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GEOMETRIC AND OBSTACLE SCATTERING AT LOW ENERGY

ALEXANDER STROHMAIER AND ALDEN WATERS

Abstract. We consider scattering theory of the Laplace Beltrami operator on dif-
ferential forms on a Riemannian manifold that is Euclidean at infinity. The manifold
may have several boundary components caused by obstacles at which relative bound-
ary conditions are imposed. Scattering takes place because of the presence of these
obstacles and possible non-trivial topology and geometry. Unlike in the case of func-
tions eigenvalues generally exist at the bottom of the continuous spectrum and the
corresponding eigenforms represent cohomology classes. We show that these eigen-
forms appear in the expansion of the resolvent, the scattering matrix, and the spectral
measure in terms of the spectral parameter λ near zero, and we determine the first
terms in this expansion explicitly. In dimension two an additional cohomology class
appears as a resonant state in the presence of an obstacle. In even dimensions the
expansion is in terms of λ and log λ. The theory of Hahn holomorphic functions is
used to describe these expansions effectively. We also give a Birman-Krein formula
in this context. The case of one forms with relative boundary conditions has direct
applications in physics as it describes the scattering of electromagnetic waves.
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2 A. STROHMAIER AND A. WATERS

1. Introduction and Setting

The analysis of the spectrum and the spectral decomposition of geometric operators on
manifolds is important in both physics and mathematics. A full spectral decomposition
allows one to solve linear equations such as the wave equation, Schrödinger’s equation,
and the heat equation. The long term behaviour of the latter is determined by the
bottom of the spectrum. For the Laplace operator on p-forms on a closed Riemannian
manifold the Hodge isomorphism ([23]) identifies the harmonic forms with the de-Rham
cohomology groups. Such connections between the bottom of the spectrum of geometric
operators on closed manifolds give rise to an extremely rich interplay between topology
and the analysis of partial differential equations. One of the important examples is
the Atiyah-Singer index theorem ([1]) that relates the index of an elliptic operator to
the K-theory class determined by its principal symbol. On non-compact manifolds the
situation is slightly more complicated due to the presence of an essential spectrum.
One approach to analyse the topology of the space using Hodge theory is to study L2-
cohomology which in many examples can be identified with the space of L2-harmonic
forms, i.e. the zero eigenspace of the Laplace operator. Well-studied examples are
manifolds with cylindrical ends ([2, 27]), cusp-ends and variants of these ([27, 39, 21]),
as well as manifolds with conical singularities ([8]) and conical ends ([28]). To illustrate
this we briefly explain the situation for manifolds with cylindrical ends. Here there
may be a finite dimensional space of L2-eigenfunctions at zero, but in general zero is
also contained in the absolutely continuous spectrum. The L2-harmonic forms on the
manifold describe the image of cohomology with compact support in the cohomology of
the space. A complement of this image can be described by the values of the generalised
eigenfunctions at zero. This relation between cohomology and the low lying values of the
continuous part of the spectral decomposition was somewhat anticipated by the work of
Atiyah Patodi and Singer ([2]) on the index theorem for manifolds with boundary. The
relationship between these concepts was further clarified by Melrose ([27]) and Müller
([31]). A detailed analysis of the bottom of the continuous spectrum for manifolds with
cylindrical ends can be found in ([32]).

Another class of important examples are manifolds with conical ends and the subclass
of manifolds with one Euclidean end. Similarly to the case of cylindrical ends the L2-
cohomology groups can be identified with the zero eigenspace of the Laplace operator on
forms. These groups can be computed here within a very general framework and related
to de-Rham cohomology groups c.f. also ([28, 6, 21]).

The goal of this paper is to clarify the role of the continuous spectrum in this context.
Namely, we analyse the spectral decomposition of the Laplace-Beltrami operator ∆
acting on p-forms on oriented manifolds that are asymptotically Euclidean at infinity
and with possible compact boundary on which relative boundary conditions are imposed.
The boundary components are thought of as obstacles and scattering takes place because
of these obstacles, and possibly because of a non-trivial geometry and topology.

The spectrum of ∆ lies on the positive real line. It consists of an absolutely continu-
ous part, described by generalised eigenfunctions, and possibly a zero eigenvalue of finite
multiplicity given by the L2-Betti numbers. In fact the space of L2-harmonic forms has
a finer filtration that we describe in this paper that encodes how fast the corresponding
eigenfunctions decay at infinity. In dimensions d ≥ 3 the structure of the singularities of
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Figure 1. Surface with one boundary component and non-trivial topol-
ogy that is Euclidean outside a compact set.

the resolvent, the spectral measure and the scattering matrix, can be completely charac-
terised in terms of the L2-eigenfunctions and their decay properties. Some information
about the cohomology of the manifold is therefore retained in the continuous spectrum.
In the case d = 2 when the boundary is non-empty there is a non-trivial cohomology class
in relative cohomology that is not represented by an L2-harmonic form but rather by a
zero resonant state. We completely clarify the singularity structure of the resolvent near
zero and also give the leading term in the expansion of the scattering amplitude. In even
dimensions, the resolvent, the scattering matrix, and the generalised eigenfunctions, are
not holomorphic at zero but have convergent generalised expansions into power series
containing both powers of λ and − log λ. The theory of these functions was developed in
[30] and this paper makes extensive use of this theory, avoiding lengthy arguments with
asymptotic expansions. This approach is similar to that of Vainberg [40] in its treatment
of logarithmic terms.

The low energy behaviour of Schrödinger operators has been studied by Kato and
Jensen ([24]) who also computed expansion coefficients for the resolvent in various di-
mensions (see for example [25]). Murata ([33]), using also the method of Vainberg ([40])
analysed the low energy behaviour of constant coefficient operators with potentials. The
two dimensional case is quite complicated and was analysed for potential scattering in
great detail in [3].

Resolvent expansions in the more general setting of conical ends were given by Wang
([45, 44]). Perhaps closest to our results are expansions obtained in the works by Guillar-
mou and Hassell ([17, 18]) where various resolvent expansions for the Laplace operator
on functions are proved in the setting of conical manifolds. In [18] the authors compute
one of the expansion coefficients in the resolvent in the case of functions and reproduce
the formula of Jensen and Kato in this more general setting. Expansions for differential
forms were used in [19]) to show boundedness of the Riesz transform on Lp-spaces. Other
recent work discussing the low energy behaviour of the resolvent is by Bony and Häfner
[4] for second order operators in divergence form, and by Rodnianski and Tao [37] who
also consider potentials and general asymptotically conic manifolds. We would also like
to mention the very recent work of Vasy on the low energy resolvent on asymptotically
conic spaces ([41], [42], [43]) and the fact that the long time behaviour of solutions of
the wave equation on differential forms also plays a role in stability questions in general
relativity ([22, 20]).

