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ABSTRACT 

First-generation (1G) fuel ethanol production in sugarcane-based biorefineries is an 

established economic enterprise in Brazil. Second-generation (2G) fuel ethanol from 

lignocellulosic materials, though extensively investigated, is currently facing severe 

difficulties to become economically viable. Some of the challenges inherent to these 

processes could be resolved by efficiently separating, and partially hydrolysing the 

cellulosic fraction of the lignocellulosic materials into the disaccharide cellobiose. Here 

we propose an alternative biorefinery, where the sucrose-rich stream from the 1G 

process is mixed with a cellobiose-rich stream in the fermentation step. The advantages 

of mixing are threefold: 1) decreased concentrations of metabolic inhibitors that are 

typically produced during pretreatment and hydrolysis of lignocellulosic materials; 2) 

decreased cooling times after enzymatic hydrolysis prior to fermentation; 3) decreased 

availability of free glucose for contaminating microorganisms and undesired glucose 

repression effects. The iSUCCELL platform will be built upon the robust 

Saccharomyces cerevisiae strains currently present in 1G biorefineries, which offer 
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competitive advantage in non-aseptic environments, and into which intracellular 

hydrolyses of sucrose and cellobiose will be engineered. It is expected that high yields 

of ethanol can be achieved in a process with cell recycling, lower contamination levels 

and decreased antibiotic use, when compared to current 2G technologies. 

 

Keywords: Saccharomyces cerevisiae, sucrose, cellobiose, biorefinery, fuel ethanol 

 

INTRODUCTION 

Sugarcane is considered the most efficient crop for fuel ethanol production and a major 

player in energy diversification and sustainable development. Production of fuel ethanol 

from a mixture of sugarcane juice and molasses has been termed first-generation (1G) 

ethanol, fuel ethanol or bioethanol. In this non-aseptic and anaerobic process, the yeast 

Saccharomyces cerevisiae converts sugars into ethanol with typical yields around 90% 

of the theoretical maximum, which is equal to 0.511 g ethanol per g of hexose 

equivalent. The fermentation medium, known as ‘must’ in the industrial jargon, is 

prepared by mixing sugarcane juice - the liquid stream obtained from directly milling 

sugarcane - and diluted molasses, a dark brown viscous liquid generated as a by-product 

of edible sugar production. The fibrous residue left after sugarcane juice extraction, 

known as bagasse, is normally burnt in furnaces, which, depending on the efficiency of 

the boiler, not only provides the energy necessary to run the biorefinery (in the form of 

high pressure steam and electricity), but also generates revenue by exporting excess 

electricity to the national grid. Thus, in a typical Brazilian sugarcane-based biorefinery, 

three major products are generated: sugar, ethanol and electricity. Normally, the 

bioethanol plants have excess production capacity installed, to allow some flexibility in 

the sugar to ethanol production ratio, which can be finetuned depending on the prices of 

these commodities in the international market. The current sugarcane-based biorefinery 

has been comprehensively discussed, from different perspectives, in several articles 

(Abreu-Cavalheiro and Monteiro 2013; Della-Bianca et al. 2013; Furlan et al. 2013; 

Gombert and van Maris 2015; Lopes et al. 2016; Vaz 2017; Ceccato-Antonini 2018; 

Paulino de Souza et al. 2018). 
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The sugarcane plant is composed of stem and straw (green tops and dry leaves). The 

stem – used for milling to obtain the sugarcane juice – represents 80 to 85% of the total 

plant biomass (Carvalho-Netto et al. 2014), and consists of 70% water, 16% sugars, and 

14% fibre (or bagasse), whereas the remaining fractions of sugarcane (straw) are 

composed of lignocellulose. Since the cost of this raw material represents a major part 

of the final production costs of fuel ethanol, it would be very important to utilise the 

entire sugarcane plant in a more efficient way. One of the most popular strategies 

targets the use of the lignocellulosic fraction of sugarcane for the production of ethanol 

in a so-called second-generation (2G) process (Soccol et al. 2010; Canilha et al. 2012; 

dos Santos et al. 2016). 

In the 2G process, part of the cellulose/hemicellulose-rich sugarcane bagasse is diverted 

to produce additional volumes of ethanol, which occurs without any expansion of the 

cultivation area. For this to happen, the recalcitrant lignocellulosic matrix must be 

broken down and hydrolysed, before yeast can ferment the sugars. Naturally, this will 

come at the expense of electricity generation (Dias et al. 2011; Furlan et al. 2013; Tapia 

Carpio and Simone de Souza 2019). On the other hand, since nearly 95% of sugarcane 

is presently harvested mechanically in the Central-South region of Brazil (Bordonal et 

al. 2018) encompassing 91% of the total planted area, additional lignocellulosic 

biomass such as sugarcane leaves, has been made available in the recent years. 

Furthermore, in many industrial units, the boilers currently employed to convert heat to 

electricity could be replaced with more efficient variants, thereby less bagasse would 

have to be burnt to generate the same amount of electricity (Dias et al. 2016). To give a 

more quantitative impression, ethanol production could be increased up to 50%, if all 

the sugarcane bagasse and straw were fermented to ethanol (Somerville et al. 2010; 

Pereira et al. 2015). 

There are two 2G sugarcane-based biorefineries currently in operation in Brazil, but 

they are still struggling financially. GranBio, located in Alagoas state (Northeast region) 

uses energycane as a raw material. Energycane accumulates less soluble sugars and has 

more fibre per hectare than conventional sugarcane. Raízen, located in São Paulo state 

(Southeast region) uses lignocellulosic residues from sugarcane as their raw material 

and the 2G process site is integrated with the 1G fuel ethanol producing unit. Some 

recent works have discussed the main aspects of 2G sugarcane-based biorefineries (dos 
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Santos et al. 2016; Sindhu et al. 2016; Valdivia et al. 2016; Jansen et al. 2017; Polizeli 

et al. 2017). 

