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A B S T R A C T  11 

Oil-based mud (OBM) is used during the oil well drilling processes to cool drilling pits 12 

and remove the cuttings. As a result of these processes, the oil-based mud (OBM) cuttings are 13 

produced. The composition of the OBM cuttings depends on the geological conditions of the 14 

boreholes and the OBM used during the drilling operation. In this study, the OBM cuttings 15 

were used as an alternative material to produce a special cement known as oil-well cement 16 

(OWC). Raw meal mixtures were prepared with various percentages of OBM cuttings (5, 11, 17 

13, 15, 18, and 20%). Then they were sintered up to a temperature of 1450 oC, and the resulting 18 

cement clinker was ground to produce highly sulfate resistant OWC. The burnability of the raw 19 

meal was studied to explore the effect of OBM cuttings on raw meal behavior during the 20 

clinkerization process. The results of the study indicated a decrease in the decarbonation 21 

temperature and an increase in the rate of clinkerization as the OBM cuttings increased. The 22 

produced cement was tested per American Petroleum Institute’s testing procedure for OWC. 23 

Also, the cement hydration for 2, 7 and 28 days was carried out to study the behavior of the 24 

produced OWC.  25 
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Abbreviations and acronyms 42 

AR Alumina ratio 

Bc Bearden consistency scale 

C3S Tricalcium silicate 
C2S Dicalcium silicate 
C3A Tricalcium aluminate 
C4AF Tetra calcium alumino ferrite 
DSC Differential scanning calorimetry  
FF Free fluid test 
HPHT High-pressure high-temperature consistometer 
kcps kilo counts per second  
LSF Lime saturation factor 
OBM Oil-based mud 

OCC Oman Cement Company  
OWC Oil well cement 
PSD Particle size distribution  
RRD Rosin-Rammler Distribution  
SD Slurry density 

SEM scanning electron microscopy  
SR Silica ratio 

TGA Thermogravimetric analysis  
w/c water-to-cement ratio 
XRD X-ray diffractometry 
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1. Introduction 48 

Amongst the world’s major industries, the petroleum and gas industry plays a vital role 49 

in fulfilling global energy demand, with oil and gas providing, respectively, for 31% and 23% 50 

of the total global energy supply in 2018 (The International Energy Agency, 2019). The 51 

Sultanate of Oman contributed around 1% of the world’s total oil production for 2018, 52 

producing on average 978,000 barrels per day with a growth of 0.8% from 2017 (BP Statistical 53 

Review of World Energy, 2019). The production of oil and gas results in the co-production of 54 

waste materials, some of which are environmentally hazardous. The predominant waste is drill 55 

cuttings, comprising soil cuttings mixed with oil-based drilling fluids, generally referred to as 56 

oil-based (OBM) cuttings (Siddique et al., 2017). These OBM cuttings are considered 57 

potentially hazardous for the surrounding environment due to the presence of hydrocarbons 58 

and their chemical composition (Davies et al., 1984). The inorganic chemical composition of 59 

these OBM cuttings is predominantly defined by the geology around the well (Abdul-Wahab 60 

et al., 2016) while the cuttings may also contain 6-17 wt.% of diesel oil, which adheres to the 61 

cuttings (Dow et al., 1990). Discharge-related pollutants, like hydrocarbons and heavy metals 62 

within the cuttings, may have both acute and chronic toxicological effects through post-63 

sedimentary migration of contaminants within the sediment or leakage into the areas 64 

surrounding the drilling site (Allers et al., 2013). Waste cuttings can also spread by air, although 65 

this type of dissemination is greatly influenced by the cuttings’ particle size, which can range 66 

from 2 to 275 microns (Al-Dhamri et al., 2019a). 67 

In Oman, most oil exploration sites are on top of limestone deposits (Al-Dhamri et al., 68 

2019b). The OBM cuttings from Oman’s PDO sites located at Qarn-Alam and Fahud contain 69 

calcium as calcium carbonate, which is the main raw material for cement production. So, along 70 

with the calorific content of the oil and drilling fluids, this calcium-rich waste material could 71 

be utilized as a raw material in cement production. Furthermore, as the cement manufacturing 72 
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process involves a high-temperature pyro-process, the addition of hazardous industrial wastes 73 

like OBM cuttings is a viable and safe way to dispose of such material (Van Oss and Padovani, 74 

2002). This study focuses on the utilization of these calcium-rich OBM cuttings generated as 75 

waste during oil well drilling as a raw material for oil well cement (OWC) clinker production. 76 

This adoption of a circular economy approach, with an associated reduction in allocated CO2 77 

emissions, is of great value to a cement industry responsible for 7% of global greenhouse gas 78 

emissions.  79 

Abdul-Wahab et al. (2016) determined a fall in allocated CO2 emissions during the 80 

calcination process in clinker manufacture when using OBM cutting waste as a raw material. 81 

Due to its high raw material and fossil fuel consumption, the cement industry is keen to explore 82 

the use of industrial by-products as replacements. As part of this drive to circularity, developing 83 

economically viable more environmentally-friendly products, the cement industry has 84 

undertaken numerous studies into the replacement of raw materials with wastes and industrial 85 

by-products (Chatterjee, 2018). Such studies have provided significant opportunities to utilize 86 

large quantities of such industrial waste systematically and could reduce the cost of cement 87 

production (Barthel et al., 2016), plus reduce abiotic depletion and allocated CO2 emissions.  88 

OBM cuttings used as a partial substitution for shale to produce sintered bricks. The 89 

physico-mechanical properties of OBM cuttings after sintering at 950–1050 oC were examined 90 

by Li et al. (2011), and leaching of heavy metals was found to be within allowable limits. The 91 

study focused on replacing cement clinker with between 5–20% OBM cutting waste, with X-92 

ray diffractometry (XRD) and scanning electron microscopy (SEM) revealing densification as 93 

the sintering temperature increased. 94 

Much as with fly ash and silica fume, treated drill cuttings have also been investigated 95 

as cement replacements. When looking at incorporation into concrete, a 10% reduction in 96 

strength was observed when 5% of the cement was replaced by dried drill cuttings. However, 97 
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the compressive strength was reduced by 20% when 10%, 15% and 20% of the cement was 98 

replaced. When examining the effect of fly ash and silica fume additives on concrete samples 99 

made with drill cuttings, a significant impact on the compressive strength of the cement sample 100 

was found (Mostavi et al., 2015). This suggests the need for a more effective route for utilizing 101 

OBM drill cuttings. 102 

A study on the use of treated OBM cuttings, namely modified drilling waste materials 103 

