic matter and low molecular weight – LMW – organic ligands) and/or 36 

inorganic sulfides (e.g., particulate and dissolved mono- and polysulfides) under sulfidic 37 

conditions.7  38 

While much attention has been given to understanding the biouptake of Hg(II)-thiol and 39 

Hg(II)-sulfide species by Hg-methylating organisms, the mechanisms and pathway(s) of Hg(II) 40 

biouptake are not well understood. Most studies rely on thermodynamic stability constants to 41 

obtain chemical Hg(II) speciation information for Hg(II) uptake and methylation assays.8-15 This 42 

methodology has led to current Hg(II) biouptake paradigms, which include the passive uptake of 43 

neutral Hg(II)-sulfide complexes (e.g., HgS0 or Hg(HS)2
0)8-11 and the active uptake of Hg(II) 44 

complexes with LMW thiols (e.g., Hg(cysteine)2).12, 13 However, microbes can alter extracellular 45 

Hg(II) speciation by the degradation or secretion of Hg(II)-binding ligands (e.g., sulfide and 46 
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cysteine)16-20 as well as cell-associated Hg(II) speciation via reactions with cellular S-containing 47 

ligands.16-18, 21-24 Therefore, predictions for Hg(II) speciation based on the initial composition of 48 

the exposure medium are not always accurate throughout the duration of the assay. In contrast, 49 

directly tracking the cell-associated Hg(II) coordination environment during Hg exposure assays 50 

can provide insight into the Hg(II) uptake and methylation mechanisms. Yet, only a few studies 51 

have captured Hg(II) coordination information during microbial Hg uptake16-18, 22, 25 and even 52 

fewer have studied Hg(II) coordination in organisms actively methylating Hg17, 25 due to the 53 

inherently low concentrations of cell-associated Hg. Furthermore, the Hg coordination 54 

environment in Hg-methylating organisms at environmentally-relevant Hg concentrations has yet 55 

to be explored.  56 

The recent developments in high energy-resolution X-ray absorption near edge structure 57 

(HR-XANES) spectroscopy now makes the assessment of Hg(II) coordination in dilute systems 58 

(sub-ppm Hg) possible,16, 26-30 specifically at the ambient Hg to cell ratios at which environmental 59 

Hg methylation is of concern. Herein, we employ Hg L3-edge HR-XANES spectroscopy to directly 60 

monitor the coordination chemistry of Hg in actively Hg-methylating cells. Specifically, we 61 

explore the effect of extracellular cysteine (Cys) addition as well as the role of cell surface thiols 62 

on the sorption, methylation, and Hg(II) coordination by the model Hg-methylating bacterium 63 

Geobacter sulfurreducens. Cell surface thiols make up roughly 5 – 10% of the total surface 64 

functional groups,31 can form complexes with Hg,21-24, 31, 32 and may even adsorb or act as a 65 

nucleation site for HgS(s) nanoparticles.17 Metal sorption to cell surface functional groups is a 66 

primary step in general metal biouptake models,33 and Hg(II) sorption to surface thiols has recently 67 

been proposed to control Hg(II) uptake and methylation under environmental conditions.20 Yet, 68 

the role of cell surface thiols in MeHg production has not been directly explored. Because 69 
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exogenous cysteine (Cys) is known to greatly enhance Hg(II) uptake and methylation by G. 70 

sulfurreducens,14 we compare our results in the presence and absence of added Cys.  71 

Materials and Methods 72 

Bacterial strain and growth medium. Geobacter sulfurreducens PCA was gratefully obtained 73 

from Dr. Jeffra Schaefer, Rutgers University. G. sulfurreducens was grown statically at 29 oC in a 74 

dark water bath in defined medium from Schaefer et al.14 containing (g per L): MOPS buffer (2.1), 75 

NH4Cl (0.005), NaH2PO4 (0.006), sodium acetate (0.82), sodium fumarate (6.4), resazurin (0.001), 76 

and trace metals (10 mL per L; Table S1) at pH 6.8 (adjusted with NaOH). The growth and assay 77 

media were made anoxic by boiling and cooling while bubbling with N2 gas. Hungate tubes and 78 

acid-washed serum bottles containing the anoxic media were crimp sealed with rubber septa and 79 

autoclaved. Once exponential growth phase was reached (OD600 = 0.1 – 0.2), cells were washed 80 

once in the assay medium containing 10 mM MOPS buffer, 0.1 mM NH4Cl, 1.3 mM KCl, 1 mM 81 