Some of the challenges involved in the 2G process are: 1) pretreatment and hydrolysis 

of lignocellulosic biomass releases compounds, such as acetic acid, furfural, and 

hydroxymethylfurfural, among others, which inhibit yeast in a concentration-dependent 

manner (Taherzadeh, Niklasson and Lidén 1997; Taherzadeh et al. 2000; Jönsson, 

Alriksson and Nilvebrant 2013; Jönsson and Martín 2016); 2) enzymatic hydrolysis 

preceding the fermentation step is typically carried out at a higher temperature (45 to 50 

°C) (Canilha et al. 2012; Zabed et al. 2017) than the fermentation step (30 to 35 °C) 

(Abdel-Banat et al. 2010; dos Santos et al. 2016), necessitating the cooling of the 

hydrolysate before yeast can be inoculated, resulting in decreased productivities and/or 

increased equipment costs; 3) high cost of the enzymes required for the hydrolysis of 

pretreated biomass (Klein-Marcuschamer et al. 2012; Liu, Zhang and Bao 2016); 4) 

decreased productivities (or increased fermentation times), due to the preferential use of 

glucose by yeast, to the detriment of the remaining carbon sources present in the 

medium (e.g. xylose), which is still the case even for engineered strains (Kim et al. 

2012; Jansen et al. 2017); 5) contamination events during fermentation, and the inherent 

need to rely on antibiotics (or other antimicrobials) to minimise the bacterial load, 

which leads to higher costs and also environmental and public health issues. Infection is 

a persistent issue in current 1G biorefineries (Shaw et al. 2016; Ceccato-Antonini 

2018), and the presence of the universal carbon and energy source glucose in the 

medium certainly aggravates this problem. 

In this mini-review article, we propose an alternative strategy to the stand-alone 2G fuel 

ethanol process, successfully addressing some of the challenges listed above. The raw 

material would still be sugarcane, but the principle is to combine the process streams 

from 1G and 2G biorefineries to yield a mixed stream. The 1G stream remains the same 

as that in current sugarcane-based biorefineries: a mixture containing sugarcane juice 

and molasses with sucrose as the predominant sugar constituent. However, for the 2G 

stream, our strategy is to have a few upstream steps that can separate the lignin and the 

hemicellulosic fraction in sugarcane bagasse to yield a cellulose rich fraction for 

hydrolysis. This could be achieved e.g. by pretreating the biomass with organosolvents 

that can delignify and solubilise the hemicellulose fraction present in the biomass to 

yield cellulose rich solids that have better enzymatic digestibility (Sun et al. 2016; 
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Zhang, Pei and Wang 2016; Matsakas et al. 2019). The further use or conversion of the 

lignin and hemicellulose fractions is outside the scope of this mini-review, but there are 

different proposals in the literature (Canilha et al. 2013; Ragauskas et al. 2014; Vardon 

et al. 2015; Beckham et al. 2016; Arora, Sharma and Kumar 2018; Liao et al. 2020). 

The cellulose rich fraction, in turn, can be partially hydrolysed to cellobiose, instead of 

a complete hydrolysis to glucose as is normally performed in a 2G process, since the 

iSUCCELL yeast chassis we propose here is capable of hydrolysing cellobiose into 

glucose (intracellularly). The partial hydrolysis of cellulose into cellobiose eliminates 

the cost of supplementing the enzyme cocktail with β-glucosidase (BGL, production 

cost ~ 310 USD/kg of enzyme), the key enzyme component that breaks down cellobiose 

to glucose (Ferreira, Azzoni and Freitas 2018). By mixing the 1G and 2G streams, the 

time required for cooling the 2G stream (typically around 50 °C) before fermentation (~ 

30 °C) can commence, will be reduced. Furthermore, the concentration of metabolic 

inhibitors will decrease according to the mixing proportion. Finally, by hydrolysing 

cellulose incompletely, the release of glucose is minimised, creating a less favourable 

environment for the spread of contaminants, and avoiding the undesired effects of 

glucose repression over the consumption of other carbon sources by yeast. 

We name our strategy iSUCCELL, for intracellular sucrose and cellobiose utilisation 

and it uses a mixture of 1G stream and partially hydrolysed 2G stream. This is achieved 

by metabolic engineering of industrial yeast strains that have better tolerance to 

metabolic inhibitors than wild or laboratory strains and have a favourable track record 

in non-aseptic processes with cell recycling including acid treatment. This is 

accomplished by introducing active transport systems for sucrose and cellobiose, 

followed by their hydrolysis in the cytosol via intracellular invertase and heterologously 

expressed BGL. The intracellular hydrolysis avoids/decreases the release of glucose in 

the extracellular environment and results in increased ethanol yield on sugars due to 

different energy conservation schemes (Basso et al. 2011). It should be noted, though, 

that a techno-economic assessment of this strategy is out of the scope of this article. 
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THE CONCEPT OF A SUGARCANE-BASED BIOREFINERY USING 

iSUCCELL YEAST CHASSIS 

Process-related aspects 

The emergence of lignocellulosic ethanol contributed enormously in our current vision 

of a biorefinery. Nowadays, research initiatives on sugarcane-based 2G ethanol are 

oriented towards a synergy with the 1G process, aiming at promoting the transition of 

Brazilian bioethanol plants into true biorefineries, with the ability to process all 

fractions of sugarcane and the potential to produce other, higher-value compounds. The 

integration of 2G processes into 1G sites already in place has shown advantages over 

stand-alone 2G technologies, improving the overall efficiency and energy balance of the 

plant (Dias et al. 2012; MacRelli, Mogensen and Zacchi 2012; Erdei et al. 2013; 

Lennartsson, Erlandsson and Taherzadeh 2014; Losordo et al. 2016). Process 

integration benefits from unit operations that are common to both 1G and 2G processes. 

Moreover, the availability of sugarcane bagasse on-site reduces cost and operational 

issues related to logistics, transportation, and storage of the lignocellulosic material 

(Soccol et al. 2010; Dias et al. 2012; Furlan et al. 2013; Losordo et al. 2016). Although 

there is a necessity to leave part of the straw in the field to augment soil carbon and to 

reduce soil erosion and water loss (Leal et al. 2013), a small portion of this straw could 

be transported to the plant and used in the boilers for cogeneration while the rest is 

diverted towards ethanol production (Dias et al. 2011; Furlan et al. 2013). 

Different configurations have been evaluated for an integrated sugarcane-based 1G+2G 

fuel ethanol process, which include different combinations of the fermentation medium. 

A 1G+2G sugar stream can be generated by mixing sugarcane juice with either the 

hydrolysed C6 liquor (SJ+C6) (Dias et al. 2012; Furlan et al. 2013; Mariano et al. 

