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ON ITERATION IMPROVEMENT FOR AVERAGED EXPECTED COST
CONTROL FOR 1D ERGODIC DIFFUSIONS*

SVETLANA V. ANULOVA¥, HILMAR MAI¢!, AND ALEXANDER YU. VERETENNIKOVY

Abstract. An ergodic Bellman’s (HJB) equation is proved for a uniformly ergodic 1D controlled diffusion with
variable diffusion and drift coefficients both depending on control; convergence of the values provided by Howard’s
reward improvement algorithm to the value which is a component of the unique solution of Bellman’s equation is
established.

Key words. controlled diffusion processes, averaged expected control, Hamilton-Jacobi-Bellman equation,
existence and uniqueness, reward improvement algorithm

AMS subject classifications. 93E20; 60H10

1. Introduction. The paper is a complete version of the short presentation without detailed
proofs in [1]. Issues of reliability which was in the title of [1] are not addressed here, all proofs are
completed and the results are extended in comparison to the cited article. However, an application
to reliability seems fruitful and is one of the motivations for the present paper; a corresponding
remark about it can be found below. One more motivation is to allow the diffusion coefficient to
depend on control. Indirectly, the main result below may be considered as a version of a rigorous
realisation of the rather instructive and deliberately non-rigorous example from [15, Ch. 1, §1]
where the point was the vanishing at infinity of the expectation of a current cost. Beside a more
detailed calculus in step 3 of the proof, here we tackle the issue of the HJB equation(s) satisfied
everywhere and/or almost everywhere more precisely than in [1].

We consider a one-dimensional stochastic differential equation (SDE) on the probability space
(Q, F,(F), P) with a one-dimensional (F;) Wiener process B = (By);>o with coefficients b and o,
and with a stationary control function « (called strategy in the sequel)

dX7 = b(a(Xf), X7) dt + o(a(X7), X§) dW,, 120,

(1.1)

Xy ==

Let a compact set U C R be a set where any strategy takes its values. The functions b and o
on U x R are assumed Borel; later on some further conditions will be imposed, but we note straight
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2 S.V. ANULOVA, H. MAI, AND A.YU. VERETENNIKOV

away that o will be assumed non-degenerate and that a weak solution of the equation (1.1) always
exists and is Markov and strong Markov, see [16, 17, 14]. Denote the class of all Borel functions «
with values in U by A. For v € U and «(-) € A denote

“(x) = b( )*d *1 2( )7d2 €
L"(z) = b(u,x T +20 U, T Pt z € R,
and
“(z) = bla(x), )*d . ( () )LZQ €
L%(z) = b(a(x T + a o),z ok z € R.

Denote by K the class of functions on U X R (also just on R) growing no faster than some
polynomial. The running cost function f will always be chosen from this class. The averaged cost
function corresponding to the strategy o € A is then defined as

1 T
(1.2) p%(x) :=limsup — / E. fla(X}), X7)dt.
T— o0 T 0
For a strategy o € A the function f*: R = R, f*(z) = f(a(z),z), x € R, is defined. Then (1.2)
has an equivalent form

T
(1.3) p%(z) = limsup % / E,.f(X;)dt
0

T—o0

Now, the cost function for the model under consideration is defined as

T
(1.4) p(x) := inf limsup 1 / E,fe(X})dt
a€A 7o T 0
It will be assumed that for every a € A the solution of the equation (1.1) X is Markov ergodic,
i.e., there exists a limiting in total variation distribution u® of X;*, ¢ — oo, this distribution p“
does not depend on the initial condition Xy = = € R, is unique and is invariant for the generator
L%. The cost function p® then does not depend on x and can be rewritten as

(1.5) po(a) = o= [ o)) = (57,
Then what we want to find (compute) is the value

1. p = inf *( = inf (f, u%).
(1.6) i&/f Jnf (f%, n%)

For any strategy a € A let us also define an auxiliary function
vla) = [ B - )t
0
The convergence of this integral will follow from the assumptions.

The first goal of this paper is to show the ergodic HJB or Bellman’s equation on the pair (V, p)
(1.7) irellf][L“V(m) + fY(x)—p]=0, zeR.

This manuscript is for review purposes only.
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AVERAGED EXPECTED COST CONTROL FOR 1D ERGODIC DIFFUSIONS 3

This assumes showing uniqueness of the second component (p) along with the property that it
coincides with the cost from (1.6). The meaning of the first component V' will be explained later.
The uniqueness of V' will be shown up to an additive constant.

The class where the solution (V,p) will be studied is the family of all Borel functions V' and
constants p € R such that V has two Sobolev derivatives which are all locally integrable in any
power, and V itself should have a moderate grow at infinity not faster than some polynomial.
Respectively, the equation (1.7) is to be understood almost everywhere; yet, in the 1D situation
and under our assumptions it will follow straightforwardly that this equation is actually satisfied
for all z € R. Note that the first derivative can be considered as continuous (due to the embedding
theorems), and the second derivative will be always taken Borel, as one of the Borel representatives
of Lebesgue’s measurable function.

The second goal of the paper is to show how to approach the solution p of the main problem
by some successive approximation procedure called the Reward Improvement Algorithm (RIA). It
is interesting that under our minimal assumptions on regularity of strategies for the weak SDE
solution setting it is yet possible to justify a monotonic convergence of the “exact” RIA; compare
to [15, ch.1, §4] where it was necessary to work with “approximate” RIA (called Bellman—Howard’s
iteration procedure there) and with regularized Lipschitz strategies.

