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ON ITERATION IMPROVEMENT FOR AVERAGED EXPECTED COST1

CONTROL FOR 1D ERGODIC DIFFUSIONS∗†2

SVETLANA V. ANULOVA‡ , HILMAR MAI§ , AND ALEXANDER YU. VERETENNIKOV¶3

Abstract. An ergodic Bellman’s (HJB) equation is proved for a uniformly ergodic 1D controlled diffusion with4
variable diffusion and drift coefficients both depending on control; convergence of the values provided by Howard’s5
reward improvement algorithm to the value which is a component of the unique solution of Bellman’s equation is6
established.7

Key words. controlled diffusion processes, averaged expected control, Hamilton-Jacobi-Bellman equation,8
existence and uniqueness, reward improvement algorithm9

AMS subject classifications. 93E20; 60H1010

1. Introduction. The paper is a complete version of the short presentation without detailed11

proofs in [1]. Issues of reliability which was in the title of [1] are not addressed here, all proofs are12

completed and the results are extended in comparison to the cited article. However, an application13

to reliability seems fruitful and is one of the motivations for the present paper; a corresponding14

remark about it can be found below. One more motivation is to allow the diffusion coefficient to15

depend on control. Indirectly, the main result below may be considered as a version of a rigorous16

realisation of the rather instructive and deliberately non-rigorous example from [15, Ch. 1, §1]17

where the point was the vanishing at infinity of the expectation of a current cost. Beside a more18

detailed calculus in step 3 of the proof, here we tackle the issue of the HJB equation(s) satisfied19

everywhere and/or almost everywhere more precisely than in [1].20

We consider a one-dimensional stochastic differential equation (SDE) on the probability space21

(Ω,F , (Ft), P ) with a one-dimensional (Ft) Wiener process B = (Bt)t≥0 with coefficients b and σ,22

and with a stationary control function α (called strategy in the sequel)23

dXα
t = b(α(Xα

t ), X
α
t ) dt+ σ(α(Xα

t ), X
α
t ) dWt, t ≥ 0,24

(1.1)25

Xα
0 = x.2627

Let a compact set U ⊂ R be a set where any strategy takes its values. The functions b and σ28

on U ×R are assumed Borel; later on some further conditions will be imposed, but we note straight29
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2 S.V. ANULOVA, H. MAI, AND A.YU. VERETENNIKOV

away that σ will be assumed non-degenerate and that a weak solution of the equation (1.1) always30

exists and is Markov and strong Markov, see [16, 17, 14]. Denote the class of all Borel functions α31

with values in U by A. For u ∈ U and α(·) ∈ A denote32

Lu(x) = b(u, x)
d

dx
+

1

2
σ2(u, x)

d2

dx2
, x ∈ R,33

and34

Lα(x) = b(α(x), x)
d

dx
+

1

2
σ2(α(x), x)

d2

dx2
, x ∈ R.35

Denote by K the class of functions on U × R (also just on R) growing no faster than some36

polynomial. The running cost function f will always be chosen from this class. The averaged cost37

function corresponding to the strategy α ∈ A is then defined as38

(1.2) ρα(x) := lim sup
T→∞

1

T

∫ T

0

Exf(α(X
α
t ), X

α
t ) dt.39

For a strategy α ∈ A the function fα : R → R, fα(x) = f(α(x), x), x ∈ R, is defined. Then (1.2)40

has an equivalent form41

(1.3) ρα(x) = lim sup
T→∞

1

T

∫ T

0

Exf
α(Xα

t ) dt.42

Now, the cost function for the model under consideration is defined as43

(1.4) ρ(x) := inf
α∈A

lim sup
T→∞

1

T

∫ T

0

Exf
α(Xα

t ) dt.44

It will be assumed that for every α ∈ A the solution of the equation (1.1) Xα is Markov ergodic,45

i.e., there exists a limiting in total variation distribution µα of Xα
t , t → ∞, this distribution µα46

does not depend on the initial condition X0 = x ∈ R, is unique and is invariant for the generator47

Lα. The cost function ρα then does not depend on x and can be rewritten as48

(1.5) ρα(x) ≡ ρα :=

∫

fα(x)µα(dx) =: 〈fα, µα〉.49

Then what we want to find (compute) is the value50

(1.6) ρ := inf
α∈A

∫

fα(x)µα(dx) = inf
α∈A

〈fα, µα〉.51

For any strategy α ∈ A let us also define an auxiliary function52

vα(x) :=

∫ ∞

0

Ex(f
α(Xα

t )− ρα) dt.53

The convergence of this integral will follow from the assumptions.54

55

The first goal of this paper is to show the ergodic HJB or Bellman’s equation on the pair (V, ρ)56

(1.7) inf
u∈U

[LuV (x) + fu(x)− ρ] = 0, x ∈ R.57
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AVERAGED EXPECTED COST CONTROL FOR 1D ERGODIC DIFFUSIONS 3

This assumes showing uniqueness of the second component (ρ) along with the property that it58

coincides with the cost from (1.6). The meaning of the first component V will be explained later.59

The uniqueness of V will be shown up to an additive constant.60

The class where the solution (V, ρ) will be studied is the family of all Borel functions V and61

constants ρ ∈ R such that V has two Sobolev derivatives which are all locally integrable in any62

power, and V itself should have a moderate grow at infinity not faster than some polynomial.63

Respectively, the equation (1.7) is to be understood almost everywhere; yet, in the 1D situation64

and under our assumptions it will follow straightforwardly that this equation is actually satisfied65

for all x ∈ R. Note that the first derivative can be considered as continuous (due to the embedding66

theorems), and the second derivative will be always taken Borel, as one of the Borel representatives67

of Lebesgue’s measurable function.68

69

The second goal of the paper is to show how to approach the solution ρ of the main problem70

by some successive approximation procedure called the Reward Improvement Algorithm (RIA). It71

is interesting that under our minimal assumptions on regularity of strategies for the weak SDE72

solution setting it is yet possible to justify a monotonic convergence of the “exact” RIA; compare73

to [15, ch.1, §4] where it was necessary to work with “approximate” RIA (called Bellman–Howard’s74

iteration procedure there) and with regularized Lipschitz strategies.75

Concerning the equation (1.7), it may look like it lacks some boundary conditions: indeed,76

a 2nd order PDE normally does require certain boundary conditions, which, for example, in the77

considered 1D case simply means two boundary conditions at two end-points if the equation is on78

a bounded interval. However, this is the equation “in the whole space” and we are going to solve79

it in a specific class of functions V – namely, bounded (if f is assumed bounded), or, at most,80

moderately growing (if f may admit some moderate growth), – which in some sense substitutes the81