(MDWMs), as base course material in road construction evaluated MDWMs constituting 3% 104 

of a cement mixture. The results showed a good performance that satisfied the requirements 105 

for a class-M base due to high pH, low plasticity, and the addition of clay sand material (Shon 106 

et al., 2016). Al-Futaisi et al. (2007) researched tank bottom oily sludge waste when used as a 107 

fuel supplement, in solidification, and as road material, finding that the carbon content seemed 108 

comparable with other fuels like bituminous coal, sewage sludge (SS), and meat and bone meal 109 

(MBM). They also assessed the toxicity characteristics and leaching behavior of a solidified 110 

sludge mixture and in road applications. The lack of the leachability of heavy metals from the 111 

oily sludge mixture suggested that sludge applications should not be considered hazardous. A 112 

technical feasibility study showed that drill cuttings dried, ground, pelletized and sintered at 113 

1160–1190 oC could be used as aggregate in lightweight concrete (Ayati et al., 2019). The 114 

lightweight aggregate had a particle density of 1.29 g/cm3, water absorption of 3.6%, and 115 

compressive strength of 4.4 MPa. The results pointed to an efficient option for reusing drilling 116 

waste.  117 

However, all the research mentioned above used OBM wastes to produce low-energy, 118 

low-value products, like aggregates. This doesn’t necessarily ensure efficient circularity. As 119 

mentioned above, OBM cuttings are a source of calcium, with a calorific value. As such, they 120 

may be appropriate to produce Portland cements, including oil well cements. Oil well cements 121 

are Portland cements with modified compositions and performance to meet the demanding 122 
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conditions within an oil well. Various oil well cements are manufactured worldwide according 123 

to customer needs as per local and international standards. In petroleum drilling operations, 124 

special oil well cements have been standardized by the American Petroleum Institute (API) for 125 

different cementing applications (API Spec 10A, 2019), including sealing of annulus after a 126 

casing string has been run in a wellbore, sealing a lost circulation zone, and sealing an area in 127 

an oil well with a reduction or absence of flow (Nelson and Guillot, 2006). The conditions 128 

inside an oil well rig significantly differ from surface conditions during construction operations 129 

so, in response, well cements are developed as special cements (Zhang et al., 2010). 130 

This study exploits the close geographical proximity of OBM cuttings and the demand 131 

for oil well cement to examine whether OBM cuttings can be used as a component of the raw 132 

meal in oil well cement manufacture.  133 

  134 

2. Materials and Methods 135 

2.1. Collection and preparation of raw materials 136 

The primary raw materials required for cement manufacturing were collected at the 137 

Oman Cement Company (OCC). The conventional raw materials including limestone, quartz 138 

phyllite and iron ore mining come from within the company’s immediate vicinity. For the 139 

current study, the required raw materials were collected from the stacked, homogenized piles 140 

from the OCC. The required amount of each material was then air-dried and crushed to a finer 141 

size using a lab-scale jaw crusher. These crushed materials, which were generally reduced to 142 

less than 5 mm in size, were used for the raw meal preparation. The raw meal was a mixture of 143 

all the raw materials mixed and further ground to a fine powder as per the raw mix design 144 

calculations. The OBM cuttings were collected from one of the OBM waste storage yards that 145 

are located at the Fahud oil production station (Petroleum Development Oman). Fig. 1 shows 146 

a typical drilling rig with OBM cutting waste generation process. The wet OBM cuttings from 147 
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drilling operations were transferred to designated landfills and were allowed to be dried by the 148 

direct sunlight. This air-drying process continues for a couple of years and the semi-dried OBM 149 

cuttings which possess moisture content up to 8% were collected and used for the current study.  150 

 151 

2.2. Raw mix design 152 

Depending on the type of cement, the ratios of raw materials vary. Table 1 shows a 153 

typical oil well cement composition. Raw material percentages were calculated using the 154 

allegation-alternate method of designing with multiple raw material component calculation 155 

system.  156 

Based on this raw mix design calculation, the quantity of raw materials was calculated 157 

in percentages, and the mixture was mixed accordingly after weighing. The lime saturation 158 

factor (LSF), silica ratio (SR), and alumina ratio (AR) are the primary deciding calculation 159 

factors that determine the amount of raw materials to mix. The raw mixes were designed 160 

according to parameters that were based on the final cement product’s chemical properties. 161 

Further, the design also considered fulfilling the mineralogical composition requirements after 162 

the sintering process like tri-calcium silicate (C3S), dicalcium silicate (C2S), tricalcium 163 

aluminate (C3A), and tetra-calcium alumino ferrite (C4AF). The calculation factor targets were 164 

as follows:  165 

 Lime saturation factor (LSF): ≈ 92.0 166 

 Silica ratio (SR): ≈ 2.6 167 

 Alumina ratio (AR): ≈ 0.7 168 

By designing the raw mix using five raw materials, including the research material 169 

OBM waste cutting according to the above parameters, the final oil well cement composition 170 

was determined. A total of six raw mixes, therefore, were designed and prepared with limestone 171 
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content ranging between 66.5–75.0%, OBM cutting content ranging between 5.0-20.0%, quartz 172 

phyllite in the range of 10.0–15.6%, and iron ore content between 3.3–3.5%.  173 

 174 

2.3. Finer grinding process 175 

The process of finer grinding is considered a vital part of the cement manufacturing 176 

process. Within the process, this size reduction stage occurs over several steps. For this study’s 177 

purpose, finer grinding was performed at two levels:  178 

 Raw materials grinding for raw meal preparation, and 179 

 Cement grinding was carried out with produced oil well clinker and gypsum. 180 

For this process of finer grinding stages, a TNS-50 drum mill (Siebtechnik Tema Inc., 181 

Cincinnati, Ohio, USA) was used. The material fed into the drum mill was pulverized by the 182 

freely moving grinding media through the action of pressure, impact, and shearing. Apart from 183 

size reduction, material homogenization was also carried out during the grinding process inside 184 

the cylindrical drum mill, which rotates around a fixed center point and is filled with different 185 

sized grinding media balls ranging in size from 5–50 mm. The machine has a volume of 55 186 

dm3, runs at 50 rpm, and has a grinding media weight capacity of 92 kg. Materials can be 187 

ground down to particles sized between ≈ 10 mm to less than ≈ 250 µm.  188 

 189 

2.4. Characterization and testing 190 

2.4.1. Chemical and mineralogical properties of raw materials and OBM cuttings 191 

Raw materials and OBM cuttings are crushed in a lab jaw crusher and later pulverized 192 

to a fine powder for determining their chemical composition, which is generally carried out 193 

through wavelength dispersive X-ray spectrometry (WDXRF) or the wet method of analysis. 194 