Concerning the equation (1.7), it may look like it lacks some boundary conditions: indeed,
a 2nd order PDE normally does require certain boundary conditions, which, for example, in the
considered 1D case simply means two boundary conditions at two end-points if the equation is on
a bounded interval. However, this is the equation “in the whole space” and we are going to solve
it in a specific class of functions V' — namely, bounded (if f is assumed bounded), or, at most,
moderately growing (if f may admit some moderate growth), — which in some sense substitutes the
(Dirichlet) boundary conditions at +o0o. Note that a similar situation can be found in the theory
of Poisson equations in the whole space (see, for example, [?, 32]).

Concerning a full uniqueness for the solution of (1.7), note that with any solution (V, p) and for
any constant C, the couple (V + C, p) is also a solution. There are two close enough options how
to tackle this fact: either accept that uniqueness will be established up to a constant, or choose a
certain “natural” constant satisfying some “centering condition” as will be done below.

To guarantee ergodicity, we will assume the “blanket” recurrence conditions (see below), which
in some sense provide a uniform recurrence for any strategy. Conditions of this type are sometimes
considered too restrictive; however, they do allow to include models and cases not covered earlier
in this theory and for this reason we regard this restriction as a reasonable price for the time being.
It is likely that such restrictions may be relaxed so as to include the “near monotonicity” type
conditions (see [5]).

Let us say just a few words about the history of the problem. More can be found in the
references provided below. Earlier results on ergodic control in continuous time were obtained in
[22], [26], [6], et al. In his book [22] Mandl established apparently first results on ergodic (averaged)
control for controlled 1D diffusion on a finite interval with boundary conditions including jumps
from the boundary. The author established the HJB equation and proved uniqueness of the couple
(up to a constant for the first component). Improvement of control was discussed, too, however,
without convergence.

Morton [26] considered the 1D case (a multi-dimensional case too but under stronger assump-
tions: we do not touch it in this paper) with a price function defined by (1.6) without any relation
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4 S.V. ANULOVA, H. MAI, AND A.YU. VERETENNIKOV

to (1.4). He proved ([26, Theorem 1]) that the optimal price does satisfy the ergodic Bellman’s
equation; that the policy determined by Argmax (in our setting Argmin) in the Bellman’s equation
is optimal within some rather special class of Markov policies which are fixed functions outside some
bounded interval; a certain inequality for the optimal price and any solution of Bellman’s equa-
tion; a remark about RIA; however, neither is the uniqueness for the Bellman’s equation solutions
established, nor is the convergence of RIA towards a solution proved.

Discrete time controlled models were considered in the monographs [9], [11], [12], [28], and
others, and in the papers [2], [24], [29], etc.

Continuous time controlled processes were treated in the 80s in a chapter of the monograph
[6] where ergodic control for stable diffusions was considered. Arapostathis and Borkar [4], Ara-
postathis [3], Arapostathis, Borkar and Ghosh [5] treated diffusions with “relaxed control” and the
diffusion coefficient not depending on the control, under weaker recurrence assumptions (i.e., under
two types of condition, stable or near-monotone). In this setting, they establish Bellman’s equa-
tion, existence, uniqueness, and RIA convergence. In this paper we allow the diffusion coefficient
to depend on control and we do not use relaxed control.

The latest works include [3], [5], [29], see also the references therein. Although devoted to
another type of models — piecewise-linear Markov ones — the monograph [8] may also be mentioned
here. In the very first papers and books compact cases with some auxiliary boundary conditions —
so as to simplify ergodicity — were studied; convergence of the improvement control algorithms were
studied only partially. In later investigations noncompact spaces are allowed; however, apparently,
ergodic control in the diffusion coefficient o of the process has not been tackled earlier. The reader
may consult [6] and [15] for research on controlled diffusion processes on a finite horizon, or on
infinite horizon with discount (technically equivalent to killing).

In most of the works on the topic, measurability of the optimal or improved strategy (see below)
is assumed. Yet, it is a subtle issue and in our case we give references — the basic one is [30] — and
verify the conditions which provide this measurability.

The paper consists of four sections: 1 — Introduction, 2 — Assumptions and some auxiliaries,
3 — Main result and its proof, and the last one is the Appendix (not numbered). We will use the
convention that arbitrary constants C' in the calculus may change from line to line.

2. Assumptions and some auxiliaries. To ensure ergodicity of X< under any stationary
control strategy a € A, we make the following assumptions on the drift and diffusion coefficients.

(A1) (boundedness, non-degeneracy, regularity) The functions b and o are Borel bounded in their
variables; |b(u, )| < C, |o(u,z)| < C,, o is uniformly non-degenerate, |o(u,z)| ™t < Cy;
the functions o(u, x), b(u, z), f*(x) are continuous in u for every z.

(A2) (recurrence)
(2.1) lim sup zb(u,z) = —o0.

|| =00 ueU

(A3) (running cost) The function f belongs to the class K of functions which are Borel measurable

in z for each u and admit a uniform in u polynomial bound: there exist constants C;,m; > 0

such that for any zx,

sup [ f*(z)| < C1(1 + [2[™).
uelU

(A4) (compactness of U) The set U is compact.

(A5) (additional regularity) The functions b, o, and f are of the class C! in x for each u with
uniformly bounded derivatives.

This manuscript is for review purposes only.
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AVERAGED EXPECTED COST CONTROL FOR 1D ERGODIC DIFFUSIONS 5

We will need the following three lemmata.