(Dirichlet) boundary conditions at ±∞. Note that a similar situation can be found in the theory82

of Poisson equations in the whole space (see, for example, [?, 32]).83

Concerning a full uniqueness for the solution of (1.7), note that with any solution (V, ρ) and for84

any constant C, the couple (V + C, ρ) is also a solution. There are two close enough options how85

to tackle this fact: either accept that uniqueness will be established up to a constant, or choose a86

certain “natural” constant satisfying some “centering condition” as will be done below.87

88

To guarantee ergodicity, we will assume the “blanket” recurrence conditions (see below), which89

in some sense provide a uniform recurrence for any strategy. Conditions of this type are sometimes90

considered too restrictive; however, they do allow to include models and cases not covered earlier91

in this theory and for this reason we regard this restriction as a reasonable price for the time being.92

It is likely that such restrictions may be relaxed so as to include the “near monotonicity” type93

conditions (see [5]).94

Let us say just a few words about the history of the problem. More can be found in the95

references provided below. Earlier results on ergodic control in continuous time were obtained in96

[22], [26], [6], et al. In his book [22] Mandl established apparently first results on ergodic (averaged)97

control for controlled 1D diffusion on a finite interval with boundary conditions including jumps98

from the boundary. The author established the HJB equation and proved uniqueness of the couple99

(up to a constant for the first component). Improvement of control was discussed, too, however,100

without convergence.101

Morton [26] considered the 1D case (a multi-dimensional case too but under stronger assump-102

tions: we do not touch it in this paper) with a price function defined by (1.6) without any relation103

This manuscript is for review purposes only.



4 S.V. ANULOVA, H. MAI, AND A.YU. VERETENNIKOV

to (1.4). He proved ([26, Theorem 1]) that the optimal price does satisfy the ergodic Bellman’s104

equation; that the policy determined by Argmax (in our setting Argmin) in the Bellman’s equation105

is optimal within some rather special class of Markov policies which are fixed functions outside some106

bounded interval; a certain inequality for the optimal price and any solution of Bellman’s equa-107

tion; a remark about RIA; however, neither is the uniqueness for the Bellman’s equation solutions108

established, nor is the convergence of RIA towards a solution proved.109

Discrete time controlled models were considered in the monographs [9], [11], [12], [28], and110

others, and in the papers [2], [24], [29], etc.111

Continuous time controlled processes were treated in the 80s in a chapter of the monograph112

[6] where ergodic control for stable diffusions was considered. Arapostathis and Borkar [4], Ara-113

postathis [3], Arapostathis, Borkar and Ghosh [5] treated diffusions with “relaxed control” and the114

diffusion coefficient not depending on the control, under weaker recurrence assumptions (i.e., under115

two types of condition, stable or near-monotone). In this setting, they establish Bellman’s equa-116

tion, existence, uniqueness, and RIA convergence. In this paper we allow the diffusion coefficient117

to depend on control and we do not use relaxed control.118

The latest works include [3], [5], [29], see also the references therein. Although devoted to119

another type of models – piecewise-linear Markov ones – the monograph [8] may also be mentioned120

here. In the very first papers and books compact cases with some auxiliary boundary conditions –121

so as to simplify ergodicity – were studied; convergence of the improvement control algorithms were122

studied only partially. In later investigations noncompact spaces are allowed; however, apparently,123

ergodic control in the diffusion coefficient σ of the process has not been tackled earlier. The reader124

may consult [6] and [15] for research on controlled diffusion processes on a finite horizon, or on125

infinite horizon with discount (technically equivalent to killing).126

In most of the works on the topic, measurability of the optimal or improved strategy (see below)127

is assumed. Yet, it is a subtle issue and in our case we give references – the basic one is [30] – and128

verify the conditions which provide this measurability.129

The paper consists of four sections: 1 – Introduction, 2 – Assumptions and some auxiliaries,130

3 – Main result and its proof, and the last one is the Appendix (not numbered). We will use the131

convention that arbitrary constants C in the calculus may change from line to line.132

2. Assumptions and some auxiliaries. To ensure ergodicity of Xα under any stationary133

control strategy α ∈ A, we make the following assumptions on the drift and diffusion coefficients.134

(A1) (boundedness, non-degeneracy, regularity) The functions b and σ are Borel bounded in their135

variables; |b(u, x)| ≤ Cb, |σ(u, x)| ≤ Cσ, σ is uniformly non-degenerate, |σ(u, x)|−1 ≤ Cσ;136

the functions σ(u, x), b(u, x), fu(x) are continuous in u for every x.137

(A2) (recurrence)138

(2.1) lim
|x|→∞

sup
u∈U

x b(u, x) = −∞.139

(A3) (running cost) The function f belongs to the classK of functions which are Borel measurable140

in x for each u and admit a uniform in u polynomial bound: there exist constants C1,m1 > 0141

such that for any x,142

sup
u∈U

|fu(x)| ≤ C1(1 + |x|m1).143

(A4) (compactness of U) The set U is compact.144

(A5) (additional regularity) The functions b, σ, and f are of the class C1 in x for each u with145

uniformly bounded derivatives.146

This manuscript is for review purposes only.



AVERAGED EXPECTED COST CONTROL FOR 1D ERGODIC DIFFUSIONS 5

147

We will need the following three lemmata.148

Lemma 2.1. Let the assumptions (A1) – (A3) hold true. Then149

• For any C1,m1 > 0 there exist C,m > 0 such that for any strategy α ∈ A and for any150

function g growing no faster than C1(1 + |x|m1),151

(2.2) sup
t≥0

|Exg(X
α
t )| ≤ C(1 + |x|m).152

• For any α ∈ A, the invariant measure µα integrates any polynomial and

sup
α∈A

∫

|x|k µα(dx) <∞, ∀ k > 0.

• For any strategy α ∈ A the function ρα is a constant, and153

(2.3) sup
α∈A

|ρα| ≤ C <∞;154

moreover, for any k > 0 and f ∈ K, there exist C,m > 0 such that155

(2.4) sup
α∈A

|Exf
α(Xα

t )− ρα| ≤ C
1 + |x|m
1 + tk

,156

and157

(2.5) sup
α∈A

∣

∣

∣

∣

∣

1

T

∫ T

0

Exf
α(Xα

t ) dt− ρα

∣

∣

∣

∣

∣

→ 0, T → ∞.158

Proof. Follows from [31, Theorems 5, 6]. Note that in [31] the solution of the SDE under investi-159

gation should be weakly unique, and it also must be a homogeneous Markov and strong Markov160

process; for the equation (1.1) it is all true by virtue of [16, Theorem 3], [17], and [14, Theorems161

2, 3], as no continuity of the diffusion coefficient is required for this in the 1D case. (NB: In [14,162

Theorem 3] no continuity is needed even for D ≥ 1, but then weak uniqueness is established in the163

1D case only [16, Theorem 3].)164

Corollary 2.2. Under the same assumptions,165

(2.6) sup
t≥0

|Ex1(|Xα
t | > N)| ≤ sup

t≥0
Ex

|Xα
t |m
Nm

≤ C(1 + |x|m)

Nm
.166

The proof is straightforward by Bienaymé – Chebyshev –Markov’s inequality.167

Remark 2.3. Note that because D = 1, under the assumptions (A1)–(A2) for any Borel func-168

tion α ∈ A there is a unique stationary measure µα, which is equivalent to the Lebesgue measure169

Λ. The latter follows from the formula for the unique stationary density170

(2.7) pα(x) :=
dµα(x)

dx
= Cα

1

σ2(α(x), x)
exp

(

2

∫ x

0

b(α(y), y)

σ2(α(y), y)
dy

)

,171

where Cα is a normed constant. The fact that pα is a stationary density can be seen from a172

substitution to the equation of stationarity (Lα)∗p = 0 (see, for example, [13, Lemma 4.16, equation173

This manuscript is for review purposes only.