WDXRF equipment is designed to carry out analyses using wavelength dispersion provided 195 
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with a set of fixed channels for each element. An X-ray tube under vacuum delivers fast and 196 

reliable results.  197 

Powdered samples mixed with a constant quantity of wax material can act as a binder; 198 

in this study, the samples were further ground in an eccentric shaft grinding mill for a specified 199 

duration. The powdered mix was then subjected to 15 kN of pressure using a hydraulic press 200 

machine to make the material into a tablet form. This tablet then was fed into the WDXRF 201 

machine for analysis, and the resulting kilo counts per second (kcps) were converted to a 202 

concentration using a standard curve plotted using international standards.  203 

The conventional wet-chemical method was used to determine the chemical 204 

composition of the cement. Cement-related raw materials are generally tested through 205 

gravimetry, and through titrimetric and complexometric methods to determine major 206 

constituents. To determine minor elements, flame photometry for sodium and potassium, and 207 

argentometry for chloride methods are used. Methods used to determine elements follow 208 

ASTM and EN standard techniques using references for cement and cement related materials. 209 

The OBM cuttings in this study were further tested through XRD, studied for their 210 

mineralogical composition, and compared with limestone. 211 

 212 

2.4.2. Preparation of raw meal for sintering 213 

The raw meal powder samples were first mixed with water and shaped to 20–30 mm 214 

size balls. These balls were then oven-dried for 24 hours to remove moisture. Hardened balls 215 

were then subjected to heat treatment. All the samples were placed in a steel container and kept 216 

inside the furnace. The temperature rose from room temperature to 1450 °C using a 217 

programmable controller with an RTD sensor available with the equipment. After reaching the 218 

set temperature, the samples were left alone for 30 minutes for chemical reactions and phase 219 

formations to occur. After completing the heat treatment, clinker nodules were cooled rapidly 220 
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by an air blower and preserved in sealed bags for further processing. Produced clinker with 221 

different proportions of OBM cutting waste was then subjected to WDXRF, XRD (Fig. 2), and 222 

wet analysis to confirm and compare their compositions with conventional oil well clinker 223 

(RMXref). 224 

 225 

2.4.3. Burnability and thermal analysis study 226 

This study was based on determining uncombined CaO in the sintered raw mix (clinker) 227 

after a specific time and temperature. The raw mixes were subjected to thermal treatment at 228 

varying temperatures. The resulting clinker was then cooled rapidly and ground until it could 229 

pass through a 200 mesh to determine levels of uncombined/free CaO. The uncombined/free 230 

CaO was then extracted with hot moisture-free ethylene glycol and titrated with 0.1 N 231 

hydrochloric acid using bromocresol green as an indicator (IS: 4032, 1985). In this study, the 232 

analysis was carried out for clinker materials sintered at 1350, 1400 and 1450 °C. The results 233 

obtained for each raw mix were tabled and studied.  234 

The measurement of heat flow and changes in weight associated with materials’ 235 

transitions and reactions over the temperature in a controlled atmosphere is referred to as 236 

thermal analysis. The simultaneous testing of differential scanning calorimetry (DSC) and 237 

thermogravimetric analysis (TGA) offers higher productivity in the data analysis. The DSC 238 

technique determines variation in a sample’s exothermic or endothermic heat flow during 239 

controlled thermal conditions while thermogravimetry measures a material’s weight loss under 240 

the same thermal condition. The prepared raw and reference raw mixes were subjected to 241 

thermal treatment up to 1400 ℃ at a rate of 20 °C per minute, and the loss in weight and exo 242 

and endothermic behaviors was studied. 243 



11 
 

2.4.4. Physico-mechanical testing for OWC 244 

2.4.4.1. Thickening time test 245 

All the cements were transformed into a cement slurry for this testing by using distilled 246 

water in the ratio of 44% by mass to the cement. This slurry was tested under a specified 247 

temperature, and the pressure conditions and pumpability time were calculated by measuring 248 

the consistency according to the Bearden consistency (Bc) scale. The time after which the 249 

cement slurry consistency became high enough that the slurry became unpumpable was 250 

standardized as 100 Bc. 251 

By using a blade-type mixing device, the researchers were able to mix cement and water 252 

at a 4,000 and 12,000 rpm rotational speed for 15 seconds and 30 seconds. The cement slurry 253 

was then prepared for further testing. A pressurized high-pressure, high-temperature 254 

consistometer (HPHT) capable of withstanding high temperatures and high pressure was used 255 

for the thickening time test. The HPHT was equipped with a heating system, and the pressure 256 

vessel was filled with synthetic oil for pressurizing. The slurry container, which held the 257 

cement slurry for testing, was equipped with a potentiometer which measured the consistency 258 

in Bc. The container was kept inside the HPHT pressure vessel and rotated at a speed of 150 259 

rpm. When the Bc reached 100, the testing was completed, and the time taken to reach this 260 

value was noted and studied.    261 

 262 

2.4.4.2. Free fluid (FF) test 263 

This test determines the amount of colored or colorless water that separates from the 264 

cement slurry after keeping the cement slurry static for two hours in an Erlenmeyer flask. The 265 

cement slurry, which was prepared in a mixing device and transferred to an atmospheric 266 

consistometer, was stirred at 150 rpm and kept at a temperature of 27 C in atmospheric 267 

pressure for 20 minutes. The conditioned slurry was then transferred to a 500 ml graduated 268 
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Erlenmeyer flask and kept on a vibration-free surface for two hours. After the required period, 269 

the supernatant water was pipetted out and measured. Using calculations, the quantity of FF 270 

was calculated by the percentage of the total derived and compared. 271 

 272 

2.4.4.3. Slurry density test 273 

Slurry density is the weight per unit volume of neat cement slurry and is generally given 274 

in units of lbm/gal or kg/m3. It is one of the main parameters for well security and integrity. 275 

The slurry density varied based on the water-to-cement ratio per API classifications of the 276 

cement. The density ranged from 1380–2280 kg/m3  or 11.5–19.0 lbm/gal (Schlumberger, 277 

2019). It was measured using a fluid density balance to calculate the absolute density of the 278 

fluid sample. The cement slurry was placed in a fixed volume via a sample cup and pressurized 279 

to decrease the amount of entrained air. After preparation, the cement slurry was placed in a 280 

mixing device with 44% by mass of distilled water and then transferred to the sample cup of 281 

the fluid density balance. The Fann model 140 fluid density balance (Fann Instrument 282 

Company, Houston, Texas, USA) was used for testing and included a graduated balance beam 283 

with a cup, a sliding weight rider to achieve balance, a lid cap, a base with a fixed fulcrum, and 284 

a plunger. The plunger operated like a syringe and was used to pressurize the sample cup.  285 