A relation between the topology of manifolds with Euclidean ends and the contin-
uous spectrum has been noticed by Carron who gives expansions of the determinant
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of the scattering matrix in terms of L2-Betti numbers and resonant states ([7]), which
shows in particular that the jump of the spectral shift function at zero is of topologi-
cal significance. The significance of the spectral shift function in this context was also
seen by Borisov Mueller and Schrader in their proof of the Chern-Gauss-Bonnet formula
for asymptotically Euclidian manifolds ([5]). The detailed structure of the resolvent on
non-compact manifold is also important in quantum field theory in the quantisation of
the electromagnetic field as poles of the resolvent manifest themselves as “infrared prob-
lems”. As an example the Gupta-Bleuler quantisation of the electromagnetic field as
constructed rigorously in [14, 15] requires the absence of a zero resonance state for the
Laplace operator on one forms.

1.1. Precise setup and notations. Let (X, g) be an oriented complete connected
Riemannian manifold of dimension d ≥ 2 which is Euclidean at infinity, i.e. there exists
compact subsets K ⊂ X and K̃ ⊂ R

d such that X\K is isometric to R
d\K̃. Let O be

an open subset in X with compact closure and smooth boundary. The (finitely many)
connected components will be denoted by Oi with some index i. We will think of these
as obstacles placed in X. Removing these obstacles from X results in a Riemannian
manifold M = X\O with smooth boundary ∂O. We will assume throughout that M is
connected, that the O ⊂ K so that the obstacles are contained in K. We will also fix
the isometry to R

d\K̃ so that we have a natural coordinate system on X \K.
Let as usual d : C∞

0 (M ; ΛT ∗M) → C∞
0 (M ; ΛT ∗M) be the differential on smooth

forms and δ : C∞
0 (M ; ΛT ∗M) → C∞

0 (M ; ΛT ∗M) its formal adjoint. The Laplace-
Beltrami operator ∆ on differential forms is defined as ∆ = dδ + δd. We denote the
restriction to forms of degree p by ∆p. There are natural boundary conditions that can
be imposed on ∆p to make this into an essentially self-adjoint operator which we now
describe. For a differential form ω ∈ C∞

0 (M ; ΛpT ∗M) we denote its restriction to ∂O
by ω|∂O. If ι : O → M is the natural inclusion map the restriction ω|∂O is therefore a
section in the pull back bundle ι∗(ΛpT ∗M). This bundle is canonically isomorphic to
ΛpT ∗(∂O)⊕Λp−1T ∗(∂O), the induced splitting being the split of ω∂O into tangential and
normal components ω|∂O = ω|∂O,tan + ω|∂O,nor. The tangential component is the same
as the pull-back ι∗ω of the differential form ω to ∂O. There are several distinguished
boundary conditions for the Laplace operator that lead to self-adjoint extensions of the
Laplace operator on compactly supported smooth forms. Relative boundary conditions

for the Laplace operator are defined as

ω|∂O,tan = 0, (δω)|∂O,tan = 0.

Absolute boundary conditions are defined to be

(ω)|∂O,nor = 0, (dω)|∂O,nor = 0.

Note that if ω satisfies relative boundary conditions, then ∗ω satisfies absolute boundary
conditions. Here ∗ is the Hodge star operator.

We will denote by ∆p,rel and ∆p,abs the self-adjoint extensions of unbounded opera-
tors in L2(M,ΛpT ∗M) of ∆p resulting from the respective boundary conditions. Since
∗∆p,rel = ∆n−p,abs∗ the Hodge star operator allows us to pass from relative to absolute
boundary conditions. The relative Laplacian ∆rel acting on differential forms can be writ-
ten as the square of a self-adjoint operator Qrel = δ+d0 (see for example [12, 16, 5]). Here
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δ is the closure of the operator δ : C∞
0 (M,ΛT ∗M) → C∞

0 (M,ΛT ∗M), and d0 is the clo-
sure of the restriction of d|C∞

0 (Mint,ΛT ∗Mint) : C
∞
0 (Mint,ΛT

∗Mint) → C∞
0 (Mint,ΛT

∗Mint).

Here Mint =M\∂O is the interior of M .
If p = 0 the relative boundary conditions correspond to Dirichlet boundary conditions

imposed on ∂O, and absolute boundary conditions correspond to Neumann boundary
conditions.

The Hilbert space L2(M,ΛpT ∗M) decomposes orthogonally into three invariant sub-
spaces for ∆p,rel as follows (see [12] and also [16])

L2(M ; ΛpT ∗M) = δC∞
0 (M ; Λp+1T ∗M)⊕ dC∞

0 (Mint; Λp−1T ∗Mint)⊕Hp
rel(M),

where Hp
rel = ker∆p,rel is the space of relative L2-harmonic p-forms, i.e. the space of

square integrable forms that are closed, co-closed and satisfy relative boundary condi-
tions.

The case p = 1 is of particular interest in scattering theory of the electromagnetic
field. Here the physics of the electromagnetic field in radiation gauge in the absence
of charges and currents with the obstacles being perfect conductors is described by
the operator ∆1,rel on co-closed forms. To be more precise, the electromagnetic vector
potential of a scattering wave in the frequency domain will satisfy relative boundary
conditions and will be co-closed. It will also be a generalized eigenfunction of ∆rel as
expressed by the Helmholtz equation (∆rel − λ2)A = 0. The detailed spectral resolution
and the scattering theory of ∆rel therefore describes scattering of electromagnetic waves
in geometric backgrounds with perfectly conducting obstacles.

The spaces Hp
rel are finite dimensional and directly related to the singular relative

cohomology groups with compact support and coefficients in R as follows. If d ≥ 3 then
we have natural isomorphisms

Hd
rel(M) = {0},

Hp
rel(M) ∼= Hp

0 (M,∂O) ∼= Hp
0 (X\O), if p 6= d.

Similarly, for the absolute boundary conditions one obtains for d ≥ 3

H0
abs(M) = {0},

Hp
abs(M) ∼= Hp(M), if p 6= 0.