6 S.V. ANULOVA, H. MAI, AND A.YU. VERETENNIKOV

(4.70)]); its uniqueness in the class of integrable functions satisfying the normalizing condition174
∫

p dx = 1 can be justified via the explicit solution of the stationarity equation in the 1D case which175

we leave to the readers.176

In the next Lemma (as well as later in the main Theorem) we use Sobolev spaces W 2
p,loc with177

p > 1. (this notation are taken from [19, Chapter 2], although, in some other sources it is denoted178

by W 2,p
loc .) Although all main statements can be stated without them, this is done in order to179

mimick the steps in the proof where these spaces show up naturally due to the direct references,180

even though the dimension equals one, in which case, of course, some calculus can be simlipified.181

Lemma 2.4. Let the assumptions (A1) – (A3) be satisfied. Then for any strategy α ∈ A the182

cost function vα has the following properties:183

1. The function vα is continuous as well as (vα)′, and there exist C,m > 0 both depending184

only on the constants in (A1)–(A3) such that185

(2.8) sup
α

(|vα(x)|+ |vα(x)′|) ≤ C(1 + |x|m).186

2. vα ∈W 2
p,loc for any p ≥ 1.187

3. vα ∈ C1,Lip (i.e., (vα)′ is locally Lipschitz).188

4. vα satisfies a Poisson equation in the whole space,189

(2.9) Lαvα + fα − 〈fα, µα〉 = 0,190

in the Sobolev sense; in particular, for almost every x ∈ R191

(2.10) Lα(x)vα(x) + fα(x)− 〈fα, µα〉 = 0.192

5. The solution of the equation (2.9) is unique up to an additive constant in the class of193

Sobolev solutions W 2
p,loc with any p > 1 with no more than some (any) polynomial growth194

of the solution vα.195

6. 〈vα, µα〉 = 0.196

Proof. Firstly, the inequality197

sup
α

|vα(x)| ≤ C(1 + |x|m)198

follows immediately from (2.2) and from the assumptions.199

Further, let us use a random change of time in the definition of vα:200

vα(x) =

∫ ∞

0

Ex(f
α(Xα

t )− ρα) dt =

∫ ∞

0

Exf̄
α(X̄α

s ) ds,(2.11)201
202

where203

f̄α(x) =
fα(x)− ρα

aα(x)
,204

and X̄α
s is the process Xα

t with a changed time which makes the diffusion coefficient equal to one:205

X̄α
t := Xα

t′(t),206

This manuscript is for review purposes only.



AVERAGED EXPECTED COST CONTROL FOR 1D ERGODIC DIFFUSIONS 7

where the function t′(t) is the inverse to the mapping207

t 7→
∫ t

0

σ2(Xα
s ) ds,208

see [23, Chapter 2.5], or [10, Theorem 15.5]. The process X̄α
t satisfies an SDE209

(2.12) dX̄α
t = dW̄t + b̄α(X̄α

t )dt, b̄α(x) =
bα(x)

σ2(α(x), x)
,210

with a new Wiener process W̄t =

∫ t′(t)

0

σ(α(Xα
s ), X

α
s ) dWs, see the same references [23, Chapter211

2.5], or [10, Theorem 15.5].212

Further, it follows from (2.11) and (2.12) that the function vα is a solution of the equation213

(2.13) L̄αv(x) + f̄α(x) = 0,214

where215

L̄α(x) = b̄(α(x), x)
d

dx
+

1

2

d2

dx2
, x ∈ R.216

Moreover, the last integral in (2.11) can only converge if 〈f̄α, µ̄α〉 = 0, where µ̄α is the unique217

invariant measure of the Markov diffusion X̂α
t , since otherwise the integral in the right hand side of218

(2.11) diverges. Existence and uniqueness of such an invariant measure (along with a convergence219

rate) follows, for example, from [31, Theorem 5] (among many other possible references) due to the220

assumption (A1). The property vα ∈W 2
p,loc for any p ≥ 1 and the bound221

sup
α

|(vα)′(x)| ≤ C(1 + |x|m)222

for some m > 0 follow both from [27, Theorem 1] due to the equation (2.13).223

Further, given (2.8), the bound vα ∈ C1,Lip (which means a local, not global Lipschitz condition224

for (vα)′) follows from the equation (2.13), as (vα)′′ turns out to be locally bounded by virtue of225

this equation. The same equation(2.13) implies (2.9) and (2.10). Uniqueness of solution for the226

equation (2.13) and, hence, also for (2.9) up to an additive constant follows from [27]; see also227

[13, Lemma 4.13 and Remark 4.3]. Finally, the last assertion of the Lemma is due to the Fubini228

theorem,229

∫

vα(x)µα(dx) =

∫ ∫ ∞

0

Ex(f
α(Xα

t )− ρα) dtµα(dx) =

∫ ∞

0

∫

Ex(f
α(Xα

t )− ρα)µα(dx) dt = 0,230

by virtue of the absolute convergence231

∫ ∫ ∞

0

|Ex(f
α(Xα

t )− ρα)| dtµα(dx) <∞.
232

233

Lemma 2.5. Let the assumptions (A1) – (A2) hold true. Then ∃ 0 < C1 < C2 such that for234

any strategy α for the constant Cα from (2.7) we have,235

C1 ≤ Cα ≤ C2.236

This manuscript is for review purposes only.