  286 

2.4.4.4. Rheology test 287 

A study of rheological properties is a study of the flow of OWC slurry that determines 288 

the quality of the cement slurry and helps predict the end-use performance and physical 289 

parameters during handling and for the long term. The flow properties, in general, are affected 290 

by factors like water-to-cement (w/c) ratio, particle size, distribution of cement grains, and 291 

chemical composition of cement. This value is measured by inducing shear stress in a 292 



13 
 

commonly used coaxial cylinder geometry, which measures the rheological property of cement 293 

slurry as the material sheared by rotating one of the cylinders.  294 

The cement water mix percentage of 44 as per API Spec 10A (2019) was based on the 295 

mass of dry cement measured with an accuracy of  0.5 grams taken. By using a Chandler 296 

constant speed mixer model 30–60, the cement slurry was prepared and then transferred to a 297 

temperature-controlled liquid bath in a container. The cement slurry was conditioned using a 298 

fixed blade assembly rotating at 150 rpm by the consistometer model-1200 (Chandler 299 

Engineering). The cement slurry was stirred for 20 minutes at a set temperature of 27  2 C at 300 

atmospheric pressure. This conditioned slurry was then transferred to a Fann viscometer (model 301 

35SA) for studying the rheological behavior such as gel strength and viscosity. The viscosity 302 

caused by the viscous drag exerted by the slurry was transmitted to a precision spring and 303 

measured in centipoise or milli-Pascal seconds.  304 

 305 

2.4.4.5. Compressive strength test  306 

For the testing in the current study, an ELE-ADR model automatic compression 307 

machine connected with a 250 kN load frame was used. In this machine, the automated loading 308 

cycle system is controlled by a closed-loop microprocessor, and the hydraulic system operates 309 

based on a controlled loading rate. The device was fitted with a 50 mm square platen 310 

compression jig in accordance with ASTM C109 (2012) and API Spec 10A (2019) for testing 311 

the hydrated cement mortar. The cement slurry was prepared in a bottom-drive mixing device 312 

per standards and transferred and molded into a 50  50 mm cube. This cube mold was cured 313 

in a temperature-controlled water bath and crushed to determine compressive strength.   314 
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3. Results and discussion 315 

3.1. Properties of raw materials 316 

Chemical analysis of the primary raw materials is shown in Table 2. It can be seen that 317 

the limestone revealed a calcium content of 54.4%. The X-ray diffractometry (Fig. 3) identified 318 

the major calcium mineral formations as; calcite, calcitic dolomite, and dolomitic calcite, with 319 

calcite grain sizes ranging from 50–120 µm. Additionally, quartz (SiO2) was identified as a 320 

predominant mineral, with ankerite and microcline present in minor proportions (Fig. 4). These 321 

calcite grains ranged from subhedral to euhedral and were distributed uniformly along with 322 

quartz, orthoclase-feldspar, and iron oxide.  323 

The chemical composition of OBM cuttings contained 25.2% calcium (as CaO by 324 

XRF), while XRD revealed that this was primarily in the form of calcite, together with traces 325 

of dolomite. Other minerals present included quartz and muscovite, plus traces of talc, ankerite, 326 

and barite.  327 

Iron was, unsurprisingly, the predominant element within the iron ore, at 58.3%. XRD 328 

revealed the presence of goethite, magnetite, and hematite. Quartz was observed as a minor 329 

mineral. XRF analysis of another fluxing additive, kaolin, indicated the presence of 32.7% as 330 

aluminum oxide and 39.7% as silicon dioxide. The mineral phases present were kaolinite, 331 

goethite, and quartz. The major silica source in the raw material was quartz phyllite, with 72.8% 332 

SiO2 present in the form of quartz. Kaolinite, ankerite, muscovite, and hematite were also 333 

present as minor phases.  334 

 335 

3.2. Raw mix analysis and thermal behavior 336 

Table 3 shows different compositions of the designed raw mixes as limestone was 337 

replaced by OBM cuttings. Note that the proportions of the other raw materials also changed 338 

based on the required LSF, SR, and AR as detailed in Table 4. The resultant elemental 339 
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compositions of the six raw mixes are summarized in Table 5, which also shows the fluctuation 340 

in LSF for each mix, plus the slightly decreasing SR and increasing AR with increasing OBM 341 

cutting content. XRD study carried out to compare the prepared mixes (Fig. 5). 342 

The decarbonation of calcite (CaCO3) in all the mixes was compared via differential 343 

scanning calorimetry (Fig. 6). The derivative curves showed carbonate dissociation 344 

temperatures decreasing with increasing OBM cuttings content, which reduces fuel 345 

requirements. Further, the results showed that clinker phase formation started at lower 346 

temperatures, with a drop of 30 oC between the reference mix and RMX6 (Fig. 7). This 347 

observation confirms the trends in free lime contents observed in the burnability test results.  348 

Burnability, in general, is chiefly a measure of the ease of formation of the alite phase 349 

from belite with the free lime and other major phase formations like aluminate and ferrite. The 350 

importance of optimizing the burnability of clinker by tailoring the burning and sintering 351 

process stems from its potential for energy savings, production increases, and product 352 

enhancement (Hills et al., 2002). To determine the burnability of cement clinker, two different 353 

approaches were considered. These approaches would fundamentally satisfy the complexities 354 

of reactions and complex chemistry (Hewlett, 2003). According to this, the reaction kinetics 355 

carried out in the transformation from raw meal to clinker were classified as decomposition, 356 

diffusion, melting, liquid phase sintering, nucleation and crystal growth, polymorphic 357 

transformation, and condensation. Reaction kinetics are influenced considerably by their 358 

chemical, physical, and mineralogical characteristics and thus influence the quality of the final 359 

product.  360 

With a thermal treatment of the raw mix samples at 1350, 1400 and 1450 oC, there was 361 

a decrease in free lime with increasing temperature for all raw mixes and references. Further, 362 

increased OBM levels led to a general (but not consistent) decrease in free lime. The effect of 363 
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OBM addition was greatest at lower temperatures. RMX3 showed the lowest change of all the 364 

samples because the LSF was lowest when compared to all other raw mixes. 365 

 366 

3.3. Particle size distribution and decarbonation 367 

Variations in decarbonation behavior were found to vary with particle size distribution 368 

(PSD). This relates to the critical particle size, which is the maximum acceptable particle 369 

diameter of the calcareous and siliceous compounds in raw meals to prevent any impairment 370 

of burnability (Telschow, 2012). The smaller the particle size, the lower the energy requirement 371 

for decarbonation. In general, the cement industry uses a ball and vertical roller mills for 372 

particle size reduction. But costs and machinery efficiency prevent ideal particle sizes from 373 

being attained. Despite this, 40% of the energy consumption in a typical cement plant is due to 374 

grinding (Anon, 1993). The particle size distributions were modeled using the Rosin-Rammler 375 

