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Summary

The assurance method is growing in popularity in clinical trial planning. The

method involves eliciting a prior distribution for the treatment effect, and then

calculating the probability that a proposed trial will produce a “successful”

outcome. For normally distributed observations, uncertainty about the vari-

ance of the normal distribution also needs to be accounted for, but there is lit-

tle guidance in the literature on how to elicit a distribution for a variance

parameter. We present a simple elicitation method, and illustrate how the

elicited distribution is incorporated within an assurance calculation. We also

consider multi-stage trials, where a decision to proceed with a larger trial will

follow from the outcome of a smaller trial; we illustrate the role of the elicited

distribution in assessing the information provided by a proposed smaller trial.

Free software is available for implementing our methods.

KEYWORD S

assurance, expert judgement, prior elicitation, variance elicitation

1 | INTRODUCTION

Assurance is a Bayesian alternative to a power calculation for choosing a sample size in a clinical trial. The aim of the

assurance method is to provide a realistic assessment of the trial sponsor's probability of a “successful” trial. A prior dis-

tribution is elicited for the treatment effect, and the prior probability that the trial will be successful is calculated, for

any success criteria that the trial sponsor wishes to consider (eg, that the observed treatment effect will be positive, and

statistically significant at the appropriate size). This approach was first proposed by Spiegelhalter and Freedman,1 and

developed in O'Hagan and Stevens2 and O'Hagan et al,3 where the term “assurance” was used.

An extensive discussion of the benefits of the assurance method is given in Crisp et al4 and Dallow et al.5 These

papers give an account of how assurance has been used on a large scale at GlaxoSmithKline, and describe several case

studies. They describe how the process of deriving an assurance supports their decision making, in particular, how the

elicitation of a prior distribution provides a formal assessment of the evidence and uncertainties regarding a treatment

effect. They give examples where modifications are made to trial designs when it is been judged necessary to mitigate

against risks and uncertainties identified at the elicitation stage; using the assurance method can result in more than

just a modified sample size assessment.

Deriving an assurance requires a prior distribution for any relevant uncertain quantity. O'Hagan et al3 consider the

case of prior distributions for normally distributed and binomial data, and Ren and Oakley6 presented elicitation
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methodology for time-to-event data. Gasparini et al7 also considered normally distributed data. Neither O'Hagan et al

nor Gasparini et al discuss how one would elicit distributions for unknown population variances, and there is little

guidance in the wider elicitation literature on how to elicit a distribution for a variance. We propose a method in this

article, and show how to incorporate it within an assurance calculation.

In cases where there is greater prior uncertainty, trial sponsors may consider an adaptive design, or a multi-stage

approach, where planning decisions about a latter stage trial may be informed by the results from an earlier stage. A

case study involving the use of assurance in such a setting is given in Nixon et al.8 For normally distributed data, it is

again important to consider uncertainty in the variance, as the variance will affect how much information one gains for

a given sample size. We illustrate how simulation can be used to investigate how a small study would reduce uncer-

tainty about a treatment effect, to support the planning of a larger trial.

In the next section, we discuss the assurance method and note the role of variance distributions in assurance calcu-

lations. In Section 3, we review methods for eliciting a distribution for the treatment effect, and discuss elicitation of

distributions for variances in Section 4. In Section 5, we show how the elicited distributions are incorporated within the

assurance calculation, and we discuss the extension to multi-stage trial planning in Section 6. Free software is available

to implement all our methods, and is described in the Appendix.

2 | ASSURANCE

In this section, we describe the assurance method, specifically in the context of a randomised controlled trial, where the

observations in both the treatment and control arms are assumed to be normally distributed. We suppose that in the

control arm, we have observations X1,…,Xnc �
i:i:d:

N μc,σ
2
c

� �

, and in the treatment arm, we have observations

Y 1,…,Ynt �
i:i:d:

N μt,σ
2
t

� �

. We write μt = μc+ δ, so that we interpret δ as the treatment effect.

O'Hagan et al3 consider the four cases of a one-sided superiority trial, a two-sided superiority trial, a non-inferiority

trial and an equivalence trial. In this article, we will consider two-sided superiority trials only, but extension to the

other cases would be straightforward (and would not change the methodology we are proposing here).

We suppose that the data will be analysed with a two-sample t-test:

T =
�Y − �X
ffiffiffiffiffiffiffiffiffiffiffiffiffi

X
S

nc
+

S2Y
nt

q ,

with T compared with the Student-t distribution with ν degrees of freedom computed using the Welch approximation.