These statements follow from a more general theorem by Melrose for scattering manifolds
(as a consequence of Theorem 4 in case O = ∅ in [28]) and Carron who analysed the
asymptotically flat case in great detail. In particular, the statement above can be inferred
using the exact sequence of Theorem 4.4 combined with Lemma 5.4 in [6]. In dimension
d = 2 we have

H0
rel(M) = H2

rel(M) = {0},
H1

rel(M) ∼= Im
(

H1
0 (M,∂O) → H1(M,∂O)

) ∼= H1(M,∂O),

which follows from Proposition 5.5 in [6]. Moreover, the dual statement is

H0
abs(M) = H2

abs(M) = {0},
H1

abs(M) ∼= H1
0 (M).
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The dimensions of these spaces, the L2-Betti numbers, are therefore computable us-
ing the Mayer-Vietoris sequence. Note that it follows from the long exact sequence
in cohomology that for manifolds Euclidean at infinity we always have Hp

0 (M,∂O) ∼=
Hp(M,∂O) if 1 < p < d. For a more detailed description of the above natural isomor-
phisms see for example [6].

Example 1.1. If X = R
d and O consists of N non-intersecting balls, one obtains for

d > 2 that H1
rel(M) ∼= R

N . These are the only non-trivial spaces of harmonic forms
satisfying relative boundary conditions. In the case d = 2, N > 0 one has H1

rel(M) ∼=
R
N−1.

Example 1.2. A wormhole X in R
3 is obtained by removing two non-intersecting balls

and gluing the resulting spheres. In this case one obtains H1
rel(M) ∼= R and H2

rel(M) ∼= R

as the only non-trivial spaces of square integrable harmonic forms.

Example 1.3. Another interesting example is when O is a full torus. In this case
we also have H1

rel(M) ∼= R and H2
rel(M) ∼= R as the only non-trivial spaces of relative

harmonic forms.

In terms of L2-Betti numbers the examples 1.2 and 1.3 cannot be distinguished. We
will see later that a certain refinement taking into account the decay properties of the
harmonic forms distinguishes these spaces.

Choose an orthonormal basis (uj)j=1,...,N in kerL2(∆p,rel) consisting of eigensections.
If P is the orthogonal projection onto kerL2(∆p,rel) we have

P =
N
∑

j=1

〈·, uj〉uj .

Each eigenfunction uj admits a multipole expansion

uj =
∑

ν

aν,j
1

rℓν+d−2
Φν ,

if (Φν) is an orthonormal basis consisting of spherical harmonics of degree ℓν , c.f. Ap-
pendix D. For Φ ∈ L2(Sd−1; ΛpRd) define

aj(Φ) :=
∑

ν

aν,j〈Φ,Φν〉,

whenever the sum converges absolutely. For each ℓ we can also define the matrices

aℓkj =
∑

ν,ℓν=ℓ

ak(Φν)aj(Φν).

The aℓkj do not depend on the choice of orthonormal basis (Φν) but they depend on the

choice of orthonormal basis in kerL2(∆p,rel). However, the maps

P (ℓ) =

N
∑

j,k=1

aℓkj〈·, uj〉uk : L2(M ; ΛpT ∗M) → L2(M ; ΛpT ∗M) (1)
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are invariantly defined and self-adjoint.
Suppose u is a harmonic form with a multipole expansion

u(rθ) =
∑

ν

(

aν
1

rd−2+ℓν
Φν(θ) + bνr

ℓνΦν(θ)

)

,

in case d = 3 or

u(rθ) =
∑

ν,ℓν=0

(aν log(r)Φν(θ) + bνΦν(θ)) +
∑

ν,ℓν>0

(

aν
1

rd−2+ℓν
Φν(θ) + bνr

ℓνΦν(θ)

)

,

in case d = 2. We then define

au(Φ) :=
∑

ν

aν〈Φ,Φν〉.

Note that aj(Φ) = auj (Φ).
Whereas (uj) gives the discrete part of the spectrum, the continuous part of the

spectrum is described by the generalised eigenfunction Eλ(Φ) that are indexed by Φ ∈
L2(Sd−1; ΛpRd). For fixed λ > 0 these generalised eigenfunctions are completely deter-
mined by their asymptotic behaviour

Eλ(Φ) ∼
e−iλre

iπ(d−1)
4

r
d−1
2

Φ+
eiλre−

iπ(d−1)
4

r
d−1
2

Ψλ, for r → ∞, (2)

where Ψλ = τSλ and τ : L2(Sd−1; ΛpRd) → L2(Sd−1; ΛpRd) is the pull-back of the
antipodal map. The map Sλ : L2(Sd−1) → L2(Sd−1) is called the scattering matrix, and
Aλ = Sλ − id is called the scattering amplitude.

1.2. Statement of the main theorems. Suppose that f, g : Z → W are functions
that take values in a locally convex topological vector space and h : Z → R . As usual
we write f = g + OW (h) if for every continuous semi-norm p on W there is a constant
Cp such that p(f(λ)− g(λ)) ≤ Cp|h(λ)| for all λ ∈ Z.

Theorem 1.4. Let Cd,ℓ be defined by

Cd,ℓ = (−i)ℓ
√
2π

1

2ℓ+
d
2
−1

1

Γ(ℓ+ d
2)
,

and suppose that Φ ∈ C∞(Sd−1; ΛpRd) is a spherical harmonic of degree ℓ, then the
generalised eigenfunctions have for small |λ| and bounded | arg λ| the following expansions

• For d = 3,

Eλ(Φ) = −(d− 2 + 2ℓ)Cd,ℓλ
ℓ+ d−5

2

N
∑

j=1

aj(Φ)uj

+i(d− 2 + 2ℓ)Cd,ℓλ
ℓ+ d−3

2

N
∑

j,k=1

a
(1)
kj aj(Φ)uk +OC∞(M)(λ

ℓ+ d−1
2 ).
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• For d odd and d ≥ 5, then

Eλ(Φ) = −(d− 2 + 2ℓ)Cd,ℓλ
ℓ+ d−5

2

N
∑

j=1

aj(Φ)uj +OC∞(M)(λ
ℓ+ d−1

2 ).