8 S.V. ANULOVA, H. MAI, AND A.YU. VERETENNIKOV

Also, for any k there is a constant C such that for every x uniformly in α237

pα(x) ≤ C

1 + |x|k ,238

and there exist constants c, κ > 0 such that uniformly in α239

pα(x) ≥ c exp(−κ|x|).240

Proof. Follows straightforwardly from the recurrence and boundedness assumptions and from the241

formula (2.7).242

3. Main results. We accept in this section that a solution of the SDE with any Markov243

strategy exists and is a weak solution. However, it is important in the proof that it is unique in244

distribution, strong Markov and Markov ergodic; repeat what was already mentioned in the proof245

of the Lemma 2.1, that all of these follow from [16] and from the assumptions (A1) and (A2) (see246

[31] about ergodicity).247

For any pair (v, ρ) : v ∈ ⋂p>1W
2
p,loc, ρ ∈ R, define248

F [v, ρ](x) := inf
u∈U

[Luv(x) + fu(x)− ρ] , G[v](x) := inf
u∈U

[Luv(x) + fu(x)] ,249

and250

F1[v
′, ρ](x) := inf

u∈U
[b̂uv′ + f̂u − ρ̂](x),251

where252

au(x) =
1

2
(σu(x))2, b̂u(x) = bu(x)/au(x),253

f̂u(x) = fu(x)/au(x), ρ̂u(x) = ρ/au(x).254

The functions v and v′ may be regarded as continuous and absolutely continuous due to the em-255

bedding theorems [19]. The function F [v, ρ](·) is defined by the formula above as a function of the256

class Lp,loc for any p > 1; in particular, it is Lebesgue measurable and as such it is defined only a.e.257

with respect to x. We may and will use a (any) Borel measurable version of the function F [v, ρ], the258

existence of which follows, for example, from Luzin’s Theorem [21]). It will be shown in the sequel259

that the function F1[v
′, ρ](x) is continuous in x and locally Lipschitz in the two other variables.260

Let us recall what a reward improvement algorithm (RIA) is. We start with some (any)261

stationary strategy α0 ∈ A. Denote the corresponding cost, the invariant measure, and the auxiliary262

function ρ0 = ρα0 = 〈fα0 , µα0〉, and v0 = vα0 . If for some n = 0, 1, . . . the triple (αn, ρn, vn) is263

determined, then the strategy αn+1 is defined as follows: for a.e. x the function αn+1 is chosen so264

that for each x265

Lαn+1vn(x) + fαn+1(x) = G[vn](x),(3.1)266267

or, in other words,268

αn+1(x) ∈ Argminu∈U [Luvn(x) + fu(x)] .269

We assume that a Borel measurable version of such strategy may be chosen; see the reference in the270

Appendix. To this strategy αn+1 there correspond the unique invariant measure µαn+1 , the value271

ρn+1 := 〈fαn+1 , µαn+1〉, and the function vn+1 = vαn+1 .272
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AVERAGED EXPECTED COST CONTROL FOR 1D ERGODIC DIFFUSIONS 9

Theorem 3.1. Let the assumptions (A1) – (A4) be satisfied. Then:273

1. For any n, ρn+1 ≤ ρn, and there exists a limit ρn ↓ ρ̃.274

2. The sequence (vn) is tight in C
1[−N,N ] for each N > 0, and there exists a bounded sequence275

of constants βn such that there exists a limit limn(vn(x) + βn) =: ṽ(x).276

3. The couple (ṽ, ρ̃) solves the equation (1.7).277

4. This solution (ṽ, ρ̃) is unique – up to an additive constant for ṽ – in the class of functions278

growing no faster than some (any) polynomial and belonging to the class W 2
p,loc for any p > 0 for279

the first component and for ρ̃ ∈ R.280

5. The component ρ̃ in the couple (ṽ, ρ̃) coincides with ρ.281

6. Under the additional assumption (A5), ṽ′′ ∈ Liploc.282

In the short presentation [1], beside the restrictive assumption f ∈ [0, 1] and maximisation instead283

of minimisation, only a sketch of the proof was offered with many details explained too briefly;284

uniqueness of ṽ was not addressed. Here the full proof is given. NB: We never compare the trajec-285

tories of two SDE solutions in one formula and the processes corresponding to different strategies286

may be defined on different probability spaces.287

288

Proof. 1. Due to (3.1) and (2.9), for almost every (a.e.) x ∈ R,289

ρn = Lαnvn(x) + fαn(x) ≥ G[vn](x) = Lαn+1vn(x) + fαn+1(x)290

and also for a.e. x ∈ R,291

ρn+1 = Lαn+1vn+1(x) + fαn+1(x)292

So,293

ρn − ρn+1

a.e.
≥ (Lαn+1vn + fαn+1)(x)− (Lαn+1vn+1 + fαn+1)(x)294

(3.2)295

= (Lαn+1vn − Lαn+1vn+1)(x).296297

Let us apply Ito – Krylov’s formula (see [15]) with expectations (also known as Dynkin’s formula)298

to (vn − vn+1)(X
αn+1

t ): we have for any x ∈ R,299

Ex

(

vn(X
αn+1

t )− vn+1(X
αn+1

t )
)

− (vn − vn+1) (x)300

(3.3)301

= Ex

∫ t

0

(Lαn+1vn − Lαn+1vn+1)(X
αn+1

s ) ds ≤ Ex

∫ t

0

(ρn − ρn+1) ds = (ρn − ρn+1) t.302

The equality in the equation (3.3) holds for all x ∈ R and not just a.e. since the functions vn303

are Sobolev solutions of Poisson equations locally integrable in any degree with their derivatives304

up to the second order. Such functions can be regarded as continuous due to the embedding305

theorems [19]. In addition, the functions Exvn(X
αn+1

t ), Exvn+1(X
αn+1

t ), and Ex

∫ t

0

(Lαn+1vn −306

Lαn+1vn+1)(X
αn+1

s ) ds as functions of x for each t > 0 are all Hölder continuous, being solutions307

of non-degenerate parabolic equations [18]. We also used the fact that the distribution of X
αn+1

s308

for almost all s > 0 is absolutely continuous with respect to the Lebesgue measure due to the non-309

degeneracy and by virtue of Krylov’s estimates [15]; due to this reason and because vn, vn+1 ∈ C,310
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the a.e. inequality (3.2) implies (3.3) for every x. Further, since the left hand side in (3.3) is311

bounded for a fixed x by virtue of the Lemma 2.4, we divide all terms of the latter inequality by t312

and let t→ ∞ to get,313

0 ≤ ρn − ρn+1,314

as required. Thus, ρn ≥ ρn+1, so that ρn ↓ ρ̃ (since the sequence ρn is bounded for f ∈ K, see (2.3)315

in the Lemma 2.1) with some ρ̃. So, the RIA does converge.316

Note that clearly ρ̃ ≥ ρ, since ρ is the infimum over all Markov strategies, while ρ̃ is the infimum317

over some countable subset of them. Later on we shall show that they do coincide.318

Now we want to show that there exists a bounded sequence of real values (non-random!) {βn}319

such that vn + βn → ṽ, so that the couple (ṽ, ρ̃) satisfies the equation (1.7), and that ρ̃ here is320

unique, as well as ṽ in some sense. In the first instance we will do it for some subsequence nj ;321

eventually the convergence of the whole sequence vn will follow from the uniqueness of the solution322

of Bellman’s equation, although, it is not important for the proof of the Theorem.323