For a power calculation, for a given nt and nc, we would fix values of δ,σ2t and σ2c , and calculate the probability of

observing data such that the null hypothesis is rejected, for a specified level of significance. We denote R to be the event

of rejecting the null hypothesis, and write this probability as Pr Rjδ,σ2t ,σ
2
c

� �

. (In practice, we might make some simplifi-

cations such as assuming σ2t = σ2c , and that T can be compared with the standard normal distribution). In this calcula-

tion, we interpret δ as a “minimum clinically relevant” treatment effect: the smallest treatment effect that we would

want our trial to be able to detect.

In the assurance method, we consider the unconditional probability of the same event R, but with a different inter-

pretation of δ: we now interpret δ as the true treatment effect, elicit a prior distribution π δ,σ2t ,σ
2
c

� �

, and compute

Pr Rð Þ=

ð

Pr Rjδ,σ2t ,σ
2
c

� �

π δ,σ2t ,σ
2
c

� �

dδdσ2t dσ
2
c :

We emphasise that the event R is the same as that used in the power calculation: although we now have a prior dis-

tribution π δ,σ2t ,σ
2
c

� �

we do not assume it will be used in the analysis of the trial data: we assume exactly the same

(frequentist) analysis as that used in the power calculation. In general, we can think of a regulator or trial sponsor spec-

ifying an event R in which the trial outcome is “successful,” and then we elicit a prior distribution only to assess the

probability of achieving the “successful” outcome.

The computation of an assurance Pr(R) is usually straightforward using Monte Carlo methods; the main effort

required in any assurance calculation is in eliciting the prior distribution for all the uncertain parameters. Note that,

although the assurance method typically does not involve any Bayesian analysis of clinical trial data, we can still make
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use of elicitation methodology from any particular Bayesian analysis method that uses informative prior distributions.

For example, Hampson et al9 elicited a prior for use in the Bayesian analysis of binary outcome data; their elicitation

method could be suitable if one wanted to compute an assurance for a trial with the same data type.

2.1 | The need to account for uncertainty in population variances

The main development in this article is in the elicitation and application of the prior for the variances σ2t and σ2c . We

will first comment on the importance of accounting for uncertainty in these parameters, relative to accounting for

uncertainty in the treatment effect δ.

We consider three different risks faced by the trial sponsor, which we label as “primary,” “secondary” and

“tertiary,” and discuss the role of eliciting uncertainty in understanding these risks. We define the primary risk as the

risk that the treatment is either ineffective (or is not sufficiently effective for reimbursement), so that there is no pros-

pect of any trial producing a successful outcome (ignoring the possibility of a Type I error). Clearly, only uncertainty

about the treatment effect δ matters at this stage.

In the case that the treatment is effective, we define the secondary risk as the risk that the trial is unsuccessful in

demonstrating effectiveness, and the tertiary risk as that the trial sample size is unnecessarily large; effectiveness would

have likely been demonstrated with an appreciably smaller sample size. In assessing these two risks, one can argue that

accounting for uncertainty in the standard deviations σt and σc is “equally important” as accounting for uncertainty in

δ. (The comparison with standard deviation rather than variance is more appropriate, as σt, σc and δ are on the same

scale).

We consider R to be the event of rejecting a null hypothesis of no treatment effect in a test of size α. First consider the

case of equal variances σ2t = σ2c = σ2 and equal sample sizes n per group. Using the same approximations one would use

in a simple power calculation, an approximate expression for the probability of R conditional on all the parameters is

Pr Rjδ,σ2
� �

=1−Φ Zα=2−
δ

σ
×

ffiffiffi

n

2

r
� �

,

where Φ(.) is the cumulative distribution function of the standard normal distribution. We note that the two parameters

δ and σ only influence Pr(R|δ, σ2) through their ratio δ/σ. If we were to start from some baseline estimate of δ and σ,

applying a percentage change upwards of one parameter would have the same effect on Pr(R|δ, σ2) as applying the same

percentage change downwards of the other parameter. The assurance Pr(R|δ, σ2) is equally sensitive to changes in either

parameter, and careful elicitation is equally important for both the treatment effect and the variance.

With unequal variances and sample sizes, the situation is a little more complex. We now have

Pr Rjδ,σ2c ,σ
2
t

� �

=1−Φ Zα=2−δ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σtc
nc

+
σ2t

nt

s
0

@

1

A,

so that if only one standard deviation parameter (σt or σc) changes, the effect is not as great as the same relative change

in δ. We will investigate sensitivity to changes in these parameters empirically in our examples.