• For d = 4,

Eλ(Φ) = −(d− 2 + 2ℓ)Cd,ℓλ
ℓ+ d−5

2

N
∑

j=1

aj(Φ)uj

+
1

4
(d− 2 + 2ℓ)Cd,ℓλ

ℓ+ d−1
2 (− log λ)

N
∑

j,k=1

a
(1)
kj aj(Φ)uk +OC∞(M)(λ

ℓ+ d−1
2 ).

• For d even such that d ≥ 6,

Eλ(Φ) = −(d− 2 + 2ℓ)Cd,ℓλ
ℓ+ d−5

2

N
∑

j=1

aj(Φ)uj +OC∞(M)(λ
ℓ+ d−1

2 ).

In any dimension, if ∂O = ∅ or p 6= 1, then P (1) = 0 and therefore a
(1)
kj = 0 in the

previous expansions.

This shows that all L2-eigenfunctions appear as expansion coefficients of generalised
eigenfunctions. Note that in even dimensions the functions are defined on a logarithmic
cover of the complex plane and the estimates are understood as functions in an arbitrary
but fixed sector of this cover (see Section A). Hence the need for the restriction to
bounded arg λ.

Theorem 1.5. If d is odd and d ≥ 3 the resolvent (∆rel − λ2)−1 (as an operator from
L2
comp to H2

loc) has for small |λ| an expansion of the form

Rλ = − P

λ2
+ i

B−1

λ
+B(λ), (3)

where B(λ) is holomorphic near zero. If d = 3 then B−1 = P (1), and in particular we
have that B−1 = 0 if ∂O = ∅. If d is odd and d ≥ 5 then B−1 = 0.

The situation in even dimensions is different. In this case the resolvent (∆rel − λ2)−1

(as an operator from L2
comp to H

2
loc) is Hahn meromorphic at zero, i.e. it has a convergent

expansion in terms of powers of λ2 and log λ (see Appendix A for the precise definition
of this notion).

Theorem 1.6. If d is even and d ≥ 4 then the resolvent, as an operator from L2
comp to

H2
loc, takes for small |λ| and bounded | arg λ| the form

− P

λ2
+B−1(− log λ) +B(λ),

where B(λ) is Hahn-holomorphic and B−1 =
1
4P

(1) if d = 4, and B−1 = 0 if d ≥ 6.

We now summarise the results for the two dimensional case.
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Theorem 1.7. Suppose that d = 2 and either p = 0 or p = 2. Then the resolvent, as
an operator from L2

comp to H2
loc, takes for small |λ| and bounded | arg λ| the form

B−1(− log λ) +B(λ),

where B(λ) is Hahn-holomorphic. If p = 0 and ∂O = ∅ then B−1 = 〈·, 1〉1, where 1 is a
constant function one. If ∂O 6= ∅ then B−1 = 0. In case p = 2 we have B−1 = 〈·, ∗1〉 ∗1,
where ∗1 is the volume form.

The results in the case of one-forms in dimension two are rather complicated and
require the definition of certain natural functions. First note that if Ψ is a linear function
on R

2 then Φ = dΨ is a harmonic one form of degree zero. It turns out that there is a
harmonic function u(Ψ) ∈ C∞(M) that satisfies relative boundary conditions such that

u(Ψ)(r, θ) = Ψ(r, θ) +O(1), r → ∞.

By the maximum principle u(Ψ) is uniquely determined up to a constant and therefore
ϕ(Φ) = du(Ψ) is well-defined. Note that ϕ(Φ) ∈ C∞(M ;T ∗M) is a one-form that
satisfies relative boundary conditions and

ϕ(Φ) = Φ +O(
1

r
).

In case there is a boundary, i.e. ∂O 6= ∅, there exists a unique harmonic function g(Φ0)
satisfying Dirichlet boundary conditions such that

g(Φ0) =
(

log
r

2

)

Φ0 + βΦ0 +O

(

1

r

)

for r sufficiently large. We then have ψ(Φ0) = dg(Φ0) is closed and co-closed, satisfies
relative boundary conditions, and

ψ(Φ0) =
dr

r
Φ0 +O

(

1

r2

)

.

Here Φ0 is the L2-normalised constant function Φ0 =
1
2π .

Theorem 1.8. Suppose that p = 1 and d = 2. Let Φ be a spherical harmonic of degree
ℓ. Let ψ = ψ(Φ0) in case ∂O 6= ∅ and define ψ = 0 otherwise. Then, for |λ| small and
bounded | arg λ| we have

• if ℓ = 0 we have Eλ(Φ) =
√
2πϕ(Φ)λ

1
2 +OC∞(M)(

λ1/2

− log λ).

• if ℓ ≥ 1 we have

Eλ(Φ) = −2ℓC2,ℓλ
ℓ− 3

2

N
∑

j=1

aj(Φ)uj − 2ℓC2,ℓλ
ℓ− 3

2
1

− log λ+ iπ
2 + β − γ

aψ(Φ)ψ

+2ℓC2,ℓλ
ℓ+ 1

2 (− log λ)





1

4

N
∑

j,k=1

a
(2)
kj aj(Φ)uk +

∑

ℓν=0

aϕ(Φν)(Φ)ϕ(Φν)



+OC∞(M)(λ
ℓ+ 1

2 ).

Note that aj(Φ) = 0 if ℓ = 1.
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Theorem 1.9. If d = 2 and p = 1 the resolvent, as an operator from L2
comp to H2

loc, has
an expansion for small |λ| and bounded | arg λ| of the form

Rλ = − P

λ2
− 1

λ2
1

− log λ+ iπ
2 + β − γ

Q+B−1(− log λ) +B(λ),

where B(λ) is Hahn holomorphic and γ is the Euler-Mascheroni constant. Here Q = 0
in case ∂O = ∅, and Q = 〈·, ψ(Φ0)〉ψ(Φ0) if ∂O 6= ∅. Moreover, we have

B−1 =
1

4
P (2) +

∑

ℓν=0

〈·, ϕ(Φν)〉ϕ(Φν).

The form ψ(Φ0) is, by construction, a cohomology class that generates the image of
the map H0(Sd−1) → H1(M,∂O). This image is not detected by L2-cohomology theory
in the two dimensional case and the above shows that this cohomology class appears as
a zero-energy resonant state instead.

Each of the expansions of the generalised eigenfunctions can be used to derive an
expansion of the scattering matrix and the scattering amplitude. Section 4 describes
the detailed expansion depending on the dimension. The leading order behavior is
independent of the dimension and can be summarised into the following theorem.