Na-β-glycerophosphate, 0.12 mM MgSO4, 1 mM sodium acetate, and 1 µg/mL resazurin at pH 82 

6.8. Sodium fumarate was added to the assay medium after autoclaving to a final concentration of 83 

1 mM from a filter-sterilized stock solution. 84 

Cell surface thiol quantification. The thiol concentration at the cell surface of exponentially 85 

grown G. sulfurreducens was quantified after reaction with (qBBr) by fluorescence spectroscopy 86 

on a Photon Technology International (PTI) Quantamaster fluorometer as described in Joe-Wong 87 

et al.34 Cells that were washed with the assay medium were diluted to an OD600 of 0.015 – 0.04 in 88 

the assay medium, and 7 – 8 mL of cell suspension were distributed among 15 mL N2-flushed, 89 

acid-washed serum vials. Microliter volumes of a qBBr stock solution that was prepared in anoxic 90 

Milli-Q were added to cell suspensions (8 mL final volume) under N2 atmosphere and crimp sealed 91 

with butyl rubber septa. Cell suspensions were mixed with qBBr for 2 hours and those that did not 92 
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remain anoxic throughout the experiment (shown by the resazurin indicator) were not analyzed. A 93 

2 mL aliquot was extracted with a syringe and quickly dispensed into a polystyrene fluorometer 94 

cuvette (Fisher Scientific). A fluorescence spectrum was immediately measured from 400 to 500 95 

nm (380 nm excitation), and the fluorescence at 470 nm was selected for analysis. While only 1 96 

scan is necessary per sample, the fluorescence measurement is stable in air up to 4 scans of ~1.5 97 

min duration.  98 

Hg(II) exposure assays. For Hg(II) sorption/methylation experiments, 7.2 mL of cell suspension 99 

in assay medium were transferred to N2-flushed, acid-washed 15 mL borosilicate glass serum vials 100 

under a stream of N2 gas in the headspace. To achieve final Hg(II) concentrations of 0 – 200 nM, 101 

0.8 mL of 10 times concentrated Hg(II) stock solution prepared in anoxic Milli-Q water was added 102 

to the cell suspension so that the final volume was 8 mL. After Hg(II) addition, vials were crimp 103 

sealed with rubber septa. A 10 mM Hg(NO3)2 stock solution in 1% HNO3 (trace metal grade) was 104 

used for all exposure assays and stored at 4 oC. For HR-XANES samples, the above procedure was 105 

replicated, but the final volume of cell suspension with Hg(II) addition was 50 mL in 100 mL acid-106 

washed serum bottles. All assays involving Hg(II) were mixed for 2 hours at 150 rpm in the dark 107 

at room temperature. Vials that did not remain anoxic during the exposure assays (as determined 108 

by the resazurin indicator) were not analyzed. When the effect of qBBr was tested (i.e., blocking 109 

cell surface thiols), a microliter volume of qBBr stock solution prepared in anoxic Milli-Q was 110 

added to the cell suspension and allowed to mix for 2 hours prior to Hg addition.  When the effect 111 

of Cys was tested, a microliter volume of Cys stock prepared directly before use was pre-112 

equilibrated with Hg(II) in anoxic Milli-Q for 1 hour at 10 times the final desired concentration. 113 

The pre-equilibrated Hg(II)-Cys solution was then diluted by a factor of 10 upon addition to cell 114 

suspensions.  115 
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Total and methyl-Hg measurements. Aliquots (700 µL) for total and dissolved Hg(II) and MeHg 116 

were collected by syringe after the 2 hour mixing period with Hg (± qBBr/Cys), preserved in 117 

~0.5% HCl in amber borosilicate glass vials and placed in the freezer until analysis. At least 3 118 

replicates from independent experiments were measured for each sample. Total Hg measurements 119 

were made on a Lumex RA-915M Mercury Analyzer with Pyrolyzer PYRO-915+ (Solon, OH).35 120 

Between 50 to 200 µL of liquid sample was pipetted onto ~100 mg of activated carbon in the 121 

quartz sample boat, which was placed into the thermal decomposition chamber reaching a 122 

temperature of ~800 C. The Hg in the sample was atomized and brought to the analysis cell by a 123 

steady air flow. The total Hg concentration was obtained by atomic absorption spectroscopy at 254 124 

nm with Zeeman correction for background absorption. The recovery was within 100 ± 5% for a 125 

50 nM control solution made in the assay medium. For MeHg analysis, samples were distilled by 126 

a Tekran 2750 gas manifold and heating system and analyzed by cold vapor atomic fluorescence 127 

spectroscopy (CVAFS) with a Tekran 2700 Methylmercury Analysis System as described in US 128 