2013), the hydrolysed C6 and C5 liquors (SJ+C6+C5) (Dias et al. 2013), or molasses 

and the C5 liquor (SJ+M+C5) (Losordo et al. 2016). Regardless of the configuration 

adopted, the 2G fraction requires prior pretreatment and hydrolysis to release the sugars 

before being mixed with the 1G sugar stream. The commercial enzyme preparations 

currently available for these applications contain a mixture of hydrolytic enzymes 

collectively known as cellulases and hemicellulases, although a set of other ancillary 

enzymes have also been identified as important accessory proteins (Sun et al. 2015). 

The cellulase complex, mostly produced from mutant strains of the fungus Trichoderma 

reesei, includes three types of enzymes working in a synergistic manner: 
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endoglucanases (EGs), cellobiohydrolases (exoglucanases, CBHs), and BGLs. As a 

result of the action of EGs and CBHs on cellulose, the disaccharide cellobiose is 

released as the main product, before being further hydrolysed into glucose by BGLs. 

Cellobiose is a strong inhibitor of both EGs and CBHs, and BGL alleviates this 

inhibition by cleaving cellobiose into two glucose molecules (Singhania et al. 2013). 

However, the BGL activity of T. reesei is also limited by product-inhibition from 

glucose (Chen, Hayn and Esterbauer 1992). Traditional commercial cellulase 

preparations, such as Spezyme® CP (Genencor) and Celluclast® 1.5L (Novozymes), 

contain low amounts of BGLs, causing the accumulation of cellobiose and subsequent 

product-inhibition of cellulases (Berlin et al. 2007; Pryor and Nahar 2010; Hu, Arantes 

and Saddler 2011; Qing and Wyman 2011; Agrawal et al. 2015, 2018; Rodrigues et al. 

2015). Hence, to overcome this limitation and improve the rate and extent of 

saccharification, these commercial formulations are commonly blended with additional 

BGL, generally sourced from Aspergilli, such as the commercial BGL preparation 

Novozyme 188 (Berlin et al. 2007; Hu, Arantes and Saddler 2011; Zhai, Hu and 

Saddler 2016), which despite being less sensitive to feedback inhibition (Riou et al. 

1998; Decker, Visser and Schreier 2001; Rajasree et al. 2013), represents additional 

costs to the process (Liu, Zhang and Bao 2016; Ferreira, Azzoni and Freitas 2018). 

Strategies to alleviate inhibition of cellulases by cellobiose or glucose via site-directed 

mutagenesis are being extensively investigated (Atreya, Strobel and Clark 2016; Guo, 

Amano and Nozaki 2016). The newest generations of cocktails, e.g Cellic CTec® series 

(Novozymes) and Accellerase® 1500 (Genencor), have improved significantly, 

containing many accessory enzymes leading to improved sugar conversions. 

Nevertheless, the cost of enzymes for manufacturing low value-added products such as 

ethanol is still significant and needs to be minimised. 

In 2G processes, complete degradation of cellulose into glucose is a requirement since 

S. cerevisiae is not capable of utilising partially hydrolysed cellulose or cellodextrins 

(Lynd et al. 2002). However, in the last few years a paradigm involving partial 

hydrolysis of cellulose has begun to emerge (Galazka et al. 2010; Chen 2015; 

Parisutham et al. 2017), involving yeast platforms that can assimilate cellodextrins 

directly. Yet, intensive efforts in strain engineering and optimisation are mandatory to 

unravel ways to integrate the heterologous pathway into the endogenous metabolism, 
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since process parameters such as high yield and productivity as well as strain robustness 

are vital for the success of this endeavour (Chen 2015). 

The concept of an integrated 1G+2G fuel ethanol process and the approach of partial 

cellulose hydrolysis can be combined into a new type of sugarcane-based biorefinery, 

which can deliver fuel ethanol from the 1G+cellobiose-rich sugar streams, as well as 

offer possibilities for product diversification from the C5 and lignin-rich fractions of 

sugarcane bagasse (Rabelo et al. 2011; Mariano et al. 2013; Ferreira Silva et al. 2014; 

Vardon et al. 2015; Beckham et al. 2016; Arora, Sharma and Kumar 2018; Unrean and 

Ketsub 2018) (Figure 1), opening the doors for new markets, spreading the risks, and 

increasing revenues (UNCTAD 2016). 

The 1G stream, prepared by mixing sugarcane juice and molasses at various 

proportions, contains different concentrations of minerals, organic nutrients, and toxic 

compounds. While the juice is minerals-deficient (11-16% of total sugars on a wet-

weight basis, with ~90% of sucrose and ~10% of glucose and/or fructose), molasses 

provides a minerals-rich syrup with up to 65% (w/w) of total sugars, with 

approximately 80% sucrose and ~20% glucose and fructose, in equal proportions 

(Wheals et al. 1999; Lino, Basso and Sommer 2018). On the other hand, it is expected 

that a typical 2G stream generated using commercial BGL-poor cellulase cocktails, e.g. 

Celluclast® 1.5L, on a mixture of pretreated sugarcane bagasse and straw, will release 

glucose with a ~30% yield (w/w) (Ávila, Forte and Goldbeck 2018). Thus, considering 

the numbers above, in the process proposed here, the 1G+cellobiose-rich stream would 

consist mainly of sucrose and cellobiose (C12 sugars), together with small amounts of 

monosaccharides (glucose and fructose, C6 sugars). 

Since both sugar streams are processed at different temperatures (~30 °C for the 1G 

stream and ~50 °C for the cellobiose-rich stream), their mixture would decrease not 

only the cooling time necessary for subsequent fermentation to start, but also the energy 

and water usage. Furthermore, a mixed 1G+cellobiose-rich broth would decrease the 

stress imposed on yeast by inhibitors that are formed during lignocellulosic 

pretreatment, compared to a conventional 2G process, due to dilution of the cellobiose-

rich (hydrolysate) stream with the 1G stream, vastly improving yeast performance (de 

Andrade et al. 2013; Erdei et al. 2013). 
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Yeast-related aspects 

The new sugarcane-based biorefinery proposed here requires new yeast platforms 

capable of both utilising the different sugars and tolerating the inhibitors present in the 

combined 1G+cellobiose-rich stream. Although this could be accomplished by different 

strategies, we propose the iSUCCELL platform, where sucrose and cellobiose are 

metabolised via active transport and intracellular hydrolysis using an engineered yeast 

(Figure 2). This approach involves the release of monomers inside the cell, and relies on 

the use of current industrial strain backgrounds commonly found in sugarcane-based 

biorefineries for metabolic engineering, due to their inherent robustness under industrial 

conditions (Basso et al. 2008; Della-Bianca and Gombert 2013; Della-Bianca et al. 