3 | ELICITING A PRIOR DISTRIBUTION FOR THE TREATMENT EFFECT

We now consider how to elicit the prior distribution π δ,σ2t ,σ
2
c

� �

. For simplicity and ease of exposition, it is supposed

that there is one female expert, and that the elicitation is conducted by a male facilitator. There are various general

considerations when performing elicitation such as training of the experts, and how to manage (or combine opin-

ions from) multiple experts. The focus of this article is solely on how to elicit judgements about a mean and vari-

ance, and we do not consider these other issues here. Guidance on these and other aspects of elicitation can be

found elsewhere.10-14 The praciticalities of conducting elicitation in the assurance context are discussed in Dallow

et al,5 who adopt the SHELF approach to elicitation.15
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We suppose that an expert would be equally willing to consider the treatment effect δ directly, or to consider the

mean in the treatment group μt, given a hypothetical value for the mean in the control group μc (the expert might pro-

pose her own hypothetical value for μc, or an estimate may be available from previous trials with the same control

arm). In the following discussion, we consider the former option.

General advice in elicitation methods is to ask experts about observable quantities, rather than parameters in statis-

tical models.16 Although not strictly observable, we think the mean of a normal distribution would be well-enough

understood for an expert to make judgements about it directly. Hence, standard univariate elicitation methods17 can be

used to elicit a prior distribution for δ or μt|μc.

Such methods typically involve eliciting a small number of points from the expert's cumulative distribution function

of δ: the expert judges Pr(δ ≤ di) = pi, for i = 1, …, n. We can specify d1, …, dn and ask the expert to provide p1, …, pn, or

vice-versa. For example, the expert can be asked to provide her quartiles, in which case p1, p2, p3 are fixed at 0.25, 0.5

and 0.75, respectively, and the expert provides the corresponding values of d1, d2, d3.

We then consider some parametric family of distributions, indexed by parameters θ, and choose θ to minimise

X

n

i=1

F di;θð Þ−pið Þ2,

where F(.;θ) is the cumulative distribution function from the chosen family with parameter θ. Both Gasprini et al7 and

O'Hagan et al3 assume a normal distribution δ � N(m, v), so that we would have θ = (m, v). Since a full distribution has

been chosen based on a small number of elicited probabilities, we would then feed back some additional quantiles or

probabilities from this distribution to the expert, to check that the distribution is an acceptable representation of the

expert's beliefs. We illustrate this in Figure 1, where we suppose that expert has provided her quartiles, and a normal

distribution is fitted to her judgements. This approach can be implemented in R18 using the package SHELF,19 and is

incorporated in our software.

3.1 | Mixture distributions

O'Hagan et al3 and Dallow et al5 also consider a mixture distribution where a non-zero probability is given to the event

δ = 0: the event that the treatment has no effect, and a conditional distribution is elicited for δ given that δ 6¼ 0: the

treatment has some effect. Mixture distributions can be specified in our software: the user provides Pr(δ = 0), and then

judgements from the conditional distribution, following the approach described in the previous section.

To see the possible benefits of the mixture approach, consider the following example. Suppose an expert judges a

70% chance that the new treatment will have some (beneficial) effect, and also thinks that a treatment effect of 0.5

(on some appropriate scale) is “most likely.” If we suppose δ � N(0.5, 1), then we have a mode at 0.5 and Pr(δ > 0) ’

0.7: the N(0.5, 1) distribution would appear to describe well the two judgements made by the expert. However, this dis-

tribution would also imply Pr(δ > 1) ’ 0.3, but the expert may not judge a treatment effect at least twice as high as her

●

●

●

x

P
r(

δ
≤

x
)

0.04 0.25 0.4 0.55 0.76

0.05

0.25

0.5

0.75

0.95

FIGURE 1 An example of eliciting a prior distribution for the

treatment effect δ. We suppose the three quartiles have been elicited:

these are shown as the black dots. We then fit a parametric

distribution (in this example a normal distribution, shown by the

solid line) to these points using a least squares approach. To check

that the fit is acceptable to the expert, some percentiles from this

fitted distribution are fed back to the expert. Here, the dashed lines

show the 5th and 95th percentiles from the fitted normal

distribution
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“most likely value” to be very plausible, and giving such weight to larger values of δ may adversely effect the assessment

of the required sample size. Using the mixture approach, we could instead set Pr(δ = 0) = 0.3, and then, conditional on

δ 6¼ 0, set δ � N(0.5, v), with a smaller, more appropriate choice of v.