EPA Method 1630. All MeHg controls and references for calibration were prepared from a Brooks 129 

Rand 1 ppm MeHg stock solution. Blanks in the assay medium (± 50 nM Hg), MeHg spiked 130 

samples, and MeHg references were run every 10 – 15 samples. In addition, controls were made 131 

in the assay medium to test recovery after distillation and derivatization. The recovery was within 132 

100 ± 10%.    133 

HR-XANES sample collection and measurements. The bacterial density and the initial and total 134 

recovered Hg concentration for each sample measured by HR-XANES is provided in Table S2. 135 

After mixing with Hg(II) for 2 hours (± Cys/qBBr), the cell suspension was washed twice with 136 

anoxic 0.1 M NaClO4. After the final wash, the cells were resuspended in ~200 µL anoxic 0.1 M 137 

NaClO4 and pipetted into a 1.5 mL microfuge tube that was fitted with an EMD Millipore 138 
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centrifugal filter unit (Mfr # UFC510024).  We switched out the filter that was provided in the unit 139 

with a 0.2 µm cellulose acetate filter (Whatman) that we cut with a ~7 mm diameter hole punch. 140 

The cell suspension was centrifuged at 10,000 g for 5 minutes, collecting the cell pellet on the 141 

filter and allowing excess moisture to pass through the filter. The filter with cell pellet was 142 

sandwiched between pieces of Kapton tape, quickly plunged into LN2, and remained frozen until 143 

analysis with HR-XANES.  144 

The HR-XANES data were collected at the European Synchrotron Radiation Facility 145 

(ESRF) at beamline BM16 FAME-UHD. All measurements were performed in high energy 146 

resolution fluorescence detection (HERFD) mode with 5 spherically bent Si(111) crystal analyzers 147 

(bending radius = 1 m, crystal diameter = 0.1 m). The Hg L1 fluorescence line was measured 148 

with a silicon drift detector (SDD, Vortex EX-90). The beam size was 100 µm  200 µm. The 149 

monochromator was calibrated with a Se reference foil by assigning the zero value of the first 150 

derivative to the Se K-edge energy (12,658 eV), and a HgCl2 powder was scanned at the start of 151 

each experiment to maintain relative energy calibration. The powder standards were finely ground, 152 

diluted to ~0.5 wt% with boron nitride, pressed into ~5 mm diameter pellets, and loaded onto a 153 

copper sample holder. The liquid reference standards were pipetted into a copper sample holder 154 

sealed on two ends with Kapton tape that was quickly plunged into LN2 to minimize contact of the 155 

liquid with the copper as well as prevent the formation of ice. The bacterial samples were shipped 156 

to the ESRF on dry ice (< 48 hours in transit) and kept frozen during analysis. The frozen bacterial 157 

samples were quickly fixed onto copper sample holders with grease and plunged into liquid 158 

nitrogen to prevent thawing. All references and bacterial samples were measured at 10 – 15 K with 159 

some references also being measured at room temperature for comparison. The beam position on 160 

the sample was moved after every scan (duration ~35 minutes); however, no beam damage was 161 
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observed on repeat scanning locations. The data normalization was executed in Athena36 while 162 

peak fitting was performed in Larch.37 Details on the preparation of Hg reference standards for 163 

HR-XANES is provided in a previous publication.16  164 

Results and Discussion 165 

Quantification of cell surface thiols. The fluorophore monobromo(trimethylammonio)bimane 166 

(qBBr) binds strongly and irreversibly to thiols via nucleophilic substitution (SN2) and has been 167 

used to estimate thiol concentration in LMW ligands and macromolecular dissolved natural 168 

organic matter.34  qBBr is a relatively large and positively charged molecule and thus does not 169 

penetrate cell membranes (outer and cytoplasmic). It can therefore be used to quantify thiols at 170 

cell surfaces, which include thiols that are associated with the outer membrane or extracellular 171 

polymeric substance (EPS).34, 38-41 Furthermore, a qBBr titration accurately estimates the 172 

concentrations of thiols, such as Cys and glutathione (GSH), in the assay medium from this study 173 

(Figure S1). Aliquots of G. sulfurreducens suspensions that were harvested in exponential growth 174 

phase were titrated with increasing concentrations of qBBr and mixed anaerobically for 2 hours, 175 

after which the fluorescence intensity at 470 nm was measured and plotted against the qBBr 176 

concentration (Figure 1). The intersection of the two best-fit lines (i.e., saturation of all accessible 177 

thiols from reactions with qBBr) from independent experiments revealed a consistent average thiol 178 

concentration at the cell surface of 55.5 ± 1.3 µmol/g bacteria (wet weight) or ~2  108 thiols/cell. 179 