Distribution (RRD) function (Fig. 8). The data suggest that the slope of the cumulative 376 

oversized distribution curves tended to increase in a range of 90–45 m as the percentage of 377 

OBM cuttings increased. The finer particle size distribution (PSD) leads to a larger surface area 378 

in the raw mix which favors a more rapid and high rate of heat transfer (Duda, 1975). For the 379 

samples, the heat flow curve was obtained and transformed into second derivative curves, 380 

which aided with easier data interpretation (Gabbott, 2008). The endothermic peak appears 381 

inverted due to a second derivative function, which reflects a move towards a lower 382 

temperature as the percentage of OBM cuttings increased in the raw mix.  383 

The results in Table 6 showed significant variation in the burnability process according 384 

to the percentage of OBM cutting in the raw mixes. Table 7 summarizes the calculated phases 385 

with their compositions. On the other hand, the calcareous and siliceous materials in the OBM 386 

cuttings differed in size, with finer particle sizes due to the rotary drilling technique. In general, 387 

for oil well drilling, the cuttings along with drilling fluids that emerge allowed to settle in the 388 



17 
 

mud tank. They are then filtered using a sand separator, the contaminated mud is recirculated 389 

using a mud pump for drilling work. This process leads to finer silicate and calcite minerals in 390 

the rejected OBM cuttings (IOGP, 2016). 391 

These OBM cuttings were used as a replacement for limestone with a reduction in 392 

particle size as the OBM cutting content increased. This correlated with the lowering of 393 

carbonate decomposition temperature. As per Taylor (1997), Fundal’s equation (Eq. (1)) is 394 

used for defining burnability by using the percentage of free lime as,    395 

                    396 

  𝐶𝑎𝑂1400 = [0.343 (𝐿𝑆𝐹 − 93) + 2.74(𝑆𝑅 − 2.3)] + [0.83𝑄45 + 0.10𝐶125 + 0.39𝑅45] (1) 

 397 

Where CaO1400 refers to free lime after burning at 1400 °C, LSF is the lime saturation 398 

factor, SR is the silica ratio, Q45 is the percentage of quartz over 45 microns, C125 is the 399 

percentage of calcite over 125 microns, and R45 is the percentage of other acid-insoluble 400 

residues over 45 microns. From Eq. (1), it is evident that the siliceous and calcareous materials’ 401 

fineness played a critical role in controlling burnability, and these materials favor phase 402 

formation. 403 

This endothermic decarbonation reaction rate also referred to as the Ginstling-404 

Brounschtein relationship (Eq. (2)), is believed to give a better description of the overall 405 

decomposition process (Hewlett, 2003), 406 

 407 

  𝐹(𝛼) = (1 − 23 𝛼) − (1 − 𝛼)23 = ( 𝑘𝑟2) 𝑡 (2) 

                                                               408 

In Eq. (2), r is the particle radius, α is the fraction decomposed at some time t at a 409 

constant temperature, and k is a rate constant.  410 
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Even though there were variations in reactions based on thermochemical calculations, 411 

the overall energy required for the clinkerization process remains unchanged. But on an 412 

industrial scale, the changes in the rate of reactions increase clinker production to a reasonable 413 

extent, including the rate of decarbonation as an important step.             414 

The variation in the burnability of the raw mixes was also studied; the variability was 415 

most evident in the raw mixture’s 1350–1450 °C temperature range. The most abundant 416 

minerals (i.e., CaO and SiO2) reacted at this temperature range and resulted in the formation of 417 

thermodynamically stable C3S and C2S phases. The rate of formation and disappearance of free 418 

CaO related to the radius of the mineral particles; hence, the finer OBM cutting minerals 419 

contributed to relatively higher phase formation. This finding was confirmed by the free CaO 420 

determination of clinkers formed at different temperatures. The results were given in mixes, 421 

and the tests were carried out as per the standard method (Lerch and Bogue, 1930).  422 

The mineral barite (BaSO4) is present in the OBM cuttings. The effects of barium (Ba) 423 

on clinkerization have been studied by Xin et al. (2000) and Ludwig and Zhang (2015), who 424 

revealed a decrease in phase formation temperature and an increase in compressive strength 425 

when barium was present. As such, barium may be considered a mineralizer, which according 426 

to Taylor (1997), is an agent that promotes the formation of a particular solid phase by affecting 427 

the equilibria through incorporation in one or more of the solid phases. Katyal et al. (1999) 428 

studied the effect of barium as a mineralizer on alite formation, finding that the presence of up 429 

to 0.5% BaO in the raw mix acted as a mineralizer at 1450 oC and aided C3S formation. XRD 430 

analysis of OBM cuttings confirmed the presence of Ba in the form of BaSO4, commercially 431 

termed as barite. This is used as a weighing agent during drilling operations (Ibrahim et al., 432 

2017) due to its exceptionally high specific gravity (4.2–4.5). Zezulová et al. (2016) used 0.5-433 

5.0% barium sulfate and barium carbonate in the raw mix and studied phase formation. They 434 

showed an increase in alite formation when up to 1% Ba was in the raw mix. This formulation 435 
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improved burnability due to the earlier melting of BaSO4. But higher percentages of barium 436 

deteriorated the mineralogy.  437 

In the solid-state reaction region (i.e., from 1200–1380 °C) before the formation of C3S, 438 

the reaction between CaO with aluminates and the other silicates begins. The temperature of 439 

this process mainly depends on the liquid content and contributed to the SO3, MgO, and minor 440 

elements apart from major oxides (Segata et al., 2019). These minor constituents support the 441 

earlier phase formation by acting as mineralizers and increasing the mobility of oxides in the 442 

liquid state. Al-Dhamri et al. (2019b) studied this effect of barium in clinker formation, while 443 

Katyal et al. (1999) studied the burnability of clinker with barium and showed that it acts as a 444 

mineralizer, accelerating the phase formation at earlier temperatures.  445 

The mineralogical compositions of the clinkers were obtained after firing at 1450 °C 446 

for 30 minutes, from which theoretical C3S and C3A contents were determined (Table 8). The 447 

potential C3S and C3A contents were in the range of 52.95–57.01 and 0.65–2.50. Optical 448 

microscopy revealed that the alite and belite grains were distributed evenly, with an average 449 

alite grain size between 32–37 mm having a pseudohexagonal shape. Most belite grains ranged 450 

between 20–30 mm and were found as clusters and had a sub-rounded shape with corroded 451 

margins. The porosity of the clinker was high, and a considerable amount of interstitial matter 452 

was observed. 453 

 454 

3.4. Physio-mechanical properties 455 

Table 9 gives the elemental composition of each of the cements, together with the 456 

calculated phase composition. As a primary requirement for OWC, the physio-mechanical 457 

properties as per API specifications (Table 10) were conducted in all cements (API Spec 10A, 458 