2014). The advantages of this strategy in the context of yeast metabolism and process 

feasibility are summarised in Table 1. 

 

ENGINEERING THE iSUCCELL YEAST CHASSIS FOR A NEW 

SUGARCANE-BASED BIOREFINERY 

Disaccharide utilisation by S. cerevisiae 

Disaccharides such as sucrose (α-D-glucopyranosyl-(1→2)-β-D-fructofuranoside or β-

D-fructofuranosyl-(2→1)-α-D-glucopyranoside), maltose (α-D-glucopyranosyl-(1→4)-

α-D-glucopyranose), cellobiose (β-D-glucopyranosyl-(1→4)-β-D-glucopyranose) and 

lactose (β-D-galactopyranosyl-(1→4)-β-D-glucopyranose) are commonly encountered 

glucosides in yeast biotechnology. There is evidence that at least 151 yeast species are 

capable of fermenting sucrose, whereas 827 can grow on this sugar and 859 can grow 

on cellobiose, from a total of 1270 species tested for these phenotypes (Kurtzman, Fell 

and Boekhout 2011). In S. cerevisiae, the utilisation of sucrose is quite peculiar, since 

this sugar can be hydrolysed both extra- and intracellularly. In contrast, the utilisation of 

maltose (another α-glucoside) in S. cerevisiae is exclusively intracellular. Interestingly, 

β-glucosides such as cellobiose and lactose are not natural substrates for S. cerevisiae 

owing to the absence of assimilatory pathways. 

The iSUC component 

Due to the importance of sucrose as a substrate for industrial biotechnology, the 

metabolism of this sugar in yeast has interested the scientific community for decades. 

More recently, aspects involving sucrose and S. cerevisiae have been reviewed by 
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Marques et al. (2016). Sucrose catabolism in S. cerevisiae is initiated by either its 

hydrolysis outside the cells via invertase (encoded by the SUC2 gene) - followed by 

assimilation of glucose and fructose via facilitated diffusion - or active transport of 

sucrose across the plasma membrane via sucrose-H+ symporters, in which case it is 

followed by hydrolysis within the intracellular environment using the cytosolic form of 

invertase (Santos et al. 1982; Stambuk et al. 1999; Batista, Miletti and Stambuk 2004). 

Besides invertase, at least two additional sucrose-hydrolysing enzymes classified as α-

glucosidases have been identified in S. cerevisiae, namely maltases (Malx2) (Khan, 

Zimmermann and Eaton 1973) and isomaltases (Imax) (Marques et al. 2017). 

Additionally, different permeases have been identified as sucrose-H+ symporters in S. 

cerevisiae: a general α-glucoside-H+ symporter encoded by the AGT1 gene (which is 

different from the MAL11 gene, in contrast to what is reported in the yeastgenome.org 

database (Trichez et al. 2019)), and the maltose-H+ symporters encoded by MALx1 

genes (where x represents the locus number) (Stambuk et al. 1999; Stambuk, Batista 

and de Araujo 2000). 

These two modes of sucrose metabolism (extra- or intracellular) in S. cerevisiae have 

different energetics, a feature which has been explored by researchers to improve 

product yields on sucrose. When sucrose is fermented via the extracellular pathway, 4 

mol ATP are formed per mol of sucrose, while only 3 mol ATP (25% lower) are 

produced when one mol of sucrose is metabolised intracellularly (Figure 2). This 

difference in ATP yield is due to the energy requirement of the proton-coupled 

symporter, which leads to the indirect expenditure of 1 ATP per proton taken up along 

with sucrose to maintain pH homeostasis in the cytoplasm. Theoretically, a decrease in 

the ATP yield will divert a higher fraction of the carbon-source towards ethanol 

formation, thus increasing the ethanol yield on sucrose compared to its fermentation via 

the extracellular pathway. This fundamental concept was indeed demonstrated by Basso 

and collaborators (Basso et al. 2011) in a strategy that involved metabolic and 

evolutionary engineering approaches, resulting in a strain that displayed an 11% higher 

ethanol yield on sucrose, when compared to the parental strain, which mainly 

metabolised sucrose via the extracellular pathway. After molecular analysis of the 

improved phenotype, the authors revealed that up-regulation and duplication of the 

AGT1 gene had occurred. 
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It can also be envisaged that intracellular sucrose hydrolysis (iSUC) might have 

additional advantages in the context of industrial sugarcane-based processes. Since 

fructose utilisation in S. cerevisiae is less favoured than glucose utilisation, unconsumed 

fructose is often found at the end of fermentation processes, which represents economic 

losses (Berthels et al. 2004). Furthermore, the presence of extracellular fructose may 

favour the proliferation of heterofermentative bacteria in the context of Brazilian 

sugarcane-based biorefineries. This type of contaminants showed preference for this 

sugar, over glucose, in cultures containing equal amounts of both monosaccharides 

(Basso et al. 2014). Thus, the intracellular sucrose assimilation route prevents the direct 

formation of fructose in the extracellular environment, potentially minimising this 

problem. Some fructose might still diffuse out into the medium if it is not rapidly 

metabolised. Thus, metabolic engineering of downstream steps in metabolism, such as 

overexpression of hexokinase, might be necessary to circumvent this potential issue. 

The iCELL component 

Cellobiose utilisation by S. cerevisiae can only be achieved by genetically modifying 

this organism. Analogously to sucrose metabolism, cellobiose utilisation can be 

accomplished by either extracellular hydrolysis and internalisation of the 

monosaccharides released or via import of the disaccharide and intracellular 

hydrolysis/phosphorolysis. The hydrolytic reaction (regardless of the location) is 

performed by BGLs. To achieve cellobiose utilisation, initial studies focused on 

expressing secretable or surface-displayed BGLs from diverse yeast and fungal origins 

(Machida et al. 1988; McBride et al. 2005; van Rooyen et al. 2005; Guo et al. 2011). 

However, these strategies generate extracellular glucose, which can have at least the 

following consequences: 1) higher risk of bacterial contamination (mainly in non-

aseptic processes); 2) repression of the catabolism of other sugars present in the 

medium, and 3) end product inhibition of BGLs by glucose. 