The measurement of cell surface thiol concentration is steady up to 4 hours of mixing, and our 180 

measured value agrees well with a recent study that determined the surface thiol concentration of 181 

G. sulfurreducens by potentiometric titration.22 In addition, cell suspensions titrated with qBBr 182 

remain anoxic (as determined by the resazurin indicator) for up to 4 hours, which implies that cells 183 
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retain an active metabolism to reduce the assay medium even after the blocking of surface thiols 184 

by qBBr. 185 

 186 

 187 

 188 

 189 

 190 

 191 

 192 

 193 

Figure 1. The fluorescence intensity of G. sulfurreducens cell suspension measured at 470 nm 194 

(excitation: 380 nm) as a function of the added qBBr concentration after a 2-hour exposure to 195 

estimate surface thiol density. The qBBr concentration is normalized to the cell density (g/L) for 196 

each experiment. The intersection of the two best-fit lines within each experiment indicates a cell 197 

surface thiol concentration of 56.4 and 54.6 µmol thiol per g bacteria (wet weight), respectively. 198 

Inset: qBBr titrations in the absence of bacteria of the assay medium alone (gray), with 20 µM Cys 199 

(light/dark blue), and with 20 µM Cys and then mixing with 5 µM Hg for one additional hour 200 

(light/dark red). The intersection of the two best-fit lines within each experiment estimates a Cys 201 

concentration of 20.0 ± 0.3 µM and 21.4 ± 1.6 µM with and without the addition of Hg, 202 

respectively. Thus, Hg addition does not break the qBBr-thiol bond. Thermodynamic calculations 203 

predict ~11 µM free Cys in the presence of 5 µM Hg (the remainder forming Hg(Cys)2 and HgCys) 204 

in the absence of qBBr.16 205 

 206 

Hg(II) binding to cell surface thiols and their impact on MeHg production. Once the thiol reacts 207 

with qBBr, the qBBr-thiol bond cannot be broken by Hg(II) addition (Figure 1 inset). Thus, qBBr 208 

can be used to selectively block cell surface thiols in Hg uptake and methylation assays.  We tested 209 

how the blocking of surface thiols by qBBr as well as Cys addition affected cellular Hg(II) sorption 210 

and MeHg production after exposing cells to Hg(II) with and without Cys for 2 hours (Figure 2). 211 

The total concentration of cell surface thiols (~56 µmol per L) is approximately 1000 times greater 212 
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than the total added Hg(II) concentration for these experiments (50 nmol per L).  The addition of 213 

qBBr at 1/3, 2/3 and 4/3 the concentration of the total cell surface thiols to block 1/3, 2/3 and all 214 

accessible cell surface thiols, respectively, had no effect on the sorption or methylation of 50 nM 215 

total Hg (Figure 2A,C). Regardless of the qBBr concentration added, the sorbed Hg(II) was ~90% 216 

of the total recoverable Hg(II) (Figure 2A). In addition, cells exposed to 50 nM Hg(II) only 217 

produced 1 – 2 nM total MeHg after 2 hours regardless of qBBr addition (Figure 2C). We note 218 

that the total recovered Hg (dissolved + cell-associated) does not add up to the initial added Hg 219 

after mixing both in the presence and absence of added cysteine (Figures 2A and 2B). The lower 220 

Hg recovery is likely due to Hg(II) reduction by the cytochromes of G. sulfurreducens and the loss 221 

of volatile Hg(0) into the headspace of the serum vial, which is known to occur under the Hg to 222 

cell ratios of this study.42 223 

 224 

 225 

 226 

 227 

 228 

 229 

 230 

 231 

 232 

 233 

Figure 2. The dissolved and cell-associated (A,B) total Hg as well as (C,D) MeHg measured as a 234 

function of added qBBr to cell surface thiol ratio after exposure of G. sulfurreducens to (A,C) 50 235 

nM Hg and (B,D) 50 nM Hg + 100 µM Cys for 2 hours. The cells were incubated with the specified 236 

qBBr concentration for 2 hours prior to Hg/Cys addition. 237 
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As expected, the addition of 100 µM Cys and 50 nM total Hg(II) to G. sulfurreducens 238 

drastically enhanced the total MeHg production (Figure 2D). In addition, the blocking of cell 239 

surface thiols with qBBr did not significantly affect Hg(II) sorption or methylation in the presence 240 