LEMMA 2.1. Let the assumptions (A1) — (A3) hold true. Then
e For any C1,my > 0 there exist C,;m > 0 such that for any strategy o € A and for any
function g growing no faster than Cy(1+ |z|™),

(2.2) sup [E,g(X{")| < C(1 + |z|™).
>0
e For any a € A, the invariant measure p® integrates any polynomial and
sup / |z|F u®(dz) < 00, Yk >0.
acA

e For any strategy o € A the function p® is a constant, and

(2.3) sup [p%] < C < o0
acA

moreover, for any k > 0 and f € K, there exist C,m > 0 such that

L+ |z
2.4 E, f*(X2) — p°| < 02
(2.4) 223' fHUXE) p|*01+tk
and
1 /T
(2.5) sup —/ E,f4(X)dt—p*| =0, T — oo.
acA T 0

Proof. Follows from [31, Theorems 5, 6]. Note that in [31] the solution of the SDE under investi-
gation should be weakly unique, and it also must be a homogeneous Markov and strong Markov
process; for the equation (1.1) it is all true by virtue of [16, Theorem 3], [17], and [14, Theorems
2, 3], as no continuity of the diffusion coefficient is required for this in the 1D case. (NB: In [14,
Theorem 3] no continuity is needed even for D > 1, but then weak uniqueness is established in the
1D case only [16, Theorem 3].)

COROLLARY 2.2. Under the same assumptions,

Xp™ OO+ Jal™)
Nm = Nm™

(2.6) sup |[E;1(|X7| > N)| < supE,
>0 >0

The proof is straightforward by Bienaymé — Chebyshev —Markov’s inequality.

REMARK 2.3. Note that because D = 1, under the assumptions (A1)-(A2) for any Borel func-
tion o € A there is a unique stationary measure pu®, which is equivalent to the Lebesgue measure
A. The latter follows from the formula for the unique stationary density

27) @) = d“;f”) = Ca 02(a(1x) ) 7P (2 /ogC ity dy) 7

a?(a(y),y)

where Cy, is a normed constant. The fact that p® is a stationary density can be seen from a
substitution to the equation of stationarity (L*)*p = 0 (see, for example, [13, Lemma 4.16, equation

This manuscript is for review purposes only.
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6 S.V. ANULOVA, H. MAI, AND A.YU. VERETENNIKOV

(4.70)]); its uniqueness in the class of integrable functions satisfying the normalizing condition
[ pdx =1 can be justified via the explicit solution of the stationarity equation in the 1D case which
we leave to the readers.

In the next Lemma (as well as later in the main Theorem) we use Sobolev spaces Wiloc with
p > 1. (this notation are taken from [19, Chapter 2], although, in some other sources it is denoted
by Wli’f .) Although all main statements can be stated without them, this is done in order to
mimick the steps in the proof where these spaces show up naturally due to the direct references,

even though the dimension equals one, in which case, of course, some calculus can be simlipified.

LEMMA 2.4. Let the assumptions (A1) — (A8) be satisfied. Then for any strategy o € A the
cost function v has the following properties:
1. The function v® is continuous as well as (v*)', and there exist C;m > 0 both depending
only on the constants in (A1)-(A8) such that

(2.8) sup(jv®(2)] + [v%(2)']) < C(L+ |2]™).

2. v* € W;lqc for any p > 1.
v e OLLP (e, (v*) is locally Lipschitz).
4. v satisfies a Poisson equation in the whole space,

©w

(2.9) Lo + f* = (f*, %) =0,
in the Sobolev sense; in particular, for almost every x € R
(2.10) L (x)v*(z) + f*(z) = (f<, n*) = 0.

5. The solution of the equation (2.9) is unique up to an additive constant in the class of
Sobolev solutions Wiloc with any p > 1 with no more than some (any) polynomial growth
of the solution v®.

6. (v, u*) =0.

Proof. Firstly, the inequality

sup [o* ()] < O(1 + [z[™)

follows immediately from (2.2) and from the assumptions.
Further, let us use a random change of time in the definition of v®:

(2.11) v"‘(:c):/OOOIEw(f"‘(Xt‘)‘)—p“)dt:/oooIExf"‘()_(;)‘)ds,
where fo(2)

Fo(py _ 10(@) = p®

Fow = U=

and X is the process X with a changed time which makes the diffusion coefficient equal to one:

X=Xy

This manuscript is for review purposes only.
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AVERAGED EXPECTED COST CONTROL FOR 1D ERGODIC DIFFUSIONS 7

where the function #'(¢) is the inverse to the mapping

t
tn—>/ o?(X%)ds
0

see [23, Chapter 2.5], or [10, Theorem 15.5]. The process X satisfies an SDE

(2.12) dX{ = dW, + b*(X)dt, b*(z) = %

_ (1)
with a new Wiener process W; = / o(a(XZ), X)) dWs, see the same references [23, Chapter
0

2.5], or [10, Theorem 15.5].
Further, it follows from (2.11) and (2.12) that the function v is a solution of the equation

(2.13) L (z) + f*(x) = 0,

where p L2

Moreover, the last integral in (2.11) can only converge if (f®,i%) = 0, where i® is the unique
invariant measure of the Markov diffusion Xf‘, since otherwise the integral in the right hand side of
(2.11) diverges. Existence and uniqueness of such an invariant measure (along with a convergence
rate) follows, for example, from [31, Theorem 5] (among many other possible references) due to the

assumption (Al). The property v® € ngoc for any p > 1 and the bound

sup |(v)(2)] < C(1+1al™)

for some m > 0 follow both from [27, Theorem 1] due to the equation (2.13).