4 | ELICITING A DISTRIBUTION FOR A VARIANCE

To the best of our knowledge, there has been little work on eliciting beliefs about variances. One existing approach that

can be used is based on eliciting beliefs about parameters in linear regression models. Kadane et al20 and Al-Awadhi

and Garthwaite21 consider elicitation for the parameters (μ, β1, …, βp, σ
2) in regression models of the form

X i = μ+
X

p

j=1

β jzij + εi, for i=1,2,…,n,

where ε1,…,εn �
i:i:d

N 0,σ2ð Þ . By setting βj = 0 for all j, this would reduce to our case. Al-Awadhi and Garthwaite21 pro-

posed an elicitation method for quantifying opinions about the parameters of a multivariate normal distribution; the

same elicitation method could be used for quantifying beliefs about a univariate normally distributed population. These

methods require the expert to update her judgements in light of hypothetical data, under the assumption that the expert

updates her beliefs using Bayes' theorem. We think this is a difficult task: the expert may not view hypothetical data as

credible and behave the same way had she observed real data, and it is unlikely that the expert would weight prior

knowledge and hypothetical data precisely according to Bayes' theorem in any case. The expert may be insensitive to

the sample size, for example in accounting for the variability in a sample mean.22 We think it desirable to have alterna-

tive elicitation methods available to the expert.

Kadane et al20 and Al-Awadhi and Garthwaite21 infer judgements about the parameters μ and σ
2 from judgements about

the observable quantities Xi, by eliciting summaries from the expert's predictive distribution. For example, suppose we wish

to elicit an expert's opinion about the variance parameter σ2 of a random variable X that follows a normal distribution with

a known mean μ. Since σ2 is not directly observable then the expert is asked to make judgements about the observable quan-

tity X, and we infer p(σ2) from these judgements. Any choice of p(σ2) implies a distribution

pX xð Þ=

ð

R
+

pX x j σ2
� �

p σ2
� �

dσ2,

and we suppose that a particular choice of p(σ2) will result in the above integral (approximately) matching the expert's

beliefs about X, so that this choice of p(σ2) describes the expert's underlying beliefs about σ2. A concern here is whether

an expert really is able to account for her uncertainty about σ2 when making judgements about X. A possibility is that

the expert instead only makes judgements about X conditional on some estimate of σ2.

Kadane et al20 use conjugate priors for μ and σ
2 which force the expert's opinion about the two parameters to be

dependent. However, it is possible in reality that knowledge of one parameter would not change the expert's opinion

about the other. Al-Awadhi and Garthwaite23 argued that, unless mathematical tractability is required, then it can be

better to assume independence between the two parameters, and that this helps the expert focus on the assessments of

each parameter separately. They proposed an elicitation method for the multivariate normal distribution where the

mean vector and covariance matrix are assumed to be independent, though their method also asks the expert to update

her judgements in the light of hypothetical data.

We argue that the better informed the expert, the less likely a judgement of dependence between the two parameters would

be required. For example, consider the distribution of running times for an individual over a distance of 5 km. With no informa-

tion about the ability of the runner, one might have considerable uncertainty about the mean, for example, an interval of

15 minutes to 1 hourmay be judged plausible, with smaller variances of running times associatedwith smallermeans within this

interval. But if one already has good knowledge about the particular runner's ability, amuch smaller intervalmay be judged plau-

sible for themean, and one's beliefs about the variancemay not change appreciably given different plausiblemeans.

We propose a new elicitation method for quantifying opinions about an uncertain population mean and variance.

Our method does not elicit judgements using hypothetical data and Bayes' theorem, it does not use predictive elicitation

and it assumes independence between the mean and variance.
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4.1 | The proposed elicitation method

We first ask the expert to suppose that the treatment works and that the effect is “as expected”: more precisely, we sup-

pose that δ = m, where m could be the mean or median of the expert's distribution for δ (where, in the mixture case, the

mean/median would be conditional on δ 6¼ 0). The expert can choose her own value for m if she wishes. We also ask the

expert to propose a value for the control group mean μc; we would expect appropriate values to be readily available from

the literature. Without loss of generality, we will suppose in the following that μc = 0.

We then ask the expert to propose an interval on the outcome response scale [k1, k2], that has meaningful interpre-

tation in terms of patient outcomes. One possibility is to return to the notion of a minimum clinically relevant differ-

ence, which we denote by δ
*, and then consider the interval (−∞, δ*]. Hence (assuming μc = 0), any patient with an

observation in this interval could be interpreted as not having benefited from the treatment, even though the treatment

is assumed to be effective “on average.”