In 2010, Galazka et al. reported for the first time a S. cerevisiae strain expressing an 

intracellular cellobiose-metabolising pathway consisting of a cellodextrin transporter 

(CDT-1 or CDT-2) and a BGL (GH1-1) from the cellulolytic fungus Neurospora 

crassa. The engineered strains were able to grow on cellobiose and on longer 

cellodextrins, as well as to produce ethanol (Galazka et al. 2010). Despite the slow 

performance of the engineered strains, this breakthrough study paved the way for 

numerous publications aiming at developing efficient biocatalysts for cellobiose 
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fermentation. One of the approaches aimed at exploring novel cellodextrin transporters 

and intracellular BGLs in order to confer S. cerevisiae cells the ability to ferment 

cellobiose more efficiently. In this regard, diverse cellobiose permeases from yeast or 

from other fungi different from N. crassa have been successfully expressed in S. 

cerevisiae (Sadie et al. 2011; Ha et al. 2013b; Li et al. 2013; Zhang et al. 2013; Bae et 

al. 2014; dos Reis et al. 2016; Casa-Villegas, Polaina and Marín-Navarro 2018; 

Nogueira et al. 2018), as well as alternative intracellular BGLs from yeast, bacteria and 

fungi (Bae et al. 2014; Fan et al. 2016; Casa-Villegas, Polaina and Marín-Navarro 

2018) (Table 2). 

 

Besides cellobiose hydrolysis, BGLs may also catalyse a transglycosylation reaction 

(Bohlin et al. 2013), as transient accumulation of extracellular cellodextrins was 

observed during cellobiose-xylose co-fermentation (Ha et al. 2011a). 

Transglycosylation might be triggered when cells accumulate high levels of intracellular 

cellobiose (Kim et al. 2014a). Although the accumulated cellodextrins can be reutilised 

later on, the productivity of the overall process may be compromised due to the slower 

uptake of cellodextrins compared to cellobiose (Ha et al. 2011a). Hence, intracellular 

BGLs with reduced transglycosylation activities are crucial for better utilisation of 

cellobiose. 

Much success has been achieved with the heterologous expression of the N. crassa 

pathway in S. cerevisiae (CDT-1 + GH1-1), followed by laboratory evolution (Wei et 

al. 2015; Hu et al. 2016; Oh et al. 2016) or combinatorial engineering approaches (Du 

et al. 2012; Eriksen et al. 2013; Yuan and Zhao 2013) (Table 2). Interestingly, the 

improved phenotypes reported by Du et al. (2012), Yuan and Zhao (2013), and Hu et al. 

(2016), regardless of the methodology employed, involved strains with higher mRNA 

levels of CDT-1 and GH1-1, compared to the parental strains, indicating a dose-

dependent behaviour. Moreover, besides absolute values, an optimised GH1-1/CDT-1 

gene expression ratio in the improved strains were also critical. This adjusted ratio 

probably led to a decreased intracellular accumulation of cellobiose, consequently 

decreasing the transglycosylation activity of GH1-1 and the cellodextrin accumulation 

in the medium (Hu et al. 2016; Oh et al. 2016). In accordance with this, two studies 

from the same lab reported that their evolved strains harboured higher copy numbers of 

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/fe
m

s
y
r/a

d
v
a

n
c
e

-a
rtic

le
-a

b
s
tra

c
t/d

o
i/1

0
.1

0
9

3
/fe

m
s
y
r/fo

a
a

0
2

7
/5

8
3

6
7

1
6

 b
y
 U

n
iv

e
rs

id
a

d
e

 E
s
ta

d
u

a
l d

e
 C

a
m

p
in

a
s
, A

n
d

re
a

s
 G

o
m

b
e

rt o
n

 1
3

 M
a

y
 2

0
2

0



 

 

CDT-1 and GH1-1 in their genomes, when compared to the unevolved strains (Wei et 

al. 2015; Oh et al. 2016). In addition, the evolved strain of Oh and co-workers (Oh et al. 

2016) showed a GH1-1/CDT-1 copy number ratio similar to that of Yuan et al. (2013) 

(2:1 vs 2.5:1); it should be noted that Yuan and co-workers measured the mRNA levels. 

In contrast, the optimised strain obtained by Eriksen et al. (2013) had gene expression 

levels comparable to the wild-type strain, but involved overall higher CDT-1 and GH1-

1 protein activities. Although no mutations were found in the coding regions of the 

CDT-1 and GH1-1genes in the previous reports (with the exception of Eriksen et al. 

2013), single amino acid substitutions in cellobiose transporters were identified after 

evolutionary engineering in strains carrying other cellobiose-degrading pathways, such 

as CDT-1 + SdCBP (cellobiose phosphorylase from Saccharophagus degradans) (Ha et 

al. 2013a), HXT2.4 (putative hexose transporter from Scheffersomyces stipitis) + GH1-

1 (Ha et al. 2013b), and CDT-2 + SdCBP (Kim et al. 2018) (Table 2). These mutations 

were found to be responsible for enhanced transport activities. 

Transcriptional and metabolite profiling have revealed that yeast cells fermenting 

cellobiose are subjected to severe physiological changes, compared to cells fermenting 

glucose, as reflected in the activation of mitochondrial function and a decrease in amino 

acid biosynthesis, and in a carbon starvation-like state of the plasma membrane ATPase 

(Pma1) (Lin et al. 2014; Chomvong et al. 2017). Furthermore, when cultivated in 

cellobiose medium, yeast cells accumulate high levels of trehalose and of intermediate 

metabolites in the γ-aminobutyrate (GABA) shunt pathway, improving the strain’s 

tolerance to oxidative stress (Kim et al. 2014b; Yun et al. 2018). 

Co-fermentation of cellobiose and xylose/galactose has been investigated to eliminate 

the challenges inherent to the presence of glucose in sugar mixtures (Kim et al. 2012). 

Glucose represses the transcriptional machinery responsible for the consumption of 

alternative sugars (Gancedo 1998; Kayikci and Nielsen 2015). However, when the 

disaccharides are hydrolysed intracellularly, glucose repression is minimised, enabling 

the co-consumption of cellobiose and xylose (Li et al. 2010; Ha et al. 2011a), leading to 

an increase in ethanol productivity. Moreover, when a mixture of cellobiose and xylose 

was supplemented with a small amount of glucose (< 10% of total sugars), the 

performance of the engineered strain was not affected (Li et al. 2010; Ha et al. 2011a), 

indicating that an intracellular cellobiose-hydrolysing (iCELL) strain would probably 

perform well under industrial conditions, as glucose will always be present in small 
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amounts in the partially hydrolysed 2G stream. Alleviation of glucose repression was 

also observed in mixtures of cellobiose and galactose, yielding higher ethanol 

productivity in comparison to the sequential utilisation of sugars in a mixture of glucose 

and galactose (Ha et al. 2011b). 