Further, given (2.8), the bound v® € C1L% (which means a local, not global Lipschitz condition
for (v*)") follows from the equation (2.13), as (v*)” turns out to be locally bounded by virtue of
this equation. The same equation(2.13) implies (2.9) and (2.10). Uniqueness of solution for the
equation (2.13) and, hence, also for (2.9) up to an additive constant follows from [27]; see also
[13, Lemma 4.13 and Remark 4.3]. Finally, the last assertion of the Lemma is due to the Fubini
theorem,

[ = | / LX) — o) dep (de) = /Om [Eatrm ) = ey e = o

by virtue of the absolute convergence

/ / L(F(XE) — )| dtp® (der) < . -

LEMMA 2.5. Let the assumptions (A1) — (A2) hold true. Then 30 < Cy < Cq such that for
any strategy « for the constant Cy, from (2.7) we have,

Cy <0y <.

This manuscript is for review purposes only.
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8 S.V. ANULOVA, H. MAI, AND A.YU. VERETENNIKOV

Also, for any k there is a constant C' such that for every x uniformly in «

c

(03 <7

and there exist constants ¢,k > 0 such that uniformly in «
p*(x) > cexp(—klz|).

Proof. Follows straightforwardly from the recurrence and boundedness assumptions and from the
formula (2.7).

3. Main results. We accept in this section that a solution of the SDE with any Markov
strategy exists and is a weak solution. However, it is important in the proof that it is unique in
distribution, strong Markov and Markov ergodic; repeat what was already mentioned in the proof
of the Lemma 2.1, that all of these follow from [16] and from the assumptions (A1) and (A2) (see
[31] about ergodicity).

For any pair (v,p): v € ﬂp>1 W;DQ’ZOC, p € R, define

Flo, p)(z) i= inf [L0(e) + (@) = pl,  Glol(w) i= inf [L"v(e) + f*(2)],

and . .
Fy [v',p](x) = igg[bu”/ + £ = pl(x),

where

a*(@) = 5(0" (@) B(a) = b (a)fa*(a),
Fi(e) = U@ fa @), 0 () = p/at(z).

The functions v and v' may be regarded as continuous and absolutely continuous due to the em-
bedding theorems [19]. The function F'[v, p](-) is defined by the formula above as a function of the
class Ly joc for any p > 1; in particular, it is Lebesgue measurable and as such it is defined only a.e.
with respect to . We may and will use a (any) Borel measurable version of the function F[v, p|, the
existence of which follows, for example, from Luzin’s Theorem [21]). It will be shown in the sequel
that the function Fi[v', p](z) is continuous in x and locally Lipschitz in the two other variables.

Let us recall what a reward improvement algorithm (RIA) is. We start with some (any)
stationary strategy agy € A. Denote the corresponding cost, the invariant measure, and the auxiliary
function pg = p® = (f*°,u*), and vo = v*. If for some n = 0,1,... the triple (cu,, pn,vn) is
determined, then the strategy a,1 is defined as follows: for a.e. = the function a,,41 is chosen so
that for each x

(3.1) Loy, (z) + fo+1 () = Glos)(x),

or, in other words,
ant1(x) € Argmin, oy [L¥ v (z) + f*(2)].

We assume that a Borel measurable version of such strategy may be chosen; see the reference in the
Appendix. To this strategy au,+1 there correspond the unique invariant measure p“»+!, the value
Pt = (fotr pu*+1) and the function v,y = von+?.

This manuscript is for review purposes only.
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THEOREM 3.1. Let the assumptions (A1) — (A4) be satisfied. Then:

1. For any n, pn+1 < pn, and there exists a limit py, | p.

2. The sequence (vy,) is tight in C1[—N, N| for each N > 0, and there exists a bounded sequence
of constants 3, such that there exists a limit lim,, (v, (z) + B,) =: 0(x).

3. The couple (0, p) solves the equation (1.7).

4. This solution (0, p) is unique — up to an additive constant for O — in the class of functions
growing no faster than some (any) polynomial and belonging to the class Wiloc for any p > 0 for
the first component and for p € R.

5. The component p in the couple (0, p) coincides with p.

6. Under the additional assumption (A5), ¥ € Lipec.

In the short presentation [1], beside the restrictive assumption f € [0, 1] and maximisation instead
of minimisation, only a sketch of the proof was offered with many details explained too briefly;
uniqueness of © was not addressed. Here the full proof is given. NB: We never compare the trajec-
tories of two SDE solutions in one formula and the processes corresponding to different strategies
may be defined on different probability spaces.

Proof. 1. Due to (3.1) and (2.9), for almost every (a.e.) z € R,
pu = L un2) + £ (2) 2 Glonl () = L5 20a(2) + 7 (2)
and also for a.e. z € R,

Pny1 = Lo vp g () + fO 4 ()
So,

Pn — pn+1 2 (LunJrlUn + fa"+1)(x) - (Lan+1vn+1 + fan,+1)(x)
(3.2)
= (LY, — L v, 1) (x).