Finally, we define ω to be the proportion of patients who would have outcomes in the interval [k1, k2], and we ask

the expert to consider her uncertainty about ω. In summary, if we have chosen the interval to be (−∞, δ*], we are ask-

ing: “Suppose the treatment does have the expected effect (on average). What proportion of patients might, neverthe-

less, not achieve the desired response given the treatment?”

We have

ω=Φ
k2−m

σt

� �

−Φ
k1−m

σt

� �

,

Shortly, we will infer the expert's judgement about σt via her judgements about ω. To do this, we require σt to be a

montonic function of ω. This requirement is not met for all possible intervals [k1, k2], but will be met if the interval is

in the form of one of the following: (−∞, k2], [k1, m], [m − k, m + k], [m, k2] or [k1, ∞). For example, if we choose k1
to be −∞, we have Φ((k1 − m)/σt) = 0 and so

σt =
k2−m

Φ
−1 ωð Þ

: ð1Þ

As a simple example to visualise this, suppose we were to elicit an expert's beliefs about students' marks for an

undergraduate statistics module, for a large population of students. Suppose the marks are normally distributed with a

mean of 60. Then there is a true proportion of students who will get marks between 60 and 70. If this expert, having

been told that the mean is 60, is certain this proportion would be less than 0.45 and more than 0.25, this would imply

she is certain σ is between 6 and 15. This is illustrated in Figure 2.

Probability judgements about ω can be converted to probability judgements about σt, and so we can use the same approach

as described in Section 3. However, given the somewhat abstract nature of ω, we would suggest asking the expert for “lower”

and “upper” bounds, whichwewould then interpret as 5th and 95th percentiles, and denote byω0.05 andω0.95, respectively.

If for example, the expert is considering the interval (−∞, δ*], with δ
* < m, then it may help her to also consider a

second interval (δ*, m] and then consider how the population is distributed between these two intervals (noting that

50% of the population must have observations in the interval (−∞, m]). For example, she might judge a split of 2% to

48% across the two intervals highly unlikely, which can help prompt judgements of more plausible allocations (though

one should be cautious of anchoring effects).

Given ω0.05 and ω0.95, we can infer the corresponding quantiles of her distribution for the variance, which we denote by

σ2t,0:95 and σ2t,0:05 (eg, using Equation 1 if the interval was of the form (−∞, k2]). The facilitator now chooses a para-

metric family of distributions, and obtains the parameter values θ within that family by minimising (numerically)

G θð Þ≔ Fθ σ2t,0:05
� �

−0:05
� �2

+ Fθ σ2t,0:95
� �

−0:95
� �2

ð2Þ

where Fθ(.) is the cumulative distribution function from the chosen family, with parameter values θ.

We suggest fitting a distribution to the precision σ
−2, and choosing either a log-normal distribution or a gamma dis-

tribution. As only two judgements have been elicited, the log-normal and gamma distributions will fit these two judge-

ments precisely. We can check to see if the assurance changes with either distribution; in our experience, there is little
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difference. In our software, we display density estimates of σ for each of these distributions, so that the different fits can

be visualised and a preferred fit chosen, if the assurance is sensitive to the choice.

4.2 | Distribution for the control group variance

There are a number of options that could be used for the control group variance σ2c :

1 use a point estimate or a distribution based on historical data;

2 assume that σ2c = σ2t ;

3 assume that σ2c and σ2t are independent and identically distributed;

4 elicit a separate distribution for σ2c .

(A fifth option could involve a hierarchical model for σ2c and σ2t , so that learning about one could update beliefs

about the other, but this would make the elicitation task considerably more difficult).

We think the first option would be the most commonly used in practice. Note that, if a mixture prior has been used

for δ, one might then also consider a mixture prior for σ2t : if δ = 0, and assuming that in that case, the treatment is no

different to the control, one might also suppose σ2t = σ2c .

5 | COMPUTING ASSURANCES

Given the elicited prior, we can now compute the assurance for any choice of sample sizes, using the following algorithm.

Algorithm 1 estimating an assurance

Inputs: sample sizes nt and nc, the elicited prior π δ,σ2t ,σ
2
c

� �

, and the number of iterations N.