of added Cys (Figure 2B,D). However, the presence of Cys enhanced the fraction of dissolved Hg 241 

in the exposure medium, regardless of the fraction of surface thiols blocked by qBBr, which is 242 

likely due to a combination of efficient MeHg export from the cell13, 14 as well as increased Hg(II) 243 

solubility (i.e., not cell-associated) due to its complexation with Cys in the exposure medium. Our 244 

findings suggest that the majority of cell surface thiols do not influence Hg(II) uptake and 245 

methylation, both in the presence and absence of added Cys. In addition, due to consistent MeHg 246 

production in the presence and absence of qBBr, these results confirm that cell physiology was 247 

minimally influenced by the inhibition of cell surface thiols. It is possible that a small fraction of 248 

surface thiols that are embedded deeper within the outer membrane (e.g. some cysteine residues 249 

of outer membrane proteins) could react with Hg but not with qBBr molecules due to size and/or 250 

steric hindrance. Therefore, the involvement of cell surface thiols in Hg methylation cannot be 251 

ruled out completely. However, blocking the majority of surface thiols from binding Hg appears 252 

to have no effect on Hg methylation. Due to the abundance of qBBr-blocked surface thiols (~ 56 253 

µmol per L) in comparison to the total Hg concentration (50 nmol per L) in this study, bacterial 254 

surface thiols may be a large sink for Hg(II) in natural environments.  255 

Hg(II) coordination environment in Hg-methylating bacterium. To identify the cell-associated 256 

Hg(II) species in actively Hg-methylating bacteria, we probed samples of G. sulfurreducens that 257 

were exposed for 2 hours to a range of Hg concentrations (50 – 200 nM) with and without cell 258 

surface thiol blocking and Cys addition using Hg L3-edge HR-XANES spectroscopy (Figure S2). 259 

The results show that all detectable Hg(II) associated with the bacteria herein is bound to S with 260 
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the possibility of mixed Hg bonding to S and N/O in some samples (described later). The greatest 261 

variation in the cellular Hg coordination environment was found in cells exposed to Cys (Figure 262 

S2C). 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 

Figure 3. (A) Normalized Hg L3-edge HR-XANES of aqueous standards of Hg(Cys)2 (pH = 3) 271 

and Hg(Cys)4 (pH = 11) as well as cell pellets of G. sulfurreducens exposed to 50 nM Hg (1) and 272 

50 nM Hg with 100 µM Cys (5) for 2 hours. (B) The ratio of the height to the width of the 273 

deconvoluted near-edge HR-XANES Gaussian peak (Peak 1) plotted against the known average 274 

Hg coordination number to S for Hg standards from this study and from Manceau et al.26, 44  (black 275 

dots). A description of the spectral deconvolution method is provided in the SI (Part S1). A best-276 

fit line with 95% confidence interval was calculated from the black dots only. The blue dots 277 

represent Hg(Cys)2 and Hg(GSH)2 made at pH 7.5 from Bourdineaud et al., where an 278 

amine/carboxyl group is also included in the coordination sphere (i.e., Hg[(SR)2 + (N/O)1-2]).27 279 

The red circles represent sample spectra of G. sulfurreducens exposed to 50 nM Hg, 100 nM Hg, 280 

200 nM Hg, 50 nM Hg with surface thiols quantitatively blocked by qBBr, and 50 nM Hg with 281 

100 µM Cys for 2 hours. The error bars depict the calculated uncertainty of the height/width 282 

parameter from the fit model. (C) The average Hg coordination number to S of Hg standards and 283 

samples from subplot B plotted against the energy in the edge region at which the first derivative 284 

of the HR-XANES is equal to zero (µ’(E) = 0). 285 
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XANES is highly sensitive to structural distortions and higher coordination shells,43 which likely 291 

explains the dissimilarities between the spectra of dilute Hg(II) species that form in the bacteria 292 

from this study and the pure aqueous and crystalline Hg(II) standards of our library. However, the 293 

average Hg(II)-S coordination number can be estimated by examining the peak intensity and width 294 

of the lowest energy transition in Hg L3-edge HR-XANES spectra, which corresponds to the Hg 295 

2p3/2 to hybridized Hg 6s5d transition.44 A sharp and intense near-edge peak is indicative of linear 296 