Let us apply Ito — Krylov’s formula (see [15]) with expectations (also known as Dynkin’s formula)
to (vp, — Vpy1) (X, ™T): we have for any z € R,

Ee (Un(X?"H) - UnJrl(Xta"H)) — (v = vn41) (@)
(3.3)

t t
= ]EI/ (Lo * vy — LYo, ) (X ) ds < Ez/ (Pn = Pns1)ds = (pn — pny1)t.
0 0

The equality in the equation (3.3) holds for all z € R and not just a.e. since the functions v,
are Sobolev solutions of Poisson equations locally integrable in any degree with their derivatives
up to the second order. Such functions can be regarded as continuous due to the embedding

t
theorems [19]. In addition, the functions E,v, (X, "™), Ezv,e1 (X, ™), and Ez/ (Lo+iy, —
0

L1y, 11)(X$+1) ds as functions of x for each t > 0 are all Holder continuous, being solutions
of non-degenerate parabolic equations [18]. We also used the fact that the distribution of X"
for almost all s > 0 is absolutely continuous with respect to the Lebesgue measure due to the non-
degeneracy and by virtue of Krylov’s estimates [15]; due to this reason and because v,,v,+1 € C,

This manuscript is for review purposes only.
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the a.e. inequality (3.2) implies (3.3) for every z. Further, since the left hand side in (3.3) is
bounded for a fixed = by virtue of the Lemma 2.4, we divide all terms of the latter inequality by ¢
and let ¢ — oo to get,

0 < pn — pni1,

as required. Thus, p, > pnp+1, so that p, | p (since the sequence p,, is bounded for f € K, see (2.3)
in the Lemma 2.1) with some p. So, the RIA does converge.

Note that clearly p > p, since p is the infimum over all Markov strategies, while p is the infimum
over some countable subset of them. Later on we shall show that they do coincide.

Now we want to show that there exists a bounded sequence of real values (non-random!) {5, }
such that v, + 8, — ¥, so that the couple (v, p) satisfies the equation (1.7), and that p here is
unique, as well as ¢ in some sense. In the first instance we will do it for some subsequence n;;
eventually the convergence of the whole sequence v,, will follow from the uniqueness of the solution
of Bellman’s equation, although, it is not important for the proof of the Theorem.

2. Let us show local tightness of the family of functions (v,) in C!. Note that the equation (1.7)
is equivalent to the following:

o [blu, ) fu, ) p
.4 V// f 9 Vl 9 —_
4 O+ B2 atwan) " e " aluw)| =
while the equation
(3.5) Lo o, (2) 4+ fO 1 (2) = ppy1 =0
is equivalent to
U;{+1<LL‘) + b(an+1 (.%‘),.I) U;l+1(.7;) + f(anJrl (.’L‘), (.T)) o Pr+1 —0.

a(@nt1(@),2) al@n1(@)2)  alanti(@),2)

According to the Lemma 2.4, the functions v], ; are uniformly locally bounded. Since the sequence
Pn+1 is bounded and due to the uniform local boundedness of the functions f(a,+1(x),z) and
uniform nondegeneracy of a, it follows that (v!/) locally are uniformly bounded and satisfy the
uniform in n growth bounds similar to (2.8) for the function itself and for its first derivative due to
the equation (for example, due to (3.4)). This guarantees compactness of (v,,) in C* locally.

3. Due to the (local) compactness property showed in the previous step, by the diagonal procedure
from any infinite sub-family of functions v, it is possible to choose a converging in Cllo . subsequence.
We want to show that up to a constant the limit is unique. For this aim, first of all we shall see
shortly that if some v, (z) has a limit as n; — oo, say, 9(z) (locally in C) then vy, y1(x) + 3,, has
the same limit, where $,, is some bounded sequence of real values. (In fact, what will be established
is a little bit more complicated but still enough for our purposes.) We have,

Lo 0y (1) 4+ FO (2) = puss 50,

a.e.

(3.6) Loty (2) + O (z) — pp =1 —nqa(z) < 0.
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Let us rewrite it as follows,
Lo+, () + f 1 (2) = pn + Y (2) =70,

In other words, the function v, solves the Poisson equation with the second order operator L%n+1
and the “right hand side” —(f*+(z) + ¥n41(x) — prn). This is only possible if the expression
fort1(x) 4+ tpi1(z) — pp is centered with respect to the invariant measure "+ because Poisson
equations in the whole space have no solutions for non-centered right hand sides (see, for example,
[27]). This implies that

(fO T (x) + Ynt1 — Pns Nn+1> =0
So,
(3.7) (Ynt1, Mn+1> = Pn — Pn+1-

Now denote
wp () 1= v () — vpgr (T).

We have,
L w, () + g1 (2) = (pn = prg1) = 0.
So, there is a constant 3, = (w,, u"*!) such that
(3.8) wn(7) — Bn = / Eo(¥n1 (X7 ™) = (pn — pus1)) dt.
0

Let us show that for any N > 0,

N
(3.9 [N Y2 (x)dr — 0, n — oo.

First of all, note that all functions ,, and, hence, 12 are uniformly locally bounded and may only
grow polynomially fast,

(3.10) (0<) ¢n(z) <CQAH+ [z™),

with some C,m the same for all values of n. which follows from the definition (3.6), and the
properties of derivatives v/, and v//, and from the Lemma 2.5, and due to

n+1>

(Vng1, 1 =pn—Pny1 =0, n— o0

Now let us rewrite the equation (3.8) via a stationary version of our diffusion, say, X' !:

wn(x) - Bn = ~/O Ez(¢n+1(th+l) - EM"+1(wn+1(th+1)) dt.