For i = 1, …, N:

1 sample δi,σ
2
t,i and σ2c,i from π δ,σ2t ,σ

2
c

� �

;

2 sample x1,i,…,xnt ,i from N δi,σ
2
t,i

� �

and y1,i,…,ync,i from N 0,σ2c,i
� �

;

3 calculate �xi,s
2
x,i as the sample mean and sample variance of x1,i,…,xnt ,i, and �yi,s

2
y,i as the sample mean and sample var-

iance of y1,i,…,ync,i;

4 calculate the test statistic Ti and degrees of freedom νi:

T i =
�xi−�yi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x,i
s

nt
+
s2y,i

nc

s ,

νi =

x,i
s

nt
+

s2y,i
nc

� �2

s2x,i=nt

� �2

nt−1
+

s2y,i=nc

� �2

nc−1

;

5 define Ri = 1 if T i > t0:025,νi and 0 otherwise, with t0:025,νi the 97.5th percentile of the Student-t distribution with νi

degrees of freedom. (We assume here that we require �xi >�yi for the treatment effect to be beneficial).

The assurance is then estimated as

P̂ Rð Þ=
1

N

X

N

i=1

Ri:
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5.1 | Example

We illustrate the method with a (fictitious) example based on Example 3 from O'Hagan et al3 (with slight modifications

to their numerical values). In their example, they consider a Phase 2 superiority trial to assess the effect of a new drug

in reducing C-reactive protein (CRP) in patients with rheumatoid arthritis. Their outcome variable is a patient's reduc-

tion in CRP after 4 weeks relative to baseline, and the analysis to be performed is a two-sided test of superiority at the

5% significance level. They considered power calculations assuming δ = 0.2, so we will suppose that 0.2 is the minimum

clinically relevant treatment effect.

5.1.1 | The prior distribution for the treatment effect

We suppose that the expert judges a non-zero probability that the treatment will have no effect, but we will consider

two scenarios: in the first, the expert judges Pr(δ = 0) = 0.5, and in the second, the expert is more optimistic with Pr

(δ = 0) = 0.1. In both scenarios, conditional on δ 6¼ 0, we suppose that the expert provides three quartiles from her dis-

tribution for δ: 0.25, 0.4 and 0.55. A normal distribution with mean 0.4 and standard deviation 0.22 is fitted to these

judgements.

5.1.2 | The prior distribution for the variances

The expert is asked to assume that (a) the treatment is effective, with δ equal to 0.4; (b) in the control group, the mean

reduction in CRP would be 0; (c) individual patients with reduction from baseline of 0.2 or less would not be judged to

have received a clinically meaningful benefit. She is then asked to consider, under these assumptions, what proportion

ω of patients in the treatment group would not benefit: the proportion of patients with reductions less than 0.2.

We suppose she judges that this proportion will be between 20% and 40%, which we judge to be the 5th and 95th

percentiles of her distribution for ω. These correspond to 5th and 95th percentiles of her distribution for σt of 0.24 and

0.8, respectively. We choose to fit a gamma distribution to the precision σ−2
t : minimising Equation (2) numerically, we

obtain a shape parameter 2.27 and rate parameter 0.29 in the fitted gamma distribution.

Finally, we suppose that the expert judges that the same distribution will be appropriate for σ2c . In the case that

δ 6¼ 0, she judges σ2c and σ2t to be independent, and if δ = 0 then she judges σ2c = σ2t .

5.1.3 | Estimating assurances

Assurances are estimated using Algorithm 1. We illustrate the results that would be presented to the trial planners in

Table 1, assuming equal numbers in the treatment and control arms.
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FIGURE 2 Density plots for exam marks assumed to be normally

distributed with mean 60. The grey area represents the true proportion of

students who get marks between 60 and 70. If the expert is certain this

proportion is between 0.25 and 0.45, she is certain σ is between 6 and 15
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If using power to choose a sample size, we might identify the smallest sample size that can achieve some

relatively high power, say in the range 80% to 90%; such a power is always achievable, given a sufficiently large

sample size. With assurance, however, there will be an upper bound close to the prior probability that the treat-

ment is effective (but not necessarily equal to this probability, given the possibility of Type I errors). If the prior

probability that the treatment is effective is only 50%, there is no sample size that can achieve an assurance

of 90%.

We define a “scaled assurance” as Pr(R)/Pr(δ > c), with c = 0, or set to some minimum level of effectiveness, if one

is necessary. Though this merely re-scales the y-axis in a plot of the assurance against the sample size, it does help

to emphasise the “secondary” and “tertiary” risks discussed in Section 2.1: the risks associated with an inappropriate

sample size, given that the treatment is effective. For example, a scaled assurance close to 1 would mean that, if the

treatment is effective, then there is negligible risk that the sample size is too small in the planned study. (The primary

risk of an ineffective treatment would remain, of course).

One might choose to target a scaled assurance in the range 80% to 90%, just as one would do with a power. We plot

the scaled assurance in Figure 3, for the two scenarios described in Section 5.1.1 (middle set of curves). We can see that

for the two scenarios, the scaled assurances are fairly similar. In particular, if targeting a scaled assurance of 80%, the

sample size would be similar for either prior probability that the treatment is effective.