2019). The water/cement ratio was 0.44 % as recommended by the standard. To compare the 459 
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cements, the fineness was controlled for uniformity in testing and was in the range of 296–311 460 

m2/kg.  461 

For the samples prepared with OBM cuttings, there was a steady decrease in slurry 462 

density (SD) with increasing OBM addition, falling from 16.4 for RMX1 to 15.7 for RMX5 and 463 

RMX6. This was caused by the presence of non-hydrated cement in the cement slurry after 464 

mixing (Nelson and Guillot, 2006). However, the reference cement had a slurry density of 15.9, 465 

suggesting that it was the mixes with OBM cutting contents of up to 13% which deviated from 466 

expected behavior. Similarly, cements containing up to 13% showed free fluid values greater 467 

than that of the reference cement, while higher OBM cutting contents led to lower free fluid 468 

values, with a minimum at 15% OBM cutting (RMX4). Thickening times based on Bearden’s 469 

consistency varied from 93 to 117 Bc and were within the limits of a Class G well cement 470 

condition of 90 to 120 Bc. Compressive strengths decreased consistently at 38 oC with 471 

increasing OBM cutting content and showed a general downwards trend at 60 oC. However, 472 

only the RMX6 failed the standard requirement. All of the cements exhibited similar rheological 473 

behavior (Table 11). The viscosity and gel strengths confirmed less gelation of cement slurries, 474 

a prime requirement for pumping cement slurries during operation. 475 

 476 

3.5. Cement hydration 477 

The cement hydration carried out showed good similarities in all raw mixes with 478 

RMXref, and the obtained results are plotted in Fig. 9.  The hydrated cement samples were kept 479 

in tightly closed vials in required environmental conditions. When tested using thermal studies, 480 

the TGA–DSC calorimetry showed the RMXref was highest for CH and CHeq formation on days 481 

two, seven, and twenty-eight. After seven days, the RMXref showed the highest value and 482 

RMX5 showed the lowest. This finding may be due to the lower LSF and C3S contents; the 483 

higher proportion of C2S that formed in the cement, and the slower rate at which the cement 484 
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hydrated (Puertas et al., 2010). The thermal curve showed three different curves for the 485 

hydrated cement test with weight losses in ettringite, portlandite, and calcite in the ranges of 486 

110-120, 200-400 and 580-900 °C, respectively (Bullard et al., 2011). The remaining RMXs 487 

were almost on the same levels of formations and displayed slight variations according to their 488 

mineralogical composition. In the study group, RMX3, when compared to other raw mixes, 489 

displayed a lower C3S content when compared to all other cements. 490 

At twenty-eight days, the hydration behavior of CH, and CHeq formation showed an 491 

increasing trend as the OBM cuttings percentage increased and then at 20%, it showed a 492 

reduction. The reduction of CH and CHeq formation may be due to a reduction in C3S and C2S 493 

minerals as most of the calcium converted to C3A and C4AF, which generally does not 494 

contribute to strength (Chen and Juenger, 2009). The hydration of all cements manufactured 495 

with different percentages of OBM indicates that the behavior was similar to commercial 496 

references. The portlandite formation for all the cements was higher at the early stages of 497 

hydration, and at later stages, ettringite formation increased (Gabrovšek et al., 2006). An 498 

increase in C-S-H portlandite formation was observed at twenty-eight days with hydrated 499 

cement using XRD (Fig. 10), which confirms that OBM cutting replacement in the cement 500 

favors the hydration process.  501 

The hydration of OWCs at different stages was calculated (Table 12). This study’s 502 

findings also confirm that there is not much of a difference in earlier hydration of all cements 503 

used for reference. Among all samples, the reference showed high hydration levels at two, 504 

seven and twenty-eight days, followed by RMX4 and RMX5. Later hydration at seven and 505 

twenty-eight days in RMX4 and RMX5 almost matched the hydration of RMXref. 506 

 507 
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4. Conclusions and future prospects 508 

The cement prepared using OBM cuttings had very similar rheological properties as the 509 

manufactured industrial well cement. This finding suggests that OBM cuttings could be used 510 

to produce OWC. The most important results of this study are listed below:  511 

 All clinker phases were well-formed and had concentrations that met clinker 512 

requirements for producing OWC.  513 

 The addition of OBM cuttings reduced the calcination temperature, granting two 514 

advantages. First, reducing calcination temperature also lowers fuel consumption 515 

during manufacturing. Second, lower CO2 emissions result from such a process due to 516 

a reduction in the amount of fuel required. 517 

 The burnability of the raw meal with a higher percentage of OBM cuttings resulted in 518 

lower free lime content, indicating the improved burnability behavior of raw meal when 519 

OBM cuttings were added.  520 

 As the OBM cuttings increased, the resultant OWC had lower compressive strength. 521 

Substituting up to 15% of OBM cuttings in cement meets compressive strength 522 

requirements.  523 

 Above 15% OBM cuttings substitution, the alite content was reduced as a result of a 524 

lower LSF, leading to a compressive strength which was below the standard 525 

requirement. 526 

 Proper study on the calcium content of the available OBM cuttings is suggested to be 527 

prepared. Based on this, the raw mix design will be prepared for manufacturing on an 528 

industrial scale. 529 

 Plant level studies are suggested to be accomplished for the practical implementation 530 

of the study, and this, in turn, will benefit industries to a greater extent.  531 

 532 
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Table 1  686 
Typical mineralogical composition of oil well cement Class 'G'. 687 
Oxide composition Cement notation Common name Concentration (wt.%) 

3CaO ⦁ SiO2 C3S Alite 48.0 – 58.0  

2CaO ⦁ SiO2 C2S Belite 18.0 – 28.0   

3CaO ⦁ Al2O3 C3A Aluminate <3.0 

4CaO ⦁ Al2O3 ⦁ Fe2O3 C4AF Ferrite 12.0 – 18.0  

 688 

 689 

Table 2 690 
Chemical composition of raw materials (wt.%). 691 

Material LOI950 SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O K2O TiO2 P2O5 Mn2O3 