(Note that if we knew that w, were centered with respect to the invariant measure u"*! then we
would have 3, = 0; however, the functions v, and v,41 are both centered with respect to two
different measures, and this is the reason why their difference is not just small, but small up to
some additive constant; this very constant is denoted by 5,.) Using the coupling idea (see, for
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example, [31]), let us consider the independent processes X! and Xf“ on the same probability
space (just considering the product space) and denote the moment of the first meeting

ri=inf(t >0: Xt = X0,

It is known (see [31, Theorem 5]) that under our recurrence assumptions for any k& > 0 there are
some constants Ck, m such that uniformly with respect to n,

Em,#n+17'k < Ck(l + |13|m)
Denote

XP =1t < ) XPH 1 > ) XL

Since 7 is a stopping time and because the couple (X7, X'™!) is strong Markov (see [14]), the
process (X[*t1) is also strong Markov equivalent to (X;"""). Therefore, it is possible to rewrite,

(@) = B = [ Bt (R) = (X1
0
Hence, using the fact that after 7 the processes XZ’H and )N(t"‘H coincide, we obtain

uwm—m:A EppL(t < 7)(thn i (XPHY) = g (X)) dlt

_ /OO B S 16 < 7 < i+ D)1t < 7)(ss (X7 — s (XPH1)) dt
0 i=0

o)
0

= ZEML/ 16 <7 <it DUt < 1)W1 (X = g (X]H) dt.
i=0
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395 Thus, using Cauchy-Buniakovsky-Schwarz inequality and Fubini Theorem, we have,

396 |wn () = B < iE /0+ LT > )|t (XY = b (X)) dt
’;:; < Z/ Ep u1(7 > 0)(|0ns 1 (XPTH] 4 [ns 1 (X)) dt
j: <E;EH@WMT>m“mmwwmumHW+wMuXﬁUWf”ﬁ
i: 23 T>’1”AH7&wwwmm”5P+&uwﬁm@”mamwt
gz §§ eul(7 > ) 1/2/9 e s (RN 4 (Bt ()2

406 Now, let us take any € > 0 and use the inequality \/a < § + 5. We estimate,

+1 ~
o / (o (1 (X7 )Y o (B (g1 (X)) d
0
408
1 B % 1 2 v 1
s Selit Dt g [ Bt (K0 + B (R

411 Let us first consider the stationary term. We have,

1 e vn+1 1 i on41

412 % ) zu¢n+1(Xt ) dt + 2*6/0 zu¢n+1(Xt ) dt
413

1 [itl ~ 1 [itl ~
i = 5 B b q - v (X]HY) dt + % / B uti 1 ley- vy (X7 H) dt

€ Jo €Jo

415

1 [itl 1 +1 .
416 +? a/"'w’ﬂ+11 NN](Xn+1 dt + */ Ez,uw2+1lR\[fN,N](XZL+1)dt~
417 €Jo 2¢ Jo

418 Given (3.10) and because any stationary measure integrates uniformly any power function, let us
419 find such N that uniformly with respect to n,

120 (3.11) (CA+ 2P gy -, 1) < €2/2,
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which is possible due to the Lemmata 2.1 and 2.5, and also such that N > ¢~2. Then choose n(e)
such that

sup / Y2 (x)dx < €2/2.
2| <N

n>n(e)

Due to Krylov’s estimate
T
B [ g dt < Krllglo,e
0
for any function g > 0, and also

s+T _
E / g(XHydt < Krllglmy

for any s > 0 (follows from [15, Theorem 2.2.3]), we evaluate with n > n(e):

1 i+l o
- ]Ez,,u'l,[}2+11[—N,N] (Xi;n+ )dt
26 0
1< ket - i+1 i+1)Ke
=—> E; 1/172L+11[—N,N] (X, at < K||¢72L+11[—N,N]||L1 < (i+ DKe .
2e =0 k 2¢ 2

Indeed, for any k& > 0 we have,

k+1

~ k+1
E, 21y n (XY dt = E,E,
k k

Unaa v (X7 dtlfk)

1
= ExEX;Hrl/ wi_,,_ll[,N’N](Xgl-’_l)dt
) 0

(1 + I)Ke.

1
< ?KW/}%Hl[—N,N]HL? < 5

This argument works for the non-stationary process as well: due to the same Krylov’s estimate,

Lo 2 ontl
% E%Hwn—b—ll[—N,N](XZl-i_ ) dt
€Jo
1 ¢ k+1 , i+1 i+1)Ke
— B[ @ < S 1 g < CEDRE
€m0 K € 2
Further,
1t - i+1 € (i+1)e
7 Ex 2 1 _ Xn-i—l dt < D
2 J, awnpIry N N (X)) dE < % x B) 1
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Finally, using (2.6), we obtain with some m,

1 it ) . 1 it , B
% oyt lmy-n,n) (X)) dt = o B pthpia liy - v (X{0) dit
< Cﬂw <O+ 1)1+ |z|™)e
- 2e N - '

Overall, this shows that with the appropriately chosen (uniformly bounded) 5,

o0

(3.12) |wy () — Bn| < C(1+ |z]*™)e Z(z + 1)(E, (7 > )2, 0> n(e).

i=0
By virtue of the results in [31], for any k& > 0 there are C,m > 0 such that

, LA |zf™
]P)x,ul(T > Z) S CW
Therefore, taking any k > 1, we have that the series in (3.12) converges providing us an estimate
(3.13) [ (z) — Bu] <O+ |2*™)e, n>n(e).

In other words, the difference wy,(x) — 8, = vs, — Up+1 — B is locally uniformly converging to zero
as n — oo. Naturally, it also implies that for any subsequence n; such that v,; converges locally
unlformly in C! we have that v/, and vn 11 may only converge to the same hmlt i.e., derivatives

v;lj —Up, 41 — 0 (locally unlformly) as j — oo. Indeed, otherwise we just integrate to show that

the limits of U, and vy 41 + By, are different, which contradicts to what was established earlier.