2-coordinate Hg-S bonds (see Hg(Cys)2 of Figure 3A).30 Deviations from linearity caused by 297 

distortion or an additional atom in the coordination sphere (e.g., N, O, or S) produce a smaller peak 298 

amplitude.29 Manceau et al. obtained a Hg L3-edge HR-XANES spectrum of a trigonal Hg(SR)3 299 

complex, which has a very small near-edge peak,44 while spectra of Hg bound to 4 S atoms in 300 

tetrahedral geometry (i.e., Hg(SR)4 and -HgS) lack a visible near-edge peak (see Hg(Cys)4 of 301 

Figure 3A).16, 28, 30, 44  302 

We have developed a method that involves spectral deconvolutions of Hg L3-edge HR-303 

XANES spectra of many compounds with Hg-S coordination to extract Hg coordination 304 

information. Specifically, we deconvoluted the spectra into 4 Gaussian peaks and an error function 305 

and further analyzed the Gaussian peak in the near-edge, hereafter referred to as Peak 1 (SI Part 306 

S1). A standard curve was created by plotting the ratio of the height to the width (2) of Peak 1 307 

against the known average Hg-S coordination number using spectra from this study, Manceau et 308 

al.,26, 44 and Boudineaud et al.27 (Figure 3B). Because the Hg-S2, Hg-S3, and Hg-S4 species lie in 309 

distinct regions of the standard curve in Figure 3B, this curve can estimate the average Hg(II) 310 

coordination number to S in samples that contain Hg predominantly bound to S. However, the 311 

curve is not very sensitive to mixed coordination environments of S and N/O. This is shown by 312 

comparing the height to width ratio of Peak 1 for the Hg-S2 species and the two Hg[(SR)2 + NH2] 313 
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species (blue dots; Figure 3B), which lie in the same range. However, it is possible to differentiate 314 

Hg[(SR)2 + (N/O)1-2] binding from mixed Hg-S2 and Hg-S3/S4 binding using the energy of Peak 1 315 

(defined as the energy in the edge region at which the HR-XANES derivative equals zero), which 316 

is similar for Hg-S2 and Hg[(SR)2 + (N/O)1-2] species but differs between Hg-S2 and Hg-S3/S4 317 

species (Figure 3C). We note that Hg-C bonding due to MeHg formation does not impact the 318 

interpretation of the results in this study because our MeHg analysis shows that cell-associated 319 

MeHg (likely as MeHg-Cys29) is < 20% of the total cell-associated Hg for the sample involving 320 

Cys and negligible (< 2%) for the other 4 samples.  321 

Our analysis of the samples of G. sulfurreducens that were exposed to 50 – 200 nM total 322 

Hg indicates that the cell-associated Hg is bound to S with an average coordination number of 2 – 323 

3 (range includes 95% confidence interval and consideration of Hg[(SR)2 + (N/O)1-2] binding; 324 

Figure 3B). This average Hg coordination number does not change when the surface thiols are 325 

quantitatively blocked by qBBr (Figure 3B). In contrast, the sample with Cys addition has a 326 

significantly larger Hg coordination number to S of 3.3 ± 0.2 (Figure 3B). This sample also has a 327 

near-edge HR-XANES peak energy that is 0.5 eV greater than the other samples (Figure 3C). This 328 

shift in energy confirms independently a larger Hg coordination number to S and provides further 329 

evidence that the sample with Cys addition is significantly different than the others. Finally, there 330 

is additional evidence for mixed Hg[(SR)2 + (N/O)1-2] coordination in the samples of G. 331 

sulfurreducens exposed to 100 nM Hg as well as 50 nM Hg with the surface thiols blocked due to 332 

a left-shifted edge energy above the near-edge peak (Figure S2A and S2B).29 Mixed Hg[(SR)2 + 333 

(N/O)1-2] binding environments occur when Hg binds to LMW thiols of biological origin at neutral 334 

pH (i.e., GSH).27 Due to the abundance of LMW thiols like GSH in bacteria,45 Hg[(SR)2 + (N/O)1-335 

2] binding could be a result of increased Hg binding to LMW thiols.   336 
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Figure 4. The total MeHg concentration (nM) produced by G. sulfurreducens after exposure to 50 337 

– 200 nM total Hg for 2 hours is plotted with the average Hg coordination number to S in the cell 338 

pellet for each sample (blue numbers above bars; determined from Figure 3) to understand the 339 

relationship between cellular Hg coordination and MeHg production. We did not determine the 340 

localization of cell-associated Hg in this study; thus, the illustration merely proposes the Hg 341 

distribution among surface thiols and periplasmic/cytoplasmic S-containing ligands while 342 

satisfying the measured average cell-associated Hg coordination number to S. (A) The cell-343 

associated Hg is coordinated on average to between 2 and 3 S atoms considering the 95% 344 

confidence interval and the possibility of mixed Hg[(SR)2 + (N/O)1-2] binding causing a slight 345 

overestimation of the Hg-S coordination number. These conditions are linked to relatively low 346 