Although fuel ethanol has been the main product of interest in most of the studies 

discussed above, the formation of other biotechnological compounds has also been 

reported using the iCELL approach, e.g. 2,3-butanediol (Nan et al. 2014), lactic acid 

(Turner et al. 2016), and biosurfactants (Jayakody et al. 2018). 

The iSUCCELL chassis 

As detailed above, intracellular disaccharide utilisation in S. cerevisiae has been 

evaluated for a single disaccharide or for a disaccharide combined with the co-

consumption of one or more monosaccharides. Our approach involves the intracellular 

utilisation of two disaccharides, namely sucrose and cellobiose, in a single yeast chassis 

(Figure 2). When these two disaccharides are metabolised via symport and intracellular 

hydrolysis under anaerobic conditions, there is a 25% decrease in free-energy 

conservation, namely 4 to 3 mol ATP per mol of sugar, when compared to an 

extracellular route in which the released monosaccharides are transported via facilitated 

diffusion across the cell membrane (Basso et al. 2011). This platform could be used to 

ferment the sugars present in an industrial must obtained by mixing a sugarcane-based 

medium (juice and/or molasses), as currently used in Brazilian 1G biorefineries, and 

cellobiose-rich hydrolysates from the cellulosic fraction of sugarcane bagasse (or even 

from other lignocellulosic raw materials). 

S. cerevisiae strains currently adopted by the Brazilian fuel ethanol industry have 

demonstrated high tolerance towards the stressors/inhibitors typically present both in a 

1G and in a 2G context (Della-Bianca et al. 2013, 2014; Pereira et al. 2014; Cola et al. 

2020). Two of the most widely employed strains in industry, namely S. cerevisiae PE-2 

and CAT-1 (both are diploids), have already been engineered for xylose fermentation 

(Romaní et al. 2015), highlighting their potential for genetic manipulation, as well as 

for their use in a 2G process. Recently developed synthetic biology tools, such as the 

RNA-guided endonuclease mediated CRISPR/Cas method, should be leveraged to 

facilitate remodelling of native sucrose metabolism and the introduction of the 

heterologous cellobiose pathway. It should be noted that the CRISPR/Cas system has 
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already been applied with great success both in laboratory and in industrial strains, 

enabling simultaneous introduction of multiple genetic modifications into the yeast 

genome without the need for multiple selectable markers (Stovicek, Holkenbrink and 

Borodina 2017; Lian, HamediRad and Zhao 2018). 

Although the disaccharides sucrose and cellobiose could be cleaved intracellularly 

either via hydrolysis or via phosphorolysis, the iSUCCELL strategy proposed here 

involves hydrolysis, since this route benefits from decreased free-energy conservation, 

which in turn results in higher ethanol yields on sugar (Basso et al. 2011) (Figure 2). In 

order to achieve intracellular sucrose hydrolysis, the invertase-encoding SUC2 gene 

could be either modified to constitutively and exclusively express the intracellular form 

of invertase (Basso et al. 2011), or be completely deleted, as this Δsuc2 strain would 

still hydrolyse sucrose via intracellular α-glucosidases (Dário 2012; Franken et al. 2013; 

Bahia et al. 2018). Since duplication of the AGT1 gene proved crucial for improved 

sucrose fermentation in the evolved iSUC2 strain developed by Basso et al. (2011), 

overexpression of native AGT1 under a stronger, constitutive promoter or introduction 

of extra AGT1 copies might also be necessary. 

To engineer S. cerevisiae for intracellular cellobiose hydrolysis, a heterologous 

cellobiose transporter and an intracellular BGL need to be expressed in the platform 

strain. It is noteworthy that most of the attempts for cellobiose fermentation in S. 

cerevisiae involve the use of episomal plasmids, hampering the applicability of these 

strains in large-scale industrial conditions. However, since the cellobiose pathway 

comprises only two genes, chromosomal integrations should not be a complex task with 

the efficient and well-developed CRISPR-based methodologies, offering precise control 

over gene stability and copy number (Da Silva and Srikrishnan 2012). Additional 

metabolic adjustments might be needed for the iSUCCELL yeast to achieve the 

productivities required for industrial applications. In this sense, adaptive laboratory 

evolution, systems biology, reverse engineering, and other combinatorial approaches 

could be useful. For instance, integration of CDT-1 and GH1-1 genes in multiple copies 

at a ca. 1:2 ratio could contribute to a faster fermentation of cellobiose (Oh et al. 2016). 

Integration of the mutated HXT2.4 (A291E) cellobiose transporter from S. stipitis could 

be implemented to harness the improved kinetic properties of this permease (Ha et al. 

2013b). Additionally, modulation of two native transcription factors (overexpression of 

SUT1 and deletion of HAP4) can be leveraged to speed cellobiose fermentation (Lin et 
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al. 2014). Finally, if necessary, to avoid leakage of monosaccharides to the medium 

after intracellular hydrolysis, overexpression/finetuning of downstream steps, e.g. those 

catalysed by hexo- and/or glucokinases, might also be required. 

OUTLOOK/CONCLUSION 

2G technologies are vital for producing additional amounts of fuel ethanol from existing 

feedstock, and for mitigating the deleterious effects of climate change. Despite 

extensive research and development, 2G fuel ethanol is yet to become a commercial 

success. The approach proposed here is unique in that it combines 1G and 2G process 

technologies with strain engineering for intracellular utilisation of sucrose and 

cellobiose, in robust S. cerevisiae strains currently used in the Brazilian fuel ethanol 

industries. The ‘iSUCCELL’ strategy utilises a mixture of 1G stream and a partially 

hydrolysed, cellobiose-rich 2G stream as a substrate and confers competitive advantages 

to both the microbe and the process, compared to currently existing strategies. The use 

of this strategy decreases the availability of free glucose that can be used by 

contaminating microbes, decreases the cooling time of the feed stream prior to 

fermentation (avoiding either decreased productivities or higher capital costs), decreases 

the process time through the co-consumption of sugars because of the absence of 

glucose repression, and finally, decreases the concentration of metabolic inhibitors that 

hinders the performance of yeasts. Modern CRISPR-based engineering technologies 

should be employed for initial strain engineering, after which other approaches, such as 

laboratory evolution combined with reverse engineering, should be exploited for 

metabolic fine-tuning. CRISPR-based metabolic engineering of industrial diploid 

strains has been successfully demonstrated for cellobiose (Ryan et al. 2014) and 

glycerol (Klein et al. 2016) utilisation, as well as for the production of 3-

hydroxypropionic acid (Jessop-Fabre et al. 2016), S‐ adenosyl‐ L‐ methionine (Liu et al. 