Theorem 1.10. If d ≥ 3 and Φ is a spherical harmonic of degree ℓ, then

〈AλΦ,Φν〉 =



− i

2
(d− 2 + 2ℓ)(d− 2 + 2ℓν)Cd,ℓCd,ℓν

N
∑

j=1

aj(Φ)aj(Φν)



λℓ+ℓν+d−4 + r(λ),

where for small |λ| and bounded | arg λ| we have

• r(λ) = O(λℓ+ℓν+d−3) if d = 3,
• r(λ) = O(λℓ+ℓν+d−2)(− log λ) if d = 4,
• r(λ) = O(λℓ+ℓν+d−2) if d > 4.

If P (ℓ) = 0, then 〈AλΦ,Φν〉 = O(λℓ+ℓν+d−2), in particular ‖Aλ‖L2→Hs = O(λd−2) for
any s ∈ R and |λ| small and bounded | arg λ|.

The two dimensional case is more involved due to the existence of a zero resonant
state when ∂O 6= ∅. In this case we have ‖Aλ‖L2→Hs = O( 1

− log λ) for any s ∈ R. Precise

expansions depend on the form degree and the presence of an obstacle.

Theorem 1.11. If d = 2 and Φ is a spherical harmonic of degree ℓ, then, for |λ| small
and bounded | arg λ|, we have

• if p = 0 or p = 2 then ‖Aλ‖L2→Hs = O( λ
− log λ) and

〈AλΦ,Φν〉L2(Sd−1) = O(λℓ+ℓν ).

• if p = 1, using the notation of Theorem 1.8,

〈AλΦ,Φν〉L2(Sd−1)

= −2iℓ ℓν C2,ℓC2,ℓνλ
ℓ+ℓν−2









N
∑

j=1

aj(Φ)aj(Φν)



+
1

− log λ+ iπ
2 + β − γ

aψ(Φ)aψ(Φν)





+O(λℓ+ℓν (− log λ)).
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The expansions of the generalised eigenfunctions encode the finer structure on the
space Hp

rel(M) given by the order of vanishing at infinity. Indeed, the space Hp
rel(M)

carries a natural filtration

Hp,m+1
rel (M) ⊂ Hp,m

rel (M) ⊂ Hp
rel(M),

where Hp,m
rel (M), defined for m ≥ 1, is the space of L2-harmonic forms satisfying relative

boundary conditions whose multipole expansion only has nonzero terms of order ℓ ≥ m.
In parts this filtration has topological significance.

Theorem 1.12. If d ≥ 3 and 0 < p ≤ d then Hp,1
rel(M)/Hp,2

rel(M) isomorphic to the kernel

of the map Hp
0 (M,∂O) → Hp(M,∂O). In particular Hp,1

rel(M) = Hp,2
rel(M) if ∂O = ∅ or

1 < p ≤ d, and dimHp,1
rel(M)/Hp,2

rel(M) = 1 if ∂O 6= ∅ and p = 1.

By the long exact sequence in cohomology the kernel of Hp
0 (M,∂O) → Hp(M,∂O) is

the same as the image of the map Hp(Sd−1) → Hp
0 (M,∂O). This map is given by the

limit of a the generalised eigenfunction (see Section 5). The fact that these spaces are
isomorphic can probably also be inferred from the general framework [27]. As explained
before this is not true in dimension two where this image shows up as a zero resonance
state.

Finally, we give a short proof of the relative Birman-Krein formula in our setting
with particular emphasis on the low energy behaviour. The expansions of the scattering
amplitudes therefore directly translate into the asymptotic properties of the spectral
shift function ξ ∈ L1

loc(R) (see Section 6 for a definition) which is expressed as

ξ(µ) =

{

0 µ < 0,
(βp + βres) + η(µ) µ ≥ 0,

where

η(µ) =
1

2πi

√
µ

∫

0

tr
(

S∗(λ)S′(λ)
)

dλ,

the integer βp is the L2-Betti number, and βres equals one in case d = 2, p = 1, ∂O 6= ∅
and zero otherwise. The jump of the spectral shift function at zero was also computed
by Carron in [7] using a different method. The expansions of Aλ can be used to prove
refined expansions for the spectral shift function at zero. An example is the following
theorem.

Theorem 1.13. Suppose d ≥ 3. Then we have for 0 ≤ µ ≤ 1 the estimate

ξ(µ) = βp + αpµ
d−2
2 +

{

O(µ
d−1
2 ) d odd

O( 1
− log µ) d even

,

where in case p = 1 we have α1 = − 21−dd2

Γ( d−2
2 )

2 tr
(

P (1)
)

, in case p > 1 we have αp = 0, and

finally a0 = a1.

Similar expansions can be derived in dimension two. The details of the expansions of
the spectral shift function and their applications will be discussed elsewhere.
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1.3. Possible generalisations. For the purposes of this article we have focused on the
important case of compact perturbations of Euclidean space. This is also the case that is
most relevant in physics. There are two natural generalisations of this. One is to consider
compact perturbations of globally symmetric spaces. In this case the theory of Hahn
meromorphic functions can still be applied with a difference being that the bottom of the
continuous spectrum is generally not at zero any more and therefore the cohomological
interpretation will be lost. Another generalisation is to consider manifolds that are exact
cones outside a compact set and even more generally scattering manifolds as introduced
by Melrose ([28]). Large parts of our analysis carry over to that setting but the absence
of a canonical basis in cotangent space complicates things on a notational level. Finally
one can obtain results about short range perturbations of the metric by approximating
them by manifolds that are Euclidian at infinity.

2. Stationary scattering theory and the spectral resolution

In this section we describe the spectral resolution of the operator ∆p,rel in our setting.
Most results presented here are well known and standard in stationary black box scat-
tering theory. They also hold with the obvious modifications for the operator ∆p,rel +V
where V ∈ C∞

0 (M ; End(ΛpT ∗M)) is a compactly supported symmetric potential. In
this paper we focus only on the case of the Laplace operator and in order to keep the
notation as simple as possible we omit the potential. For general background on the
theory of black-box scattering for functions and current developments we refer to the
recent monograph [13]. We will denote the kernel of the self-adjoint operator ∆p,rel by
kerL2(∆p,rel). This will distinguish it notationally from the kernel kerC∞(∆p,rel) of the
differential operator ∆p,rel acting on smooth forms satisfying relative boundary condi-
tions but without imposing the condition of square-integrability. The resolvent

Rλ := (∆p,rel − λ2)−1

is a holomorphic family of L2-bounded operators for Im(λ) > 0. It is well known
that the resolvent has a meromorphic extension to a family of bounded operators from
Hs

0(M) → Hs+2
loc (M) with finite rank negative Laurent coefficients to a larger Riemann

surface R. In the case the dimension d is odd, we have R = C. In the case d is even
R is a logarithmic cover of the complex plane with branch cut at iR−. In either case R
contains the set R \ iR−. It is also known that the resolvent is holomorphic near R \ {0}
(absence of embedded eigenvalues). The singularity structure at zero will be discussed
in detail in Section 3.