4. What we want to do now is to pass to the limit as j — oo in the equations
Laanrlv"j“‘l(z) + faanrl (l‘) - pnj-i-l = 07 & G[’Unj}(fﬁ) - pnj < 07
where (n;, j — o0) is any sequence such that vy, converges (locally uniformly) in C*. From

G['Unj](x) — Pn; = Lanjﬂ”nj () + fomit (2) — Pn

(= inf (L0, (@) + F*(@) = pn,] £ 0),

uclU

by subtracting zero a.e. (3.5), we obtain a.e.,

(314) G[Un]](‘r) — Pn; = Lanj+1(v7lj (Z‘) - ’Unj-i-l(x)) - (p’ﬂJ - pnj+1)'

Now we want to show that
i

(3.15) ¥ (2) — 7(r) + / Fuls, #(s), fl ds = 0,
T

which in turn implies by differentiation the equation equivalent to (1.7),

(3.16) 0"(x) + Fi[2, 7, pl(z) =0,
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16 S.V. ANULOVA, H. MAI, AND A.YU. VERETENNIKOV

for any x, with the note that ¢’ is absolutely continuous.
Let us show that (3.14), indeed, implies (3.15). Note that Glv,,](x) — pn; < 0 (a.e.). Let us
divide (3.14) by an;41 = a®"*" and use § := inf, , a*(x) > 0: we get a.e. with some K > 0,

(Glon,)(x) ~ p) (P, — Poye1)

0> e (vp, (@) = vy 4 (2)) + (Banﬁl(v;j —Up,41)) — P
" " K, / 1
(317) > (vnj (.’17) - vnj+l(x)) - Flvnj (J?) - ’Unj+1(x)| - g(p’ﬂj - pnj+1)'

So, we have just shown that a.e.,

Ky Py = Pni+1

(318) 02 (ol (2) = it 1 () = S 10f, (@) = 0]y (@) = 22

2> (Un,
The next trick is to note that again due to (3.17) and Pnj 2 Pnj+1, and since d < a < C,
a.e.
0% Glon, () — pn, > an 1 (05, = 0l 1) (@) = €'l =y 11(2) = (o, = 1),
which implies that with some C, ¢ > 0,

(3.19) 0% 0l 4 il puy) > (0, =l 1) = Clly, =0y 1) = e(py = pya1)-

Since v}, is absolutely continuous, we can integrate (3.19) to get the following: for any (not a.e.!)
z and r with x > r,

02l () = )+ [ File, (5, ) s
— [ (@) Rl 61 ) 0))
(3.20) > [l = 0 2)(6) = Cluty = oh al(6) = e, = o) s
= vl () = vl (1) 1 (2) -t 10 )

= [ 10, = v (s = el  paia)a = ).

As it was explained earlier, due to the compactness in C' we may assume that
~ / ~/ ’ ~ .
Up; =0, Uy, U, & Vp,41 =0, J — 00,

in C locally for some ¢ € C!, as j — oo. Note that ¢’ is absolutely continuous, which follows from
the uniform local boundedness of v!. Therefore, it is possible to get to the limit in the inequality
(3.20) as j — oo: for any x > r,

x

0>%'(z) — ' (r) + lim s, v;j(s),pnj] ds >0,

j—oo ),
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503 since the right hand side in (3.20) clearly goes to zero.
5

504 Here

: b I Pn;
=4 =4 ! = —_— / — - 7J
505 Rl (9,90 J) = inf | 0, () + 2 60) = 220
506
507 Sinf | Zae) + s = Loy | = ), Als), G — oo
508 uelU | a¥ a' at

509  So, from (3.20) we obtain the desired equation (3.15)
510 o'(z) —0'(r) +/ Fy[s,7'(s), p]ds = 0.

511 In turn, since Fy[9’(s), p](s) is continuous and absolutely continuous in s, it implies ¥ € C?, and by
512 (well-defined) differentiation we get the equation (3.16) for every = € R.

513

514 In the sequel it will follow from the uniqueness of solution to the Bellman’s equation that
515 actually the whole sequence v,, converges up to an additive constant sequence locally uniformly in
516 C! to a single limit. However, it is not needed for our proof.

517

518 5. Uniqueness for p in (1.7). Assume that there are two solutions of the (HJB) equation, (v!, p!)
519 and (v? p?) with v’ € K, i =1,2:

520 inf (L% (z) + f“(z) — p') = inf (L"0?(z) + f*(z) — p*) = 0.

uelU uclU
521 Earlier it was shown that both v' and v? are classical solutions with locally Lipschitz second
522 derivatives. Let w(z) := v!(x) — v?(x) and consider two strategies oy, as € A such that a;(z) €
523 Argmax,c; (LYw(z)) and as(z) € Argmin, o (L"w(x)), and let X}, X? be solutions of the SDEs
524 corresponding to each strategy «;, ¢ = 1,2. Note that due to the measurable choice arguments — see
525 the Appendix — such Borel strategies exist; corresponding weak solutions also exist. Let us denote
526 hi(z) == sup(L*w(x) — p' +p?), ha(x) := in{}(L“w(w) —pt+p?).

uelU ue
527 Then,
528 ho(w) = inf (L"' (@) + f*(z) = p' = (L"0*(x) + f"(2) = p°))
529
530 < infU(L“vl(m) + fx) —p') — infU(LUUQ(m) + fUx) — p*) =0.
ue ue

531 Similarly,

532 hi(z) = — igf(L“(—vQ)(x) -0+ oY)

533

534 = —inf(L"0*(x) + f*(2) + p* — (L"0" (2) + [*(z) + p"))

535

536 > [igf(L“vz(x) + £ (@) = p?) = inf(LU0M @) + f(x) pl)} —0.
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We have,
Low(a) = h(a) — p? + o',

and
Lw(x) = hi(z) — p? + p*.