324

2. Let us show local tightness of the family of functions (vn) in C
1. Note that the equation (1.7)325

is equivalent to the following:326

(3.4) V ′′(x) + inf
u∈U

[

b(u, x)

a(u, x)
V ′(x) +

f(u, x)

a(u, x)
− ρ

a(u, x)

]

= 0,327

while the equation328

(3.5) Lαn+1vn+1(x) + fαn+1(x)− ρn+1
a.e.
= 0329

is equivalent to330

v′′n+1(x) +
b(αn+1(x), x)

a(αn+1(x), x)
v′n+1(x) +

f(αn+1(x), (x))

a(αn+1(x), x)
− ρn+1

a(αn+1(x), x)
= 0.331

According to the Lemma 2.4, the functions v′n+1 are uniformly locally bounded. Since the sequence332

ρn+1 is bounded and due to the uniform local boundedness of the functions f(αn+1(x), x) and333

uniform nondegeneracy of a, it follows that (v′′n) locally are uniformly bounded and satisfy the334

uniform in n growth bounds similar to (2.8) for the function itself and for its first derivative due to335

the equation (for example, due to (3.4)). This guarantees compactness of (vn) in C
1 locally.336

337

3. Due to the (local) compactness property showed in the previous step, by the diagonal procedure338

from any infinite sub-family of functions vn it is possible to choose a converging in C1
loc subsequence.339

We want to show that up to a constant the limit is unique. For this aim, first of all we shall see340

shortly that if some vnj
(x) has a limit as nj → ∞, say, ṽ(x) (locally in C) then vnj+1(x) + βnj

has341

the same limit, where βn is some bounded sequence of real values. (In fact, what will be established342

is a little bit more complicated but still enough for our purposes.) We have,343

Lαn+1vn+1(x) + fαn+1(x)− ρn+1
a.e.
= 0,344

and345

(3.6) Lαn+1vn(x) + fαn+1(x)− ρn =: −ψn+1(x)
a.e.
≤ 0.346
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Let us rewrite it as follows,347

Lαn+1vn(x) + fαn+1(x)− ρn + ψn+1(x)
a.e.
= 0.348

In other words, the function vn solves the Poisson equation with the second order operator Lαn+1349

and the “right hand side” −(fαn+1(x) + ψn+1(x) − ρn). This is only possible if the expression350

fαn+1(x) + ψn+1(x) − ρn is centered with respect to the invariant measure µn+1 because Poisson351

equations in the whole space have no solutions for non-centered right hand sides (see, for example,352

[27]). This implies that353

〈fαn+1(x) + ψn+1 − ρn, µ
n+1〉 = 0354

So,355

(3.7) 〈ψn+1, µ
n+1〉 = ρn − ρn+1.356

Now denote357

wn(x) := vn(x)− vn+1(x).358

We have,359

Lαn+1wn(x) + ψn+1(x)− (ρn − ρn+1)
a.e.
= 0.360

So, there is a constant βn = 〈wn, µ
n+1〉 such that361

(3.8) wn(x)− βn =

∫ ∞

0

Ex(ψn+1(X
n+1
t )− (ρn − ρn+1)) dt.362

Let us show that for any N > 0,363

(3.9)

∫ N

−N

ψ2
n(x) dx→ 0, n→ ∞.364

First of all, note that all functions ψn and, hence, ψ2
n are uniformly locally bounded and may only365

grow polynomially fast,366

(3.10) (0 ≤ ) ψn(x) ≤ C(1 + |x|m),367

with some C,m the same for all values of n. which follows from the definition (3.6), and the368

properties of derivatives v′n and v′′n, and from the Lemma 2.5, and due to369

〈ψn+1, µ
n+1〉 = ρn − ρn+1 → 0, n→ ∞.370

Now let us rewrite the equation (3.8) via a stationary version of our diffusion, say, X̃n+1
t :371

wn(x)− βn =

∫ ∞

0

Ex(ψn+1(X
n+1
t )− Eµn+1(ψn+1(X̃

n+1
t )) dt.372

(Note that if we knew that wn were centered with respect to the invariant measure µn+1 then we373

would have βn = 0; however, the functions vn and vn+1 are both centered with respect to two374

different measures, and this is the reason why their difference is not just small, but small up to375

some additive constant; this very constant is denoted by βn.) Using the coupling idea (see, for376
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12 S.V. ANULOVA, H. MAI, AND A.YU. VERETENNIKOV

example, [31]), let us consider the independent processes Xn+1
t and X̃n+1

t on the same probability377

space (just considering the product space) and denote the moment of the first meeting378

τ := inf(t ≥ 0 : Xn+1
t = X̃n+1

t ).379

It is known (see [31, Theorem 5]) that under our recurrence assumptions for any k > 0 there are380

some constants Ck,m such that uniformly with respect to n,381

Ex,µn+1τk ≤ Ck(1 + |x|m).382

Denote383

X̂n+1
t := 1(t < τ)Xn+1

t + 1(t ≥ τ)X̃n+1
t .384

Since τ is a stopping time and because the couple (Xn+1
t , X̃n+1

t ) is strong Markov (see [14]), the385

process (X̂n+1
t ) is also strong Markov equivalent to (Xn+1

t ). Therefore, it is possible to rewrite,386

wn(x)− βn =

∫ ∞

0

Ex,µ(ψn+1(X̂
n+1
t )− ψn+1(X̃

n+1
t )) dt.387

Hence, using the fact that after τ the processes X̂n+1
t and X̃n+1

t coincide, we obtain388

wn(x)− βn =

∫ ∞

0

Ex,µ1(t < τ)(ψn+1(X̂
n+1
t )− ψn+1(X̃

n+1
t )) dt389

390

=

∫ ∞

0

Ex,µ

∞
∑

i=0

1(i ≤ τ < i+ 1)1(t < τ)(ψn+1(X̂
n+1
t )− ψn+1(X̃

n+1
t )) dt391

392

=

∞
∑

i=0

Ex,µ

∫ ∞

0

1(i ≤ τ < i+ 1)1(t < τ)(ψn+1(X̂
n+1
t )− ψn+1(X̃

n+1
t )) dt.393

394
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Thus, using Cauchy-Buniakovsky-Schwarz inequality and Fubini Theorem, we have,395