Suppose that f ∈ C∞(M ; ΛpT ∗M), then if λ ∈ R is non-zero and g = (∆p − λ2)f is
compactly supported then f is called outgoing for λ if f = Rλh, where h is compactly
supported. The section f is called incoming for λ if it is outgoing for −λ. It is easy to
see that if fχ ∈ C∞

0 (M) then f is outgoing if and only if (1−χf) is outgoing. It follows
that the definition depends only on the behavior of f at infinity. Moreover, the notion
does not depend on the precise structure of the resolvent and is also independent of the
compact part M \K. This means that f is outgoing on M is equivalent to f |M\K being

outgoing on R
d. One can use this to see that an outgoing f has an asymptotic expansion

f ∼ eiλr

r
d−1
2

Φ,
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where Φ ∈ C∞(Sd−1; ΛpRd) is the restriction of an entire function on C
d to the sphere.

The expansion can be differentiated in r, c.f. Appendix E for details. We refer to
Appendix C for proofs of the above claims in our setting.

SinceM is Euclidean at infinity there is a compact set K such thatM \K is isometric
to Rd\BR(0). OnM\K we have a natural coordinate system. We will use both Cartesian
coordinates x ∈ R

d and spherical coordinates (r, ω) ∈ (R,∞)× S
d−1, where r = |x| and

ω = x
|x| , where it is understood. We choose a smooth function χ ∈ C∞(M) supported

in M \K such that 1− χ is compactly supported. Using the Cartesian coordinates and
the orthonormal frame (dx1, . . . , dxd) we trivialise the bundle T ∗(M \K) and thereby
identify forms in C∞(M \K; ΛpT ∗M) with vector-valued functions in C∞(M \K; ΛpRd).

Given ω ∈ S
d−1 and v ∈ ΛpRd we define the distorted plane wave

eλ(ω, v) ∈ C∞(M ; ΛpT ∗M)

by
eλ(ω, v)(x) = χ(x)ve−iλω·x −Rλ(∆p − λ2)χ(x)ve−iλω·x.

By construction eλ(ω, v) is a meromorphic function on C \ iR− with

(∆p − λ2)eλ(ω, v) = 0

that satisfies relative boundary conditions but is generally not in L2(M ; ΛpT ∗M).
Similarly, given Φ ∈ L2(Sd−1,ΛpRd) one can define the distorted spherical waves

Eλ(Φ) by

Eλ(Φ)(x) =

(

λ

2π

)
d−1
2
∫

Sd−1

eλ(ω,Φ(ω))(x)dω.

This distorted spherical wave can also be expressed directly in terms of Bessel and
Hankel functions. In order to describe this it is convenient to introduce the following
notation. On the sphere Sd−1 we have an orthonormal basis (φν)ν in L

2(Sd−1) consisting
of eigenfunctions of the Laplacian with eigenvalues ℓν(ℓν + d− 2). These spherical har-
monics can be obtained by restricting homogeneous harmonic polynomials to the sphere.
Given g ∈ L2(Sd−1) we can therefore write g =

∑

ν
aνφν , where aν(g) = 〈g, φν〉L2(Sd−1)

and convergence is in L2(Sd−1). We denote by Hℓ(S
d−1) the spherical harmonics of

degree ℓ, so we have the Hilbert space direct sum L2(Sd−1) =
∞
⊕

ℓ=0

Hℓ(S
d−1).

Definition 2.1. For g ∈ L2(Sd−1), we define j̃λ(g) ∈ C∞(Rd \ {0}) by
j̃λ(g)(rθ) = 2λ

d−1
2

∑

ν

aν(g)φν(θ)jd,ℓν (λr)(−i)ℓν ,

where jd,ℓ is the spherical Bessel function in dimension d (see Appendix E).

In the same way we have in the vector-valued case the Hilbert space direct sum

L2(Sd−1; ΛpRd) =
∞
⊕

ℓ=0

Hp
ℓ (S

d−1), where Hp
ℓ (S

d−1) ⊂ C∞(ΛpRd) denotes the vector-space

of vector-valued spherical harmonics of degree ℓ and form-degree p.
If Φ ∈ L2(Sd−1; ΛpRd), then j̃λ(Φ) is in C

∞(Rd,ΛpRd) and solves (∆p−λ2)j̃λ(Φ) = 0.

Using the properties of spherical Bessel functions it is not difficult to show that j̃λ(Φ) is
a holomorphic function in λ taking values in C∞(Rd \ {0}).
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Theorem 2.2. We have that

Eλ(Φ) = χj̃λ(Φ)−Rλ(∆p − λ2)(χj̃λ(Φ)) = χj̃λ(Φ)−Rλ[∆p, χ](j̃λ(Φ)). (4)

Proof. This follows from the equality (see Appendix E)

(2π)−
d−1
2

∫

Sd−1

exp(−iλx · ω)g(ω)dω = 2
∑

ν

aνφν

(x

r

)

jd,lν (λr)(−i)lν = λ
1−d
2 j̃λ(g), (5)

with aν = 〈g, φν〉L2(Sd−1).

�

The generalised eigenforms Eλ(Φ), by construction, depend meromorphically on λ
and are holomorphic in λ in an open neighbourhood of R \ {0}.

Definition 2.3. We define h̃
(1)
λ (g), and h̃

(2)
λ (g) by

h̃
(1)
λ (g)(rθ) = λ

d−1
2

∑

ν

aν(g)φν(θ)h
(1)
ℓν

(λr)(−i)ℓν ,

h̃
(2)
λ (g)(rθ) = λ

d−1
2

∑

ν

aν(g)φν(θ)h
(2)
ℓν

(λr)(−i)ℓν ,

whenever the sums converge in C∞(Rd\{0}) where h(1)ℓ , and h
(2)
ℓ are the spherical Hankel

functions in dimension d (see Appendix E).