MeHg production. (B) When surface thiols are completely blocked by qBBr, the average Hg 347 

coordination number to S is also 2 – 3 and MeHg production is unchanged. Because the surface 348 

thiols are fully blocked, Hg is likely distributed among periplasmic/cytoplasmic S-containing 349 

ligands. (C) When 50 nM Hg is added with 100 µM Cys, the cell-associated Hg is coordinated on 350 

average to 3.3 S atoms, and MeHg production is relatively high. Due to the high MeHg 351 

concentration and requirement that Hg be in the cytosol for MeHg production, Hg must be 352 

coordinated to some intracellular (periplasmic/cytoplasmic) ligands. 353 

 354 

Implications for Hg biouptake and methylation. Our results indicate that a vast majority of cell 355 

surface thiols on a Hg-methylating organism are not involved in Hg(II) biouptake and methylation. 356 

In addition, we show that the cell-associated Hg(II)-S coordination number is positively correlated 357 

with MeHg production, as opposed to the ability of cell surface thiols to bind and retain Hg (Figure 358 

4). When the average Hg(II) coordination number to S is low (< 3), MeHg production is also low 359 
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(Figure 4A), regardless of whether the cell surface thiols are blocked by qBBr (Figure 4B). 360 

Likewise, the addition of Hg that was pre-equilibrated with Cys led to the highest cell-associated 361 

Hg coordination number to S (3.3) and the highest MeHg production by G. sulfurreducens (Figure 362 

4C). In order to satisfy an average coordination number to S of 3.3, Hg can exist either as 363 

predominantly Hg-S3 or a mixture of Hg-S2, Hg-S3, and Hg-S4 with the likely presence of Hg-S4 364 

in both cases to push the coordination number above 3. The correlation between Hg-S3/S4 species 365 

and MeHg production could be due to the species’ enhanced bioavailability or connection to the 366 

form of Hg that is methylated. An indirect reason could also lead to enhanced Hg methylation, 367 

such as the formation of an intermediate complex, which is manifested by increased Hg-S 368 

coordination number. Regardless of the exact mechanism, the formation of Hg species with 369 

coordination numbers to S at or above 3 must either induce or be byproducts of the conditions 370 

favorable for MeHg production.  371 

Cell-associated Hg-S4 species would likely be comprised of Hg binding to inorganic sulfur 372 

(i.e., -HgS), as opposed to organic sulfur (i.e., Hg(SR)4). Inorganic Hg(II)-sulfides form readily 373 

with sulfide ions,46, 47 can precipitate extracellularly (and potentially intracellularly) in non-374 

dissimilatory sulfate reducing bacterial suspensions without sulfide additions,16-18 and can even 375 

form directly from Hg(II)-thiol complexes.30, 48 In contrast, the formation of Hg(SR)4 at neutral 376 

pH is highly unfavorable.49 It is notable that the HR-XANES do not indicate cell-associated bulk 377 

-HgS or Hg(SR)4 for any bacteria sample. However, small cell-associated Hg-S clusters with -378 

HgS-like local Hg coordination (i.e., analogous to Fe-S clusters), as described by Manceau et al.,27, 
379 

50 are possible, especially due to the low Hg concentrations associated with the bacteria samples. 380 

Because Hg-S4 is most likely present in the sample with Cys addition and G. sulfurreducens is 381 

known to degrade exogenous Cys into sulfide under identical exposure conditions as this study,17 382 
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the nucleation of Hg-S nanoclusters with -HgS-like local coordination is possible, as suggested 383 

previously.16, 17 If cell-associated Hg is present as Hg-S3, we predict the trigonal coordination of 384 

Hg with 3 structurally connected thiols, which is the most stable Hg-S3 species at physiological 385 

pH49 and has been observed in proteins (e.g., Hg-MerR in organisms with the mer operon).51 The 386 

most stable and common Hg(II)-thiol complexes in biological samples are linear, 2-coordinate.52 387 

Therefore, the cell-associated Hg-S2 species that we observe are likely Hg(SR)2, with the 388 

possibility of mixed Hg[(SR)2 + (N/O)1-2] coordination.  389 

Curiously, if the Hg-S4 species is directly related to Hg methylation, it is highly unlikely 390 

that this is the species that accepts a methyl group to become MeHg because the Hg coordination 391 

sphere is already fully occupied with 4 S atoms. Hg methylation by HgcAB is depicted in the 392 

literature as the donation of a methyl carbanion (CH3
-) from HgcA to a Hg(SR)2 complex, using 393 