We also plot, in Figure 3, scaled assurances where σt and σc are held equal and fixed at a common value σ (we try

both the 5th and 95th percentiles of the elicited distribution for σt). As these parameters are varied, there is now a con-

siderable change in the sample size required for any particular scaled assurance.

6 | MULTI-STAGE TRIALS

Given the elicited distributions, we can then investigate what information a proposed trial would provide about δ. Here,

we consider a scenario in which a small trial will be conducted, and then a decision will be made whether to commit to

a larger trial. The trial planner would want to know how informative the small trial would be; whether it resolve uncer-

tainty about δ sufficiently to make the decision about the larger trial easier.

We suppose the trial sponsor chooses some threshold c of interest. From the expert's elicited distribution we will

have Pr(δ > c) = x, which is prior to a proposed small trial. We now consider whether the small trial would resolve this

TABLE 1 Estimated assurances for the two prior elicited prior distributions

Sample size per arm 10 20 50 100 1000

Pr(δ = 0) = 0.5 0.28 0.36 0.42 0.45 0.49

Pr(δ = 0) = 0.1 0.48 0.62 0.74 0.79 0.86

Note: There is the same “diminishing return” from increasing the sample size as one would see in a power curve, but the assurance converges

(approximately) to the prior probability that the treatment is effective.
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FIGURE 3 Comparing the scaled assurance for fixed variance

parameters (upper and lower pairs of curves), and with the elicited

prior distribution for the variances (middle pair of curves), for the

two scenarios corresponding to different probabilities of no

treatment effect. In this example, the scaled assurance is sensitive to

different fixed values of the variance, but less sensitive to the mass

placed on the event of no treatment effect
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uncertainty: given the data D that the trial would produce, whether Pr(δ > c|D) would be close to either 0 or 1. Before

the study is conducted, we do not yet know what the data D would be, and so we think of Pr(δ > 0|D) as a random vari-

able: a function of the unknown data D.

The expert's prior distribution π δ,σ2c ,σ
2
t

� �

will imply a predictive distribution for D, given specified numbers of

patients nt and nc in the treatment and control arms. Without loss of generality, we can assume μc = 0 so that μt = δ.

We can use the following simulation algorithm to explore the distribution of Pr(δ>0|D).

Algorithm 2 simulating the information gained from a trial

Inputs: sample sizes nt and nc, the elicited prior π δ,σ2t ,σ
2
c

� �

, and the number of iterations N. For i = 1, …, N:

1 sample δi,σ
2
t,i and σ2c,i from π δ,σ2t ,σ

2
c

� �

;

2 sample x1,i,…,xnt ,i from N δi,σ
2
t,i

� �

and y1,i,…,ync,i from N 0,σ2c,i
� �

;

3 define Di = x1,i,…,xnt ,i,y1,i,…,ync,i
� �

;

4 using Markov chain Monte Carlo, generate a sample δi, 1, …, δi, M from the posterior distribution of p(δ|Di);

5 estimate Pr(δ > c|Di) by

P̂ri =
1

M

X

M

j=1

I δi,j > c
� �

,

where I() is the indicator function. This produces an (approximate) sample P̂r1,…, P̂rN from the distribution of Pr(δ> c|

D). We can then inspect the sample to see how many probabilities are close to either 0 or 1. We use rjags24 to imple-

ment the MCMC sampling, and will comment on the choice of N and M in the following example.

6.1 | Example

We now give an illustration, continuing the example from Section 5.1. We consider the prior given by Pr(δ = 0) = 0.5,

with conditional distribution δ|δ 6¼ 0 � N(0.4, 0.222) and σ−2
t ,σ−2

c �
i:i:d

Gamma shape= 2:27,rate= 0:29ð Þ. Hence, prior to

the small study, we have

Pr δ>0ð Þ=Pr δ>0jδ 6¼ 0ð ÞPr δ 6¼ 0ð Þ= 1−Φ −0:4=0:22ð Þð Þ× 0:5= 0:48:

We consider a study with n patients per arm, and wish to assess how much more confident we would be that δ > 0,

given the study data D. For illustration, we will classify a study as “informative” if, once the study has produced data D,

we would have either Pr(δ > 0|D) > 0.95 or Pr(δ > 0|D) < 0.05.