|wn(x)− βn| ≤
∞
∑

i=0

Ex,µ

∫ i+1

0

1(τ > i)|ψn+1(X̂
n+1
t )− ψn+1(X̃

n+1
t )| dt396

397

≤
∞
∑

i=0

∫ i+1

0

Ex,µ1(τ > i)(|ψn+1(X̂
n+1
t )|+ |ψn+1(X̃

n+1
t )|) dt398

399

≤
∞
∑

i=0

∫ i+1

0

(Ex,µ1(τ > i))1/2(Ex,µ(|ψn+1(X̂
n+1
t )|+ |ψn+1(X̃

n+1
t )|)2)1/2 dt400

401

≤ 2

∞
∑

i=0

(Ex,µ1(τ > i))1/2
∫ i+1

0

(Ex,µ|ψn+1(X̂
n+1
t )|2 + Ex,µ|ψn+1(X̃

n+1
t )|2)1/2 dt402

403

≤ 2
∞
∑

i=0

(Ex,µ1(τ > i))1/2
∫ i+1

0

[(Ex,µ(ψn+1(X̂
n+1
t ))2)1/2 + (Ex,µ(ψn+1(X̃

n+1
t ))2)1/2] dt.404

405

Now, let us take any ǫ > 0 and use the inequality
√
a ≤ ǫ

2 + a
2ǫ . We estimate,406

∫ i+1

0

[(Ex,µ(ψn+1(X̂
n+1
t ))2)1/2 + (Ex,µ(ψn+1(X̃

n+1
t ))2)1/2] dt407

408

≤ ǫ(i+ 1) +
1

2ǫ

∫ i+1

0

[Ex,µψ
2
n+1(X̂

n+1
t ) + Ex,µψ

2
n+1(X̃

n+1
t )] dt.409

410

Let us first consider the stationary term. We have,411

1

2ǫ

∫ i+1

0

Ex,µψ
2
n+1(X̃

n+1
t ) dt+

1

2ǫ

∫ i+1

0

Ex,µψ
2
n+1(X̂

n+1
t ) dt412

413

=
1

2ǫ

∫ i+1

0

Ex,µψ
2
n+11[−N,N ](X̃

n+1
t ) dt+

1

2ǫ

∫ i+1

0

Ex,µψ
2
n+11R\[−N,N ](X̃

n+1
t ) dt414

415

+
1

2ǫ

∫ i+1

0

Ex,µψ
2
n+11[−N,N ](X̂

n+1
t ) dt+

1

2ǫ

∫ i+1

0

Ex,µψ
2
n+11R\[−N,N ](X̂

n+1
t ) dt.416

417

Given (3.10) and because any stationary measure integrates uniformly any power function, let us418

find such N that uniformly with respect to n,419

(3.11) 〈C(1 + |x|2m)1R\[−N,N ], µ
n+1〉 < ǫ2/2,420
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which is possible due to the Lemmata 2.1 and 2.5, and also such that N > ǫ−2. Then choose n(ǫ)421

such that422

sup
n≥n(ǫ)

∫

|x|≤N

ψ2
n(x) dx < ǫ2/2.423

Due to Krylov’s estimate

E

∫ T

0

g(X̃n+1
t ) dt ≤ KT ‖g‖L1(R)

for any function g ≥ 0, and also

E

∫ s+T

s

g(X̃n+1
t ) dt ≤ KT ‖g‖L1(R)

for any s > 0 (follows from [15, Theorem 2.2.3]), we evaluate with n ≥ n(ǫ):424

1

2ǫ

∫ i+1

0

Ex,µψ
2
n+11[−N,N ](X̃

n+1
t ) dt425

426

=
1

2ǫ

i
∑

k=0

Ex

∫ k+1

k

ψ2
n+11[−N,N ](X̃

n+1
t ) dt ≤ i+ 1

2ǫ
K‖ψ2

n+11[−N,N ]‖L1 ≤ (i+ 1)Kǫ

2
.427

428

Indeed, for any k ≥ 0 we have,429

Ex

∫ k+1

k

ψ2
n+11[−N,N ](X̃

n+1
t ) dt = ExEx

(

∫ k+1

k

ψ2
n+11[−N,N ](X̃

n+1
t ) dt|Fk

)

430

431

= ExEX̃n+1

k

∫ 1

0

ψ2
n+11[−N,N ](X̃

n+1
t ) dt432

433

≤ 1

2ǫ
K‖ψ2

n+11[−N,N ]‖L2 ≤ (i+ 1)Kǫ

2
.434

435

This argument works for the non-stationary process as well: due to the same Krylov’s estimate,436

1

2ǫ

∫ i+1

0

Ex,µψ
2
n+11[−N,N ](X̂

n+1
t ) dt437

438

=
1

2ǫ

i
∑

k=0

E

∫ k+1

k

ψ2
n+11[−N,N ](X̂

n+1
t ) dt ≤ i+ 1

2ǫ
K‖ψ2

n+11[−N,N ]‖)L1 ≤ (i+ 1)Kǫ

2
.439

440

Further,441

1

2ǫ

∫ i+1

0

Ex,µψ
2
n+11R\[−N,N ](X̃

n+1
t ) dt ≤ i+ 1

2ǫ
× ǫ2

2
=

(i+ 1)ǫ

4
.442

443

This manuscript is for review purposes only.



AVERAGED EXPECTED COST CONTROL FOR 1D ERGODIC DIFFUSIONS 15

Finally, using (2.6), we obtain with some m,444

1

2ǫ

∫ i+1

0

Ex,µψ
2
n+11R\[−N,N ](X̂

n+1
t ) dt =

1

2ǫ

∫ i+1

0

Ex,µψ
2
n+11R\[−N,N ](X

n+1
t ) dt445

446

≤ C
i+ 1

2ǫ

(1 + |x|m)

N
≤ C(i+ 1)(1 + |x|m)ǫ.447

448

Overall, this shows that with the appropriately chosen (uniformly bounded) βn,449

|wn(x)− βn| ≤ C(1 + |x|2m)ǫ

∞
∑

i=0

(i+ 1)(Ex,µ1(τ > i))1/2, n ≥ n(ǫ).(3.12)450

451

By virtue of the results in [31], for any k > 0 there are C,m > 0 such that452

Px,µ1(τ > i) ≤ C
1 + |x|m
1 + ik

.453

Therefore, taking any k > 1, we have that the series in (3.12) converges providing us an estimate454

|wn(x)− βn| ≤ C(1 + |x|3m)ǫ, n ≥ n(ǫ).(3.13)455456

In other words, the difference wn(x)− βn = vn − vn+1 − βn is locally uniformly converging to zero457

as n → ∞. Naturally, it also implies that for any subsequence nj such that vnj
converges locally458

uniformly in C1 we have that v′nj
and v′nj+1 may only converge to the same limit, i.e., derivatives459

v′nj
− v′nj+1 → 0 (locally uniformly) as j → ∞. Indeed, otherwise we just integrate to show that460

the limits of vnj
and vnj+1 + βnj

are different, which contradicts to what was established earlier.461

462

4. What we want to do now is to pass to the limit as j → ∞ in the equations463

Lαnj+1vnj+1(x) + fαnj+1(x)− ρnj+1
a.e.
= 0, & G[vnj

](x)− ρnj
≤ 0,464

where (nj , j → ∞) is any sequence such that vnj
converges (locally uniformly) in C1. From465