The above definition does not depend on the choice of spherical harmonics.
We have

Theorem 2.4. For every λ ∈ R \ {0} and Φ ∈ L2(Sd−1,ΛpRd) there exists a unique
Aλ(Φ) ∈ C∞(Sd−1,ΛpRd) such that

Eλ(Φ)|M\K = j̃λ(Φ) + h̃
(1)
λ (AλΦ).

Proof. If we define g = Eλ(Φ) − χj̃λ(Φ) then g is outgoing for λ 6= 0 and smooth.

It follows from Lemma C.5 that on M \ K we have g = h̃
(1)
λ (Aλ(Φ)) for a unique

Aλ(Φ) ∈ C∞(Sd−1,ΛpRd). �

If Φ is smooth one can use the well-known asymptotics of the Bessel and Hankel
functions to see that for fixed λ > 0

Eλ(Φ) ∼
e−iλre

iπ(d−1)
4

r
d−1
2

Φ+
eiλre−

iπ(d−1)
4

r
d−1
2

(τ(Φ) + τ(AλΦ)), for r → ∞,

where τ : C∞(Sd−1,ΛpRd) → C∞(Sd−1,ΛpRd), f(θ) 7→ f(−θ) is the pull-back of the
antipodal map. This asymptotic expansion may be differentiated, c.f., Appendix E. To-
gether with Rellich’s uniqueness theorem this gives the well-known statement that, given
real λ 6= 0 for every Φ ∈ C∞(Sd−1,ΛpRd) there exists a unique Ψ ∈ C∞(Sd−1,ΛpRd)
and a unique solution Eλ(Φ) of (∆p − λ2)Eλ(Φ) = 0 such that for fixed λ > 0

Eλ(Φ) ∼
e−iλre

iπ(d−1)
4

r
d−1
2

Φ+
eiλre−

iπ(d−1)
4

r
d−1
2

Ψλ, for r → ∞, (6)
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and by comparison with the above we get Ψλ = τ (Φ +AλΦ). The scattering matrix
Sλ : L2(Sd−1,ΛpRd) → L2(Sd−1,ΛpRd) is defined by Sλ = id+Aλ. From the uniqueness
statement in Theorem 2.4 one deduces that in case the dimension is odd that

E−λ(Φ) = (i)d−1Eλ(τ S−λΦ), Sλ τ S−λ = τ, (7)

and in case the dimension is even we have

E−λ(Φ) = (i)d−1Eλ(τ(2 id− S−λ)Φ), Sλ τ (2 id− S−λ) = τ. (8)

The functional relation above in the case of even dimensions seems to have been widely
misstated in the literature (see [11] for a careful analysis and a clarification of this
formula). In the even dimensional case Eλ(Φ) and Sλ are Hahn meromorphic and only
defined on a logarithmic cover of the complex plane the notation −λ for λ > 0 needs
an explanation. Throughout the paper, if z 6= 0 is an element of the logarithmic cover
of the complex plane, we will define −z = eiπz which corresponds to a counterclockwise
rotation by π. Some care is needed with this notation, however, since then −(−z) is on
a different sheet than z. The complex conjugate of z = reiφ in the logarithmic cover is
defined by z = re−iφ. For z > 0 the complex conjugate −z of −z is then also on another
branch than −z, namely −z = e−iπz.

We have used the formulae (41) and (42) for the analytic continuation of the Hankel
functions. Green’s theorem applied to the identity

〈(∆− λ2)Eλ(Φ), Eλ(Ψ)〉 − 〈Eλ(Φ), (∆− λ2)Eλ(Ψ)〉 = 0

for λ > 0 and analytic continuation shows that

S∗
λ̄Sλ = id,

in particular Sλ is unitary for positive real λ. Comparison gives

A∗
λ
= (−1)d−1τ A−λ τ.

If Φ ∈ L2(Sd−1,ΛpRd) then outside the support of χ, we have

h̃
(1)
λ (AλΦ) = Rλ[∆p, χ]j̃λ(Φ).

Now choose cutoff functions η1, η2 ∈ C∞(M), supported in X\K, and η1 = 1 in a
neighbourhood of the support of η2. It follows 1 − η2 is compactly supported. Let
BR denote a ball of radius R. The following Lemma is equivalent to a well known
representation of the scattering amplitude by the resolvent (see for example [36, Prop.
2.1]).

Lemma 2.5. For large enough R≫ 0 and λ ∈ R, we have

−(2iλ)e
(d−1)πi

4 Vol(Sd−1)

(

2π

λ

)
d−1
2

(AλΦ)(ω) = 〈[∆p, η2]Rλ[∆p, χ]j̃λ(Φ), η1e
−iλωx〉L2(BR).

Proof. Note that

〈(∆p − λ2)η2h̃
(1)
λ (Ψ), η1e

−iλωx〉L2(BR)

is independent ofR for sufficiently largeR enough as (∆p−λ2)η2h̃(1)λ (Ψ) = [∆p, η2]h̃
(1)
λ (Ψ)

is compactly supported. Integration by parts gives only boundary terms since the de-
rivative of [∆p, η1]e

−iλωx has support where η2 vanishes. Therefore the integral is given
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by

−
∫

|x|=R
eiλωx

∂

∂r
h̃
(1)
λ (Ψ)dx+

∫

|x|=R

(

∂

∂r
eiλωx

)

h̃
(1)
λ (Ψ)dx,

and is equal to the constant term in its large R expansion. Using (51) one can compute
this constant term as

−(2iλ)e
(d−1)πi

4 Vol(Sd−1)

(

2π

λ

)
d−1
2

(AλΦ)(ω).

�

From this one concludes that Sλ admits a meromorphic extension to C \ (−i[0,∞))
with finite rank negative Laurent coefficients. Since Sλ is unitary for real λ this implies
immediately that Sλ is holomorphic in a neighborhood of R \ {0}. Depending on the
dimension one can make a more precise statement about the behavior of Aλ near λ = 0.