Due to Dynkin’s formula we have,

t
E,w(X}) —w(x) = Ez/ L w(X))ds
0

t (h12>0)
=]Ez/ hi(Xg)ds+ (p' =p*)t > (p' = p?)t.
0

Since the left hand side here is bounded for a fixed x, due to the Lemma 2.1 we get,
pt—p? <0.

Similarly, considering as we conclude that

t
E,w(X?) —w(z) = Ez/ L*2w(X?2)ds
0

t
= Ex/ ho(X2)ds + (p* — p*)t.
0

From here, due to the boundedness of the left hand side (Lemma 2.1) we get,

2 1 1 ¢ 2 (h20)
p° —p =liminf(t~ Ew/ ho(XZ)ds) < 0.
t—0 0

Thus, p' — p? > 0 and, hence,
p=p.

6. Why p = p? Recall that for any initial oy € A, the sequence p,, converges to the same value g,
which is a unique component of solution of the equation (1.7). Let us take any € > 0 and consider
a strategy ag such that

po=p* <p+te

Since the sequence (p,,) decreases, the limit p must satisfy the same inequality,
p= lim p, <p+e.
n—oo

Due to uniqueness of p as a component of solution of the equation (1.7) and since € > 0 is arbitrary,
we find that

p=p-
But also p > p since p is the infimum of the cost function values over a smaller — just countable —
family of strategies. So, in fact,

p=p-

This manuscript is for review purposes only.
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7. Uniqueness for V. Let us have another look at the earlier equations in the step 6, replacing
p? — p' by zero as we already know that the second component in the solution is unique:

t
Bow(X)) -~ w() =B, [ h(XD)ds,
0
Clearly, hy > 0 with hy # 0 — i.e., with A(z : hy(z) > 0) > 0 — would imply that (hq,u1) > 0,
which contradicts a zero left hand side (after division by ¢ with ¢ — 00). So, we conclude that
hl = 0, M1 — a.s.

Since py ~ A due to (2.7), by virtue of Krylov’s estimate we have that 0 < E, fg hi(X1)ds <
N||hi||z, = 0. So, in fact,

(3.21) E,w(X}) —w(x) = 0.
Further, from (3.21) and due to the last statement of the Lemma 2.1 it follows that
— 1; 1y
w(z) = lim E,w(X3) = (w, m).
Hence, w(z) is a constant. Recall that uniqueness of the first component V is stated up to a
constant, and it was just established that

v!(z) — v*(z) = const.

8. Returning to the second statement of Theorem 3.1, note that due to uniqueness of the solution
of the HIJB equation, convergence of the whole sequence (v,,) up to additive constants depending
only on n is to the unique limit v.

9. Local Lipschitz for ©”. Recall that a certain additional regularity of the coefficients is assumed.
We have from (3.16) and (2.8),
0" ()| = [F1[0'(2), Al ()] < C(L+ [0/ (2)]) < C(1+ =)
Therefore, it follows from the Cauchy Mean Value Theorem that
|0 (2) = (") < CA+ |2|™ + [2™) & — 2.

u

So, due to Lipschitz condition on b%,a" in = and in virtue of the nondegeneracy of a*,

0" () = 0"(")| = [ P[0 (), pl(2) — Fa[0' (), pl(a"))]

= [ ()0 (@) + F(0) = 5] = @) @)+ ) - )

< sup ()7 &) + (o) = L ) (@) — ) +

< C(J0'(@) = 0" (@) + |z = a]) < O+ [a|™ + [2'[) ]z — 2],
The required local Lipschitz property of the function ¢ has been verified. |
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Appendix A. On a measurable choice. For the reader’s convenience we repeat the main
arguments from [1] concerning the measurable choice a little bit more precisely. Recall that in the
presentation of RIA in the beginning of the section 3 existence of a Borel measurable version of
such a strategy was assumed, which minimizes some function for any fixed x. In our case existence
of such a Borel strategy can be justified by using Stschegolkow’s (Shchegolkov’s) theorem [30] (see
also [20, Satz 39], or [7, Theorem 1]). According to this result, if any section of a (nonempty) Borel
set E in the direct product of two complete separable metric spaces is sigma-compact (i.e., equals
a countable sum of closed bounded sets) then a Borel selection belonging to this set E exists.

In our case we have, Flv, p|(x) = inf,cy [L*v(x) + f*(z) — p]. For a fixed v representing any
v, in the proof, denote x(u,x) := L*v(z) + f“(x) — p and x(z) := F[v, p](z), and let E = {(u,x) :
x(u,xz) = x(x)}. This set is nonempty because the minima here are attained for each x. Its section
for any © € Ris E, := {u: x(u,2) = ¥(z)}. Any such section is nonempty and closed and, hence,
Borel. Indeed, if E, 3 u, = u, n — oo, then x(u,,z) = x(u,x) due to the continuity of (-, z).

The set E itself is Borel, too. To show this, take any € > 0 and denote

E(e) :=={(u, ) : x(u,x) — x(x) < €}.

This set is Borel because the functions x(u,z) and ¥ (z} are: the latter one since the minimum in
min,, x(u, z) can be taken over some countable dense subset of U. (Recall that the second derivative
v" is Borel measurable by our convention.) It remains to note that

E= ﬁ E(1/k),
k=1

so that E is also Borel.

Thus, Stschegolkow’s theorem is applicable and, hence, a Borel measurable improved strategy
Q41 in the induction step of the RIA does exist for each step n. By the same reason Borel strategies
a1 and ap exist in the steps 6 and (implicitly) 8.
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