Limestone 42.55 1.82 0.20 0.45 54.42 0.15 0.15 0.18 0.04 0.03 0.00 0.00 

OBM cuttings 30.91 22.65 8.53 3.89 25.16 1.31 2.10 0.90 0.88 0.98 0.32 0.05 

Iron ore 10.25 16.15 10.75 58.32 1.21 0.79 0.08 0.18 0.10 0.66 0.21 0.57 

Kaolin 13.23 39.67 32.76 8.81 1.53 0.36 0.12 1.02 0.13 2.03 0.03 0.03 

QPh 3.20 72.87 7.11 6.03 5.27 2.85 0.09 1.02 0.74 0.57 0.08 0.11 

 692 

 693 
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Table 3 695 
The proportion of raw materials in the designed raw mixes. 696 

Raw material 
Raw Material Proportion, % 

RMX1 RMX2 RMX3 RMX4 RMX5 RMX6 

Limestone 75.0 71.5 70.0 69.3 67.2 66.5 

OBM cuttings 5.0 11.0 13.0 15.0 18.0 20.0 

QPh 15.6 14.3 13.5 12.1 10.8 10.0 

Iron ore 3.3 3.2 3.5 3.6 3.5 3.5 

Kaolin 1.1 0.0 0.0 0.0 0.0 0.0 

 697 

 698 

Table 4 699 
Target parameters for raw mix design.  700 
Parameter Value 

Raw mix residue on 90 (R90) 10.0-13.0 % 

LSF (lime saturation factor) ~92.0% 

AR (alumina ratio) ~0.7% 

SR (silica ratio) ~2.6% 

C3A content of clinker < 1.0% 

Free lime content of clinker <1.5% 

 701 

 702 

  703 
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Table 5  704 
Chemical composition of the designed raw mixes (wt.%). 705 

 706 

 707 

 708 

 709 

 710 

 711 

 712 

 713 

 714 

 715 

 716 

 717 

 718 

 719 

 720 

 721 

 722 

 723 

 724 

 725 

 726 

 727 

 728 

Oxides Blank (Bk)   RMX1  RMX2 RMX3 RMX4 RMX5 RMX6 

LOI950 34.73 34.44  34.61 34.59 34.88 35.07 35.16 

SiO2 15.21 14.83  14.73 14.62 14.06 13.74 13.59 

Al2O3 2.05 2.40  2.44 2.59 2.67 2.81 2.93 

Fe2O3 3.50 3.49  3.48 3.68 3.72 3.70 3.72 

CaO 42.84 42.95  42.47 42.12 42.17 41.98 41.79 

MgO 0.78 0.69  0.68 0.69 0.67 0.67 0.67 

SO3 0.02 0.24  0.35 0.39 0.43 0.49 0.53 

Na2O 0.07 0.36  0.38 0.39 0.39 0.40 0.41 

K2O 0.30 0.19  0.23 0.25 0.25 0.27 0.28 

LSF 91.00 91.74  91.02 90.22 93.19 92.98 94.28 

SR 2.70 2.52  2.49 2.34 2.20 2.21 2.01 

AR 0.60 0.69  0.70 0.70 0.72 0.72 0.79 
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Table 6  729 
Burnability evaluation of designed raw mixes with free CaO. 730 

Mix No. 
     Burnability (% free CaO) 

1350 C 1400 C 1450 C 

RMX1 1.92 1.26 0.90 

RMX2 1.99 1.20 0.95 

RMX3 1.81 1.00 0.94 

RMX4 1.33 1.15 0.67 

RMX5 1.40 0.93 0.75 

RMX6 1.26 0.95 0.84 

  731 
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Table 7  732 
Chemical composition of laboratory fired clinkers (wt.%). 733 
Oxides Blank-Bk RMX1-CL RMX2-CL RMX3-CL RMX4-CL RMX5-CL RMX6-CL 

LOI950 0.25 0.11 0.07 0.09 0.21 0.20 0.20 

SiO2 21.97 22.85 22.72 22.60 21.88 21.51 21.20 

Al2O3 3.53 3.60 3.60 3.77 4.17 4.38 4.58 

Fe2O3 5.46 5.26 5.16 5.51 5.58 5.58 5.70 

CaO 64.90 65.50 65.06 64.69 64.64 64.38 64.35 

MgO 1.24 1.10 1.02 1.06 1.06 1.04 1.08 

SO3 0.10 0.32 0.50 0.55 0.46 0.51 0.51 

Na2O 0.16 0.53 0.57 0.59 0.54 0.48 0.45 

K2O 0.23 0.29 0.37 0.37 0.25 0.21 0.21 

Free lime 0.48 0.90 0.95 0.94 0.67 0.75 0.84 

LSF 93.75 91.11 90.86 90.18 92.13 92.76 93.46 

SR 2.44 2.58 2.59 2.44 2.24 2.16 2.06 

AR 0.65 0.68 0.70 0.68 0.75 0.78 0.80 

C3S 63.76 56.66 55.29 52.95 56.79 56.66 57.01 

C2S 14.89 22.79 23.45 24.87 19.91 18.95 17.79 

C3A 0.11 0.65 0.82 0.68 1.62 2.18 2.50 

C4AF 16.62 16.01 15.70 16.77 16.98 16.98 17.35 

Liquid 24.51 25.06 24.94 26.24 27.46 28.00 28.83 

 734 
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Table 8 736 
Mineralogy composition of laboratory fired clinkers. 737 
Sample No. Phases Present Quantity 

(%) 

Granulometry () 

Min. Max. Avg. 

CL/RMX1 Alite 52 2 78 36 

Belite 30 2 57 27 

Interstitial matter 18 - - - 

CL/RMX2 Alite 50 2 82 37 

Belite 33 2 52 25 

Interstitial matter 17 - - - 

CL/RMX3 Alite 48 2 74 32 

Belite 33 2 63 26 

Interstitial matter 19 - - - 

CL/RMX4 

Alite 55 1 73 32 

Belite 25 1 44 21 

Interstitial matter 20 - - - 

CL/RMX5 

Alite 51 1 82 34 

Belite 28 1 52 24 

Interstitial matter 21 - - - 

CL/RMX6 

Alite 53 1 91 36 

Belite 26 1 56 25 

Interstitial matter 21 - - - 

 738 

  739 
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Table 9  740 
Chemical composition of oil well cement (wt.%). 741 