G[vnj
](x)− ρnj

= Lαnj+1vnj
(x) + fαnj+1(x)− ρnj

466

467

(= inf
u∈U

[Luvnj
(x) + fu(x)− ρnj

]
a.e.
≤ 0),468

by subtracting zero a.e. (3.5), we obtain a.e.,469

(3.14) G[vnj
](x)− ρnj

= Lαnj+1(vnj
(x)− vnj+1(x))− (ρnj

− ρnj+1).470

Now we want to show that471

(3.15) ṽ′(x)− ṽ′(r) +

∫ x

r

F1[s, ṽ
′(s), ρ̃] ds = 0,472

which in turn implies by differentiation the equation equivalent to (1.7),473

(3.16) ṽ′′(x) + F1[x, ṽ
′, ρ̃](x) = 0,474
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for any x, with the note that ṽ′ is absolutely continuous.475

Let us show that (3.14), indeed, implies (3.15). Note that G[vnj
](x) − ρnj

≤ 0 (a.e.). Let us476

divide (3.14) by anj+1 = aαnj+1 and use δ := infu,x a
u(x) > 0: we get a.e. with some K > 0,477

0 ≥ (G[vnj
](x)− ρn)

anj+1
= (v′′nj

(x)− v′′nj+1(x)) + (b̂αnj+1(v′nj
− v′nj+1))−

(ρnj
− ρnj+1)

anj+1
478

479

≥ (v′′nj
(x)− v′′nj+1(x))−

K

δ
|v′nj

(x)− v′nj+1(x)| −
1

δ
(ρnj

− ρnj+1).(3.17)480
481

So, we have just shown that a.e.,482

0 ≥ (v′′nj
(x)− v′′nj+1(x))−

K

δ
|v′nj

(x)− v′nj+1(x)| −
ρnj

− ρnj+1

δ
.(3.18)483

The next trick is to note that again due to (3.17) and ρnj
≥ ρnj+1, and since δ ≤ a ≤ C,484

0
a.e.
≥ G[vnj

](x)− ρnj
≥ anj+1(v

′′
nj

− v′′nj+1)(x)− C ′|v′nj
− v′nj+1|(x)− (ρnj

− ρnj+1),485

which implies that with some C, c > 0,486

(3.19) 0
a.e.
≥ v′′nj

+ F1[v
′
nj
, ρnj

] ≥ ((v′′nj
− v′′nj+1)− C|v′nj

− v′nj+1|)− c(ρnj
− ρnj+1).487

Since v′nj
is absolutely continuous, we can integrate (3.19) to get the following: for any (not a.e.!)488

x and r with x > r,489

0 ≥ v′nj
(x)− v′nj

(r) +

∫ x

r

F1[v
′
nj
(s), ρnj

](s) ds490

491

=

∫ x

r

(

v′′nj
(x) + F1[v

′
nj
(s), ρnj

](s)
)

ds492

493

≥
∫ x

r

((v′′nj
− v′′nj+1)(s)− C|v′nj

− v′nj+1|(s)− c(ρnj
− ρnj+1)) ds(3.20)494

495

= v′nj
(x)− v′nj

(r)− v′nj+1(x) + v′nj+1(r)496

497

− C

∫ x

r

|v′nj
− v′nj+1|(s)ds− c(ρnj

− ρnj+1)(x− r).498

As it was explained earlier, due to the compactness in C1 we may assume that

vnj
→ ṽ, v′nj

→ ṽ′, & v′nj+1 → ṽ′, j → ∞,

in C locally for some ṽ ∈ C1, as j → ∞. Note that ṽ′ is absolutely continuous, which follows from499

the uniform local boundedness of v′′n. Therefore, it is possible to get to the limit in the inequality500

(3.20) as j → ∞: for any x > r,501

0 ≥ ṽ′(x)− ṽ′(r) + lim
j→∞

∫ x

r

F1[s, v
′
nj
(s), ρnj

] ds ≥ 0,502
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since the right hand side in (3.20) clearly goes to zero.503

Here504

F1[v
′
nj
(s), ρnj

](s) = inf
u

[

bu

au
v′nj

(s) +
fu

au
(s)− ρnj

au
(s)

]

505

506

→ inf
u∈U

[

bu

au
ṽ′(s) +

fu

au
(s)− ρn

au
(s)

]

= F1[ṽ
′(s), ρ̃](s), j → ∞.507

508

So, from (3.20) we obtain the desired equation (3.15)509

ṽ′(x)− ṽ′(r) +

∫ x

r

F1[s, ṽ
′(s), ρ̃] ds = 0.510

In turn, since F1[ṽ
′(s), ρ̃](s) is continuous and absolutely continuous in s, it implies ṽ ∈ C2, and by511

(well-defined) differentiation we get the equation (3.16) for every x ∈ R.512

513

In the sequel it will follow from the uniqueness of solution to the Bellman’s equation that514

actually the whole sequence vn converges up to an additive constant sequence locally uniformly in515

C1 to a single limit. However, it is not needed for our proof.516

517

5. Uniqueness for ρ in (1.7). Assume that there are two solutions of the (HJB) equation, (v1, ρ1)518

and (v2, ρ2) with vi ∈ K, i = 1, 2:519

inf
u∈U

(Luv1(x) + fu(x)− ρ1) = inf
u∈U

(Luv2(x) + fu(x)− ρ2) = 0.520

Earlier it was shown that both v1 and v2 are classical solutions with locally Lipschitz second521

derivatives. Let w(x) := v1(x) − v2(x) and consider two strategies α1, α2 ∈ A such that α1(x) ∈522

Argmaxu∈U (L
uw(x)) and α2(x) ∈ Argminu∈U (L

uw(x)), and let X1
t , X

2
t be solutions of the SDEs523

corresponding to each strategy αi, i = 1, 2. Note that due to the measurable choice arguments – see524

the Appendix – such Borel strategies exist; corresponding weak solutions also exist. Let us denote525

h1(x) := sup
u∈U

(Luw(x)− ρ1 + ρ2), h2(x) := inf
u∈U

(Luw(x)− ρ1 + ρ2).526

Then,527

h2(x) = inf
u∈U

(Luv1(x) + fu(x)− ρ1 − (Luv2(x) + fu(x)− ρ2))528

529

≤ inf
u∈U

(Luv1(x) + fu(x)− ρ1)− inf
u∈U

(Luv2(x) + fu(x)− ρ2) = 0.530

Similarly,531

h1(x) = − inf
u
(Lu(−v2)(x)− ρ2 + ρ1)532

533

= − inf
u
(Luv2(x) + fu(x) + ρ2 − (Luv1(x) + fu(x) + ρ1))534

535

≥ −
[

inf
u
(Luv2(x) + fu(x)− ρ2)− inf

u
(Luv1(x) + fu(x)− ρ1)

]

= 0.536
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We have,537

Lα2w(x) = h2(x)− ρ2 + ρ1,538

and539

Lα1w(x) = h1(x)− ρ2 + ρ1.540

Due to Dynkin’s formula we have,541

Exw(X
1
t )− w(x) = Ex

∫ t

0

Lα1w(X1
s ) ds542

= Ex

∫ t

0

h1(X
1
s ) ds+ (ρ1 − ρ2) t

(h1≥0)