HgcB as an electron donor to reduce the corrinoid cofactor of HgcA.52, 53  However, the assumption 394 

that Hg(SR)2 accepts a CH3
- group is solely due to the previous understanding that Hg(SR)2 is the 395 

predominant form of Hg in cells.52, 54 An interesting study would explore the possibility of the 396 

methylation of Hg-S3 or Hg-S4 species, for example, considering a change in Hg coordination by 397 

ligand exchange reactions so that the Hg coordination sphere could accept a methyl group. Site-398 

directed mutagenesis of 3 conserved Cys residues in hgcB revealed that at least two (i.e., Cys73 399 

and Cys94 or Cys95) are required for Hg methylation,53 and it is possible that 2 or 3 of these Cys 400 

residues bind Hg while a methyl group is transferred from HgcA. A Hg(SR)3 binding structure, 401 

analogous to Hg-MerR, would be highly stable51 and should outcompete Hg-S2 species and 402 

possibly even inorganic Hg-S4 species. The coordination of Hg to 3 Cys residues of HgcB could 403 

itself contribute to our observation of a possible Hg-S3 species, although the reported abundance 404 

of HgcAB in cells is very low.55, 56 405 
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The hgcAB gene cluster responsible for MeHg production is expressed constitutively and 406 

is not responsive to Hg.57 Therefore, Hg biouptake to the cytosol so that Hg reaches the HgcAB 407 

active sites is likely the foremost cause for Hg-methylation. In light of the previous evidence 408 

attributing MeHg production to the passive diffusion of neutral Hg(II)-sulfide species,8-11 it is 409 

possible that Cys leads to enhanced MeHg production due to the formation of cell-associated 410 

Hg(II)-sulfide species (i.e., Hg-S4) that can passively diffuse through the cell membrane layers. 411 

The adsorption of Hg(II) to cell surface thiols has been proposed to immobilize Hg(II) against 412 

biouptake.58-60 Thus, the formation of highly stable Hg-S4 species may enable Hg(II) to bypass 413 

binding to cell surface thiols, promoting Hg(II) biouptake into the cytosol. This hypothesis 414 

supports our finding that blocking cell surface thiols had no effect on Hg(II) methylation in the 415 

presence of added Cys. In addition, recent evidence suggests that the biodegradation of Cys to 416 

sulfide and the coexistence of these reduced sulfur species is necessary for Hg(II) uptake by 417 

Escherichia coli exposed to excess Cys.16 The necessity of Hg(II)-sulfide species formation for 418 

biouptake in the presence of excess Cys can explain the observation that Hg(II) biouptake by G. 419 

sulfurreducens is enhanced by Cys but inhibited by similar thiols that are not readily degradable 420 

to sulfide (e.g., GSH and penicillamine) under otherwise identical conditions.13 Lastly, at high Cys 421 

concentrations14 or in a mutant G. sulfurreducens strain that lacks outer membrane proteins 422 

(omcBESTZ),15 Hg(II) uptake and methylation in the presence of Cys is inhibited, which could 423 

be related to the inability to degrade enough Cys to enable Hg(II)-sulfide species (i.e., Hg-S4) 424 

formation. 425 

This study indicates that the average cell-associated Hg coordination number to S is 426 

influential to MeHg production by a model Hg-methylating bacterium while the abundance of cell 427 

surface thiols capable of binding Hg(II) is not. We propose that the Hg-S3/Hg-S4 species, whose 428 
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formation correlates with MeHg production, are highly stable and sufficiently small Hg(II)-sulfide 429 

clusters with enhanced biouptake potential (possibly by passive diffusion). In the cytosol, the Hg-430 

S3/Hg-S4 species may undergo a ligand exchange reaction, potentially with the 3 Cys residues of 431 

HgcB, prior to the addition of a methyl group to the coordination sphere to form MeHg. The link 432 

between Hg-S3/Hg-S4 species formation and Hg(II) biouptake as well as the methylation of highly 433 

stable Hg(II) species should be explored further. In addition, by identifying unexpected cell-434 

associated Hg-S3/Hg-S4 species, we demonstrate the importance of characterizing cell-associated 435 

Hg coordination chemistry during Hg biouptake and methylation assays. Experimental approaches 436 

to directly obtain coordination information, such as HR-XANES spectroscopy, have the potential 437 

to shed light on the bioavailability of other metal species as well.  438 
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