Constituent/ 
Parameter 

Blank-Bk RMX1-CM RMX2-CM RMX3-CM RMX4-CM RMX5-CM RMX6-CM 

LOI950 1.13 0.82 0.79 0.75 0.93 0.81 0.86 

SiO2 21.85 21.73 21.91 21.82 21.60 21.17 21.11 

Al2O3 3.38 3.65 3.78 3.96 3.99 4.20 4.35 

Fe2O3 5.37 4.92 5.00 5.32 5.48 5.39 5.43 

CaO 62.95 62.65 62.65 62.87 63.02 62.58 62.39 

MgO 1.19 1.12 1.05 1.08 1.01 0.96 0.99 

SO3 1.39 1.66 1.53 1.56 1.76 1.83 1.84 

Na2O 0.12 0.24 0.25 0.25 0.33 0.34 0.33 

K2O 0.25 0.18 0.16 0.17 0.15 0.18 0.16 

LSF 90.18 90.06 89.07 89.14 89.77 90.39 90.04 

SR 2.50 2.54 2.50 2.35 2.28 2.21 2.16 

AR 0.63 0.74 0.76 0.74 0.73 0.78 0.80 

C3S 59.75 58.80 55.92 55.83 57.68 57.88 56.49 

C2S 17.59 17.96 20.65 20.46 18.43 17.06 17.93 

C3A 0.00 1.36 1.57 1.50 1.31 2.02 2.35 

C4AF 16.32 14.96 15.20 16.17 16.66 16.39 16.51 

2C3A+C4AF 16.32 17.67 18.33 19.18 19.28 20.43 21.21 

 742 

  743 



35 
 

Table 10  744 
Physical properties of oil well cement. 745 
 Blank RMX1 RMX2 RMX3 RMX4 RMX5 RMX6 

Fineness (m2/kg) 298 296 301 311 298 308 302 

% passing on        

250  100 100 100 100 100 100 100 

212  100 99.9 99.8 99.4 99.6 9.6 99.7 

150  99.3 99.3 99.1 98.3 98.7 98.6 98.9 

90  96.6 94.3 93.7 92.2 93.6 93.3 93.9 

75  81.4 84.8 83.9 81.8 84.4 83.8 84.7 

63  72.7 70.7 69.7 66.5 70.7 69.3 70.7 

45  45.6 48.6 47.5 42.9 48.1 46.3 48.0 

38  21.3 22.4 20.7 14.5 20.1 17.7 19.9 

Slurry density @ 0.44% 

water 
15.9 16.4 16.5 16.1 15.8 15.7 15.7 

Free fluid (%) 5.0 5.8 5.6 5.3 3.8 4.3 4.4 

Thickening time (Bc) 98 93 112 117 102 101 98 

Compressive strength (psi)        

38 C 581 558 477 412 404 389 292 

60 C 1930 1706 1645 1600 1660 1626 1466 

 746 

 747 

 748 

 749 
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 753 

Table 11 754 
 Rheology report of oil well cements. 755 
Rheology parameters Blank RMX1 RMX2 RMX3 RMX4 RMX5 RMX6 

Fann Viscometer        

600 rpm 116 89 102 104 104 126 113 

300 rpm 92 64 78 70 87 101 86 

200 rpm 82 56 65 61 79 83 79 

100 rpm 69 45 45 51 68 69 68 

6 rpm 31 28 25 25 28 30 29 

3 rpm 18 19 16 16 17 19 18 

Gel strength        

10 sec 19 16 18 16 18 20 19 

10 min 22 19 19 23 22 23 22 

 756 

 757 

 758 

 759 

 760 

 761 

 762 

 763 

 764 

 765 

 766 

 767 

 768 

 769 
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 770 

Table 12 771 
 TG - hydration calculation for cements. 772 

Sample 

Weigh loss 
(Ettringite) 

% 

Weigh loss 
(Portlandite)

% 

Weigh loss 
(Dolomite) 

% Wf 

[CH] [CH]eq 

[CH] + [CH]eq 

a = (Tf1 - Ti1) x = (Tf2 - Ti2) y = (Tf3 - Ti3) ((74/18)*x)/Wf ((100/44) y (74/100))/Wf 

2 
D

ay
s 

CBk 4.173 3.107 0.4815 74.41 0.1717 0.0109 0.1825 

CRM1 6.2 2.73 0.4808 77.33 0.1451 0.0105 0.1556 

CRM2 3.78 2.73 0.6752 78.5 0.1430 0.0145 0.1574 

CRM3 5.408 2.404 0.3661 72.23 0.1368 0.0085 0.1454 

CRM4 4.321 2.718 0.4752 72.17 0.1548 0.0111 0.1659 

CRM5 4.372 2.735 0.5679 72.73 0.1546 0.0131 0.1677 

CRM6 4.443 2.682 0.3769 73.86 0.1493 0.0086 0.1579 

7 
D

ay
s 

CBk 6.278 4.513 1.672 76.75 0.2417 0.0366 0.2784 

CRM1 4.483 2.856 0.5054 82.07 0.1431 0.0104 0.1534 

CRM2 5.707 3.795 1.539 80.63 0.1935 0.0321 0.2256 

CRM3 5.799 3.532 0.6074 74.64 0.1945 0.0137 0.2082 

CRM4 5.561 3.811 0.6882 74.6 0.2100 0.0155 0.2255 

CRM5 5.443 3.716 0.5476 72.94 0.2094 0.0126 0.2221 

CRM6 4.946 3.534 1.933 78.1 0.1860 0.0416 0.2277 

28
 D

ay
s 

CBk 7.305 4.907 1.692 75.24 0.2681 0.0378 0.3059 

CRM1 6.142 4.361 1.139 75.18 0.2385 0.0255 0.2640 

CRM2 5.489 4.517 0.9847 74.53 0.2492 0.0222 0.2714 

CRM3 6.001 4.56 0.9668 75.04 0.2498 0.0217 0.2715 

CRM4 5.696 4.478 2.047 75.11 0.2451 0.0458 0.2909 

CRM5 6.744 4.867 0.7835 73.04 0.2739 0.0180 0.2920 

CRM6 6.174 4.519 0.8056 72.25 0.2571 0.0188 0.2759 

 773 
 774 
 775 
 776 
 777 
 778 
 779 
 780 
 781 
 782 
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Fig. 1. Oil rig with OBM cutting collection pit. 
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Fig. 2. Clinker X-ray diffractometry. 

 

 

1. RMXREF  2. RMX1   3. RMX2   4. RMX3   5. RMX4   6. RMX5   7. RMX6

Alite ● Belite □ Ferrite ○ Free lime

10 15 20 25 30 35 40 45 50 55 60 65

2

1

2

3

4

5

6

7



40 
 

 

Fig. 3. Raw materials X-ray diffractometry. 
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Fig. 4. Correlation in the mineralogy of limestone and OBM cuttings. 
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Fig. 5. Raw mixes X-ray diffractometry. 
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Fig. 6. TG curve on decarbonation of raw mixes. 
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Fig. 7. TG curve - phase formation of raw mixes. 
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Fig. 8. Particle size distributions of raw mixes. 
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Fig. 9. Cement hydration TG calculation. 
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Fig. 10. X-ray diffractometry – cement. 
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