2019), and lactic acid from either glucose (Stovicek, Borodina and Forster 2015) or 

xylose (Lian et al. 2018). We hope the scientific community and eventually the fuel 

ethanol companies will embrace these proof of concepts to pursue scale-up, and 

possibly implement the iSUCCELL strategy in existing biorefineries. 
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LIST OF ABBREVIATIONS 

1G First-generation 
2G Second-generation 
Agt1 α-glucoside-H+ symporter 
BGL β-glucosidase 
C12 Disaccharide sugars 
C5 Pentose sugars 
C6 Hexose sugars 
CBH Cellobiohydrolase 
Cdt Cellodextrin transporter 
CDT-1/CDT-2 Cellodextrin transporter from Neurospora crassa 
EG Endoglucanase 
GH1-1 β-glucosidase from Neurospora crassa 
Hxt Hexose transporter from Saccharomyces cerevisiae 
HXT2.4 Putative hexose transporter from Scheffersomyces stipitis 

iCELL Intracellular cellobiose hydrolysis 
Imax Isomaltase 
iSUC Intracellular sucrose hydrolysis 
iSUCCELL Intracellular sucrose and cellobiose hydrolyses 
M Molasses 
Malx1 Maltose-H+ symporter 
Malx2 Maltase 
Pma1 Plasma membrane H+-ATPase 
SdCBP Cellobiose phosphorylase from Saccharophagus degradans 

SJ Sugarcane juice 
Suc2 Invertase enzyme 
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Figure 1. Schematic representation of a sugarcane-based biorefinery, in which the 

iSUCCELL yeast platform proposed here is applied (in the C6-C12 fermentation step). 

For this to occur, after pretreatment of lignocellulose, the cellulosic fraction is only 

partially hydrolysed to cellobiose, which is mixed with the 1G stream (Juice 

treatment). The end products of the biorefinery are highlighted (dark coloured 

rectangles). Adapted from Mariano et al. 2013. 
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Figure 2. Comparison between yeast strains from 1G and 2G processes with the 

iSUCCELL yeast proposed as a platform strain for an integrated sugarcane-based fuel 

ethanol process involving partial cellulose hydrolysis to cellobiose. The 1G 

fermentation medium contains C12 (sucrose) and some C6 (glucose and fructose) 

sugars. The 2G medium presented here consists of a typical stream containing C6 

(glucose) and C5 (xylose) sugars as a result of a complete hydrolysis of the cellulosic 

and hemicellulosic fractions. The engineered 2G strain expresses a heterologous 

xylose isomerase (XI) to convert xylose into xylulose, which is subsequently 

phosphorylated into xylulose-5-phosphate by native xylulokinase (Xks1). The 

fermentation medium for the iSUCCELL yeast contains C12 (sucrose and cellobiose) 

and small amounts of C6 (glucose and fructose) sugars, as a result of a combined 

1G+cellobiose-rich medium. Sucrose and cellobiose uptake are mediated by sucrose 

and cellobiose-proton symporters (Agt1 and Cdt, respectively) followed by hydrolysis 

of the disaccharides via intracellular hydrolases (Suc2 and Bgl, respectively) and 

proton extrusion by the plasma membrane ATPase Pma1. Uptake of glucose, 

fructose and xylose is mediated by native hexose transporters (Hxt). The iSUCCELL 

strain conserves 3 ATP for each disaccharide (sucrose or cellobiose) consumed, which 

results from glycolysis via the Embden-Meyerhof glycolytic pathway (+4 

ATP/disaccharide) and proton extrusion via Pma1 (-1 ATP/disaccharide). 

Heterologous proteins are indicated by names in italics and underlined. PPP: non-

oxidative pentose-phosphate pathway. 
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Table 1. Process and yeast-related advantages of an integrated sugarcane-based biorefinery using 

iSUCCELL yeast chassis. 

Process or yeast-related challenges for fuel 

ethanol production 

Advantage of the integrated sugarcane-

based biorefinery using iSUCCELL yeast 

chassis 

Different process temperature for ligno-

cellulose hydrolysis (~50 °C) and 

fermentation (~30 °C) 

A mixed 1G+cellobiose-rich stream reduces 

the cooling time between saccharification and 

fermentation, increasing productivity and/or 

saving equipment costs* 

Operational costs owing to the use of enzymes 

 

Supplementation with additional BGL in the 

cocktail is not required  

 

High concentration of inhibitors in the 2G 

stream 

 

A mixed 1G+cellobiose-rich stream dilutes 

the inhibitors’ concentrations, minimising 

their harmful effects on yeast* 

 

High incidence of bacterial contamination 

during fermentation 

 

The intracellular hydrolysis of sucrose and 

cellobiose minimises the accumulation of 

extracellular glucose, reducing both the level 

and diversity of contaminants and 

subsequently the use of antibiotics and other 

antimicrobials 

Ethanol yield on sugars 

 

Active transport of sucrose and cellobiose 

present in the mixed stream, followed by 

intracellular hydrolysis to ethanol and CO2, 

yields 3 net ATP/disaccharide, whereas their 

metabolism by extracellular hydrolysis leads 

to 4 ATP/disaccharide**. This decreased ATP 

yield leads to a higher fraction of the substrate 

being converted into ethanol (Basso et al. 

2011) 
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Fructose accumulation leads to incomplete 1G 

fermentation because of low affinity of 

hexose transporters for fructose 

When sucrose is hydrolysed intracellularly, 

the presence of unutilised extracellular 

fructose is minimised (Berthels et al. 2004) 

 

Strain robustness 

Use of robust industrial strains (commonly 

found in sugarcane-based 1G ethanol plants) 

as chassis for the iSUCCELL strategy 

eliminates the need to engineer alternative 

yeast strains (Della-Bianca and Gombert 

2013; Pereira et al. 2014; Cola et al. 2020). 