≥ (ρ1 − ρ2) t.543

Since the left hand side here is bounded for a fixed x, due to the Lemma 2.1 we get,544

ρ1 − ρ2 ≤ 0.545

Similarly, considering α2 we conclude that546

Exw(X
2
t )− w(x) = Ex

∫ t

0

Lα2w(X2
s ) ds547

548

= Ex

∫ t

0

h2(X
2
s ) ds+ (ρ1 − ρ2) t.549

From here, due to the boundedness of the left hand side (Lemma 2.1) we get,550

ρ2 − ρ1 = lim inf
t→0

(t−1Ex

∫ t

0

h2(X
2
s ) ds)

(h2≤0)

≤ 0.551

Thus, ρ1 − ρ2 ≥ 0 and, hence,552

ρ1 = ρ2.553

554

6. Why ρ = ρ̃? Recall that for any initial α0 ∈ A, the sequence ρn converges to the same value ρ̃,555

which is a unique component of solution of the equation (1.7). Let us take any ǫ > 0 and consider556

a strategy α0 such that557

ρ0 = ρα0 < ρ+ ǫ.558

Since the sequence (ρn) decreases, the limit ρ̃ must satisfy the same inequality,559

ρ̃ = lim
n→∞

ρn < ρ+ ǫ.560

Due to uniqueness of ρ̃ as a component of solution of the equation (1.7) and since ǫ > 0 is arbitrary,561

we find that562

ρ̃ ≤ ρ.563

But also ρ̃ ≥ ρ since ρ̃ is the infimum of the cost function values over a smaller – just countable –564

family of strategies. So, in fact,565

ρ̃ = ρ.566
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567

7. Uniqueness for V . Let us have another look at the earlier equations in the step 6, replacing568

ρ2 − ρ1 by zero as we already know that the second component in the solution is unique:569

Exw(X
1
t )− w(x) = Ex

∫ t

0

h1(X
1
s ) ds.570

Clearly, h1 ≥ 0 with h1 6= 0 – i.e., with Λ(x : h1(x) > 0) > 0 – would imply that 〈h1, µ1〉 > 0,571

which contradicts a zero left hand side (after division by t with t→ ∞). So, we conclude that572

h1 = 0, µ1 − a.s.573

Since µ1 ∼ Λ due to (2.7), by virtue of Krylov’s estimate we have that 0 ≤ Ex

∫ t

0
h1(X

1
s ) ds ≤574

N‖h1‖L1
= 0. So, in fact,575

Exw(X
1
t )− w(x) = 0.(3.21)576

Further, from (3.21) and due to the last statement of the Lemma 2.1 it follows that577

w(x) = lim
t→∞

Exw(X
1
t ) = 〈w, µ1〉.578

Hence, w(x) is a constant. Recall that uniqueness of the first component V is stated up to a579

constant, and it was just established that580

v1(x)− v2(x) = const.581

582

8. Returning to the second statement of Theorem 3.1, note that due to uniqueness of the solution583

of the HJB equation, convergence of the whole sequence (vn) up to additive constants depending584

only on n is to the unique limit v.585

586

9. Local Lipschitz for ṽ′′. Recall that a certain additional regularity of the coefficients is assumed.587

We have from (3.16) and (2.8),588

|ṽ′′(x)| = |F1[ṽ
′(x), ρ̃](x)| ≤ C(1 + |ṽ′(x)|) ≤ C(1 + |x|).589

Therefore, it follows from the Cauchy Mean Value Theorem that590

|ṽ′(x)− ṽ′(x′)| ≤ C(1 + |x|m + |x′|m)|x− x′|.591

So, due to Lipschitz condition on bu, au in x and in virtue of the nondegeneracy of au,592

|ṽ′′(x)− ṽ′′(x′)| = |F1[ṽ
′(x), ρ̃](x)− F1[ṽ

′(x), ρ̃](x′)|593

594

= | inf
u
[b̂u(x)ṽ′(x) + f̂u(x)− ρ̃

au(x)
]− inf

u
[b̂u(x′)ṽ′(x′) + f̂u(x′)− ρ̃

au(x′)
]|595

596

≤ sup
u

|b̂u(x)ṽ′(x) + f̂u(x)− ρ̃

au(x)
− b̂u(x′)ṽ′(x′)− f̂u(x′) +

ρ̃

au(x′)
|597

598

≤ C (|ṽ′(x)− ṽ′(x′)|+ |x− x′|) ≤ C(1 + |x|m + |x′|m)|x− x′|.599600

The required local Lipschitz property of the function ṽ′′ has been verified.601
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Appendix A. On a measurable choice. For the reader’s convenience we repeat the main602

arguments from [1] concerning the measurable choice a little bit more precisely. Recall that in the603

presentation of RIA in the beginning of the section 3 existence of a Borel measurable version of604

such a strategy was assumed, which minimizes some function for any fixed x. In our case existence605

of such a Borel strategy can be justified by using Stschegolkow’s (Shchegolkov’s) theorem [30] (see606

also [20, Satz 39], or [7, Theorem 1]). According to this result, if any section of a (nonempty) Borel607

set E in the direct product of two complete separable metric spaces is sigma-compact (i.e., equals608

a countable sum of closed bounded sets) then a Borel selection belonging to this set E exists.609

In our case we have, F [v, ρ](x) = infu∈U [Luv(x) + fu(x)− ρ]. For a fixed v representing any610

vn in the proof, denote χ(u, x) := Luv(x) + fu(x)− ρ and χ̄(x) := F [v, ρ](x), and let E = {(u, x) :611

χ(u, x) = χ̄(x)}. This set is nonempty because the minima here are attained for each x. Its section612

for any x ∈ R is Ex := {u : χ(u, x) = χ̄(x)}. Any such section is nonempty and closed and, hence,613

Borel. Indeed, if Ex ∋ un → u, n→ ∞, then χ(un, x) → χ(u, x) due to the continuity of χ(·, x).614

The set E itself is Borel, too. To show this, take any ǫ > 0 and denote615

E(ǫ) := {(u, x) : χ(u, x)− χ̄(x) < ǫ}.616

This set is Borel because the functions χ(u, x) and χ̄(x} are: the latter one since the minimum in617

minu χ(u, x) can be taken over some countable dense subset of U . (Recall that the second derivative618

v′′ is Borel measurable by our convention.) It remains to note that619

E =

∞
⋂

k=1

E(1/k),620

so that E is also Borel.621

Thus, Stschegolkow’s theorem is applicable and, hence, a Borel measurable improved strategy622

αn+1 in the induction step of the RIA does exist for each step n. By the same reason Borel strategies623

α1 and α2 exist in the steps 6 and (implicitly) 8.624
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