We implement Algorithm 2 with N = 500 simulated studies, and M = 1000 generated values of δ from each Mar-

kov chain. The total computation time (for four different values of n) was approximately 5 minutes on a desktop com-

puter, using a single core (parallel computation could have been used here). This gives estimates of the probability of

an “informative” study that are accurate to the first decimal place (compared with larger choices of N and M), which

in this context, and noting the reliance on elicited judgements, is likely to be sufficient.

In Table 2, we illustrate the information that could be presented to a decision-maker, to enable a quick comparison

of different choices of n. A more detailed summary, for n = 20 is presented in Figure 4.

This analysis could also be used to provide feedback about the elicited priors: in some cases certain results may be

judged implausible, suggesting a problem with the choice of prior. Specifically, we can investigate the probability that a

study with one or two patients per arm would be “informative”: one might judge that such a probability should be close

to 0. For illustration, we compare two priors:
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• Prior 1: Pr(δ = 0) = 0.5, with conditional distribution δ|δ 6¼ 0 � N(0.4, 0.222) and σ−2
t ,σ−2

c �
i:i:d

Gamma shape= 2:27,rate= 0:29ð Þ.

• Prior 2: Pr(δ = 0) = 0.5, with conditional distribution δ|δ 6¼ 0 � N(0.4, 0.222) and σ−2
t ,σ−2

c �
i:i:d

Gamma shape= 43:86,rate= 0:82ð Þ.

The first prior is the same as that used in the previous example. The gamma prior for σ−2
t in Prior 2 results from

using the same method in Section 4.1, but now supposing that the proportion of patients would not benefit from the

treatment would be between 0.05 and 0.1, implying smaller values of σ2t .

Table 3 shows the estimated probabilities of an “informative” study, for each prior and different (small) values of n.

Under the belief that σ2t will be small, it would only take one observed response in the treatment group moderately

above μc to “persuade” us that δ>0. Assuming this result is implausible, we would then revisit the elicited priors.

7 | SUMMARY

We have expanded the toolkit of assurance methods, to include the case of normally distributed data with uncertain

population variances, including scenarios where an intermediate study is planned, to guide the final decision to proceed

with a larger study. Assurance values may not be robust to changes in values of variance parameters; plugging in a sin-

gle point estimate can be misleading if the point estimate is inaccurate. In such cases, it is important to first quantity

the uncertainty about the variances. This in itself may add value to the trial planning process: quantifying the

TABLE 2 The probability that,

following a study producing data D

with the specified number of patients

per arm, we would either have Pr(δ = 0|

D) > 0.95 or Pr(δ = 0|D) < 0.05

Number of patients per arm 5 10 20 40

Probability of “informative” study 0.2 0.5 0.7 0.9
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FIGURE 4 Distribution of Pr(δ = 0|D), as a function of the

unknown data D resulting from a trial with 20 patients in each arm.

The numbers at the top give the probabilities of Pr(δ = 0|D) lying in

the respective bins. The distribution suggests that, following such a

trial, it is likely we would have little uncertainty as to whether δ > 0

or not

TABLE 3 The probability that,

following a study producing data D

with the specified number of patients

per arm, we would either have Pr(δ = 0|

D) > 0.95 or Pr(δ = 0|D) < 0.05

Number of patients per arm 1 2 5

Prior 1: probability of “informative” study 0.00 0.01 0.02

Prior 2: probability of “informative” study 0.41 0.50 0.70

Note: Arguably, the probabilities are implausibly high for Prior 2, suggesting a problem with the elicited prior distribution.
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uncertainty about the variance would typically involve discussion of patient heterogeneity and what is known about

why some patients may benefit from the treatment more than others.

We have proposed a method for eliciting a distribution about a variance parameter, and have illustrated how to

incorporate this within an assurance calculation in clinical trial planning. Making judgements about variability within

a population is likely to be difficult, but our method does at least avoid asking an expert to update her beliefs given

hypothetical data, or to provide summaries from her predictive distribution which would require “mentally integrating

out” uncertain parameters. We have provided software for implementing our methods, which we hope will make the

methodology easy to implement. Feedback and suggestions for improvements in the software will be welcome.
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APPENDIX

An R package, assurance, for implementing the methods described in this article is available on GitHub, at

https://github.com/OakleyJ/assurance. The website also includes an illustration of using the package to

replicate the examples in this article.

This package currently requires the SHELF R package, available on CRAN. These packages can be installed in R

with the commands.

install.packages(c("devtools", "SHELF"))

devtools::install_github("OakleyJ/assurance")

For non-R users, an app for implementing these methods, produced with shiny,25 can be used online at

https://jeremy-oakley.shinyapps.io/assurance-normal/. A version of the app for offline use is

included in the assurance package.
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