Many of the strains currently employed in the 

Brazilian fuel ethanol industry are diploid 

(Della-Bianca et al. 2013) and should be 

amenable to engineering using e.g. CRISPR, 

capitalising on their innate robustness. 

* These advantages do not rely exclusively on the iSUCCELL approach and could in principle be met by 
any other strategy involving an integrated 1G+2G process. 

** Glucose and fructose fermentation into ethanol and CO2 yields 2 ATP per mole of hexose. Thus, 4 ATP 
are formed when sucrose or cellobiose are metabolised via extracellular hydrolysis. When these 
disaccharides are metabolised via intracellular hydrolysis, 1 ATP per disaccharide is required to expel the 
proton that is taken up by the sucrose or cellobiose-H+ symporters, reducing the total ATP yield to 3 ATP 
for each disaccharide. 
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Growth 

conditions 

Improveme

nts post-

metabolic 

engineering

? 

Growth rate 

[1/h]Growth 

rate 

[1/h] 

Cellobiose 

consumption rate 

[g/(L·h)]Cellobiose 

consumption rate 

[g/(L·h)] 

Ethanol 

production rate 

[g/(L·h)]Ethanol 

production rate 

[g/(L·h)] 

Ethanol 

yield on 

cellobiose 

[g/g]Ethanol 

yield on 

cellobiose 

[g/g] 

Reference 

30 °C, 
anaerobic, 

ODinitial = 
2.0 30 °C, 
anaerobic, 

ODinitial = 
2.0 

No NS ≈ 0.167a≈ 0.167a ≈ 0.075a≈ 0.075a 

0.441 ± 
0.001 

get/gglu0.441 
± 0.001 
get/gglu 

Galazka et al., 
2010Galazka et 

al., 2010 

30 °C, 150 
rpm, aerobic, 

ODinitial = 
0.45 30 °C, 

150 rpm, 
aerobic, 

ODinitial = 
0.45 

No 0.11 ± 0.005 0.139b0.139b NS NS 

Guo et al., 
2011Guo et al., 

2011 

30 °C, 
oxygen-
limited, 

ODinitial = 1 
30 °C, 

oxygen-
limited, 

ODinitial = 1 

No NS 1.667b1.667b 0.7 0.42 

Ha et al., 
2011aHa et al., 

2011a 

NS No NS NS 0.37 ± 0.01 0.34 ± 0.01 

Ha et al., 
2011bHa et al., 

2011b 

30 °C, 100 
rpm, oxygen-

limited, 
ODinitial = 
130 °C, 100 

rpm, oxygen-
limited, 

ODinitial = 1 

Combinatori
al 

transcription
al 

engineering 

NS 2.18 0.74 0.39 

Du et al., 
2012Du et al., 

2012 

30 °C, 100 
rpm, oxygen-

limited, 
ODinitial = 

0.230 °C, 
100 rpm, 
oxygen-
limited, 

ODinitial = 
0.2 

Directed 
Evolution 

0.102 ± 
0.002 

2.65 ± 0.02 1.00 +/- 0.03 
0.436 ± 

0.004 

Eriksen et al., 
2013Eriksen et 

al., 2013 

30 °C, mild 
agitation 

No NS 1.542b1.542b 0.533b0.533b NS 

Yamada et al., 
2013Yamada et 

al., 2013 
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30 °C, 100 
rpm, oxygen-

limited, 
ODinitial = 
130 °C, 100 

rpm, oxygen-
limited, 

ODinitial = 1 

Directed 
Evolution + 

promoter 
engineering 

NS 2.50 ± 0.21 0.89 ± 0.01 0.37 ± 0.01 

Yuan et al., 
2013Yuan et 

al., 2013 

30 °C, 
oxygen-
limited, 

ODinitial = 
130 °C, 
oxygen-
limited, 

ODinitial = 1 

Evolutionar
y 

engineering 

NS 1.72 ± 0.11 0.74 ± 0.05 0.44 

Ha et al., 
2013aHa et al., 

2013a 

30 °C, 
oxygen-
limited, 

ODinitial = 
130 °C, 
oxygen-
limited, 

ODinitial = 1 

Site-
directed 

mutagenesis 
NS 3.18 1.16 NS 

Ha et al., 
2013bHa et al., 

2013b 

30 °C, 
oxygen-
limited, 

ODinitial = 
130 °C, 
oxygen-
limited, 

ODinitial = 1 

No NS 2.30 0.87 NS 

Ha et al., 
2013cHa et al., 

2013c 

30 °C, 80 
rpm 

No NS 1.02 ± 0.06 0.30 ± 0.01 0.38 ± 0.01 

Bae et al., 
2014Bae et al., 

2014 

30 °C, 220 
rpm, strict 
anaerobic, 

ODinitial = 
2030 °C, 220 

rpm, strict 
anaerobic, 

ODinitial = 
20 

Evolutionar
y 

engineering 
(in previous 

report) 

NS 3.6 ± 0.05 1.5 ± 0.03 NS 

Chomvong et 
al., 

2014Chomvong 
et al., 2014 

30 °C, 100 
rpm, oxygen-

limited, 
ODinitial = 
130 °C, 100 

rpm, oxygen-
limited, 

ODinitial = 1 

No NS ≈ 2.21b≈ 2.21b 0.53 ± 0.01 0.39 ± 0.01 

Kim et al., 
2014Kim et al., 

2014 

30 °C, 
anaerobic, 

ODinitial = 
1030 °C, 

anaerobic, 
ODinitial = 

10 

Directed 
evolution 

NS 2.7 ± 0.02 1.1 ± 0.01 0.45 ± 0.01 

Lian et al., 
2014Lian et al., 

2014 
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39 °C, 200 
rpm, oxygen-

limited, 
biorreator, 

ODinitial = 1 

Evolutionar
y 

engineering 

NS 3.04 1.50 0.49 Hu et al., 2016 

30 °C, 100 
rpm, oxygen 

limited, 
ODinitial = 1 

Evolutionar
y 

engineering 

NS 2.73 ± 0.01 1.09 ± 0.00 0.40 ± 0.00 Oh et al., 2016 

30 °C, 100 
rpm, oxygen 

limited, 
ODinitial = 1 

Evolutionar
y 

engineering 

NS NS 0.70 ± 0.01 0.42 ± 0.01 
Kim et al., 

2018 

30 °C, 100 
rpm, 

ODinitial = 1 
No NS NS 0.36 ± 0.01 0.33 ± 0.01 

Kim et al., 
2019 
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