Corollary 2.6. If d ≥ 3 is odd, then A(λ) is a holomorphic family of bounded operators
in B(L2, Hs) for any s ∈ R. If d ≥ 2 is even, then A(λ) is a Hahn-holomorphic family
of bounded operators in B(L2, Hs) for any s ∈ R

Proof. The resolvent is (Hahn) meromorphic near zero as an operator from L2
comp to

H2
loc. Differentiating the formula in ω this shows that Aλ is (Hahn)-meromorphic as

an operator from L2(Sd−1) to Ck(Sd−1). Since Aλ is bounded as a map from L2 → L2

the singular terms in the Hahn expansion must all vanish. Thus, Aλ must be Hahn-
holomorphic (see [30, Section 3]) with values in the operators from L2 to Hs for any
s ∈ R. �

If Φ ∈ C∞(Sd−1,ΛpRd) then dr∧Φ ∈ C∞(Sd−1,Λp+1
R
d) and ιdrΦ ∈ C∞(Sd−1,Λp+1

R
d),

where ιdr is interior multiplication of differential forms by dr.

Theorem 2.7. We have the following equalities,

dEλ(Φ) = −iλEλ(dr ∧ Φ), δEλ(Φ) = iλEλ(ιdrΦ).

Moreover, we also have dr ∧ SλΦ = Sλdr ∧ Φ and ιdrSλΦ = SλιdrΦ.

Proof. By analyticity it is sufficient to prove the equalities for λ in a neighbourhood of
the real line. Computing the leading order term from (6) gives for fixed λ > 0

dEλ(Φ) ∼ −iλ

(

e−iλre
iπ(d−1)

4

r
d−1
2

dr ∧ Φ− eiλre−
iπ(d−1)

4

r
d−1
2

dr ∧Ψλ

)

, for r → ∞.

Now one simply compares the leading order coefficients and uses Rellich’s theorem to
conclude that dEλ(Φ) = −iλEλ(dr ∧ Φ) and τSλdr ∧ Φ = −dr ∧ τSλΦ. Note that
τdr = −dr. The formula for δEλ(Φ) is proved in exactly the same way. �

The generalised eigenfunctions Eλ(Φ) can be viewed as distributions in λ with values
in the space of Schwartz functions S(M ; ΛpT ∗M). In particular, if g ∈ C∞

0 (R+) then
∫

R
g(λ)Eλ(Φ)dλ is square integrable. Therefore, 〈Eλ(Φ), Eµ(Ψ)〉L2(M) can be viewed as
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a bidistribution in D′(R+ × R+). This last inner product can be computed by taking
the limit

lim
R→∞

1

λ− µ
(
(

〈∆pEλ(Φ), χREµ(Ψ)〉L2(M) − 〈Eλ(Φ), χR∆pEµ(Ψ)〉L2(M)

)

,

and using Green’s identity. Here χR denotes the indicator function of a compact region
whose boundary is in M \K and is identified with the sphere of radius R. One obtains
the distributional identity

〈Eλ(Φ), Eµ(Ψ)〉L2(M) = (4πλ)δ(λ2 − µ2)〈Φ,Ψ〉L2(Sd−1). (9)

We have the following estimate, which is not optimal but sufficient for our purposes.

Lemma 2.8. For any K > 0 we have for |λ| < K that

j̃λ(Φν) = OC∞(Rd\{0})

(

1

Γ(ℓν +
d
2)
λℓν+

d−1
2

)

,

uniformly in ν. Moreover, for |λ| < K and Imλ ≥ 0, we have

Eλ(Φν) = OC∞(Rd\{0})

(

1

Γ(ℓν +
d
2)
λℓν+

d−5
2

)

.

Proof. By the estimate

|Jµ (z) | ≤
|12z|µe| Im z|

Γ (µ+ 1)
, µ > −1

2
,

(see [34, 10.14.4]), the family λ−ℓν−
d−1
2 j̃λ(Φν) is bounded in L2

loc(R
d \ {0}). Since

∆j̃λ(Φν) = λ2j̃λ(Φν) this shows that the family is bounded in Hs
loc(R

d \ {0}) for any

s ∈ 2N. Hence, it is bounded in C∞(Rd \ {0}). Now note that Rλ = O(λ−2) if we
consider Rλ as a map from Hs

comp(M) → Hs+2(M). This follows from the fact that the
resolvent is Hahn-meromorphic, has a singularity of order at most two at zero (see a
more detailed analysis in Section 3), and is analytic near the real line and in the upper
half plane. Theorem 2.2 then implies the second estimate. �

Lemma 2.9. There exists a constant R > 0 such that for λ in any compact subset of R
we have the bound

|〈AλΦν ,Φµ〉| ≤ O

(

Rℓµ
λℓν+ℓµ+d−4

Γ(ℓν +
d
2)Γ(ℓµ +

d−2
2 )

)

.

Proof. Lemma 2.8 and Theorem 2.4 combined give the bound

|〈AλΦν ,Φµ〉||λ
d−1
2 h

(1)
d,ℓ(rλ)| = O

(

1

Γ(ℓν +
d
2)
λℓν+

d−5
2

)

,

where r ≫ 0 is sufficiently large so that K̃ ⊂ Br(0). The Lemma is then implied by the
asymptotics (50). �
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Furthermore, if f ∈ C∞
0 (M,ΛpRd) then for fixed λ > 0 the function R−λf is incoming

and therefore has asymptotic behaviour

R−λf ∼ e−iλreiπ
d−1
4

r
d−1
2

Ψ,

as r → ∞ for some Ψ ∈ C∞(Sd−1,ΛpRd). Integration by parts gives

〈f,Eλ(Φν)〉L2(M) = 〈(∆− λ2)R−λf,Eλ(Φν)〉L2(M) = 2iλ〈Ψ,Φν〉L2(Sd−1),

and therefore

R−λf ∼ − 1

2iλ

e−iλr

r
d−1
2

∑

ν

〈Ψ,Φν〉Φν .

Hence, the incoming part of (Rλ −R−λ)f is the same as that of

− i

2λ

∑

ν

Eλ(Φν)〈f,Eλ(Φν)〉,

where the sum converges in C∞(M) by Lemma 2.8. Since (∆− λ2)(Rλ −R−λ)f = 0 it
follows from Rellich’s uniqueness theorem that

(Rλ −R−λ)f =
i

2λ

∑

ν

Eλ(Φν)〈f,Eλ(Φν)〉.

We can now use Stone’s theorem to compute the spectral measure and the complete
spectral decomposition of ∆p,rel.

Theorem 2.10. If f ∈ C∞
0 (M,ΛpT ∗M) then for any λ > 0

(Rλ −R−λ)f =
i

2λ

∑

ν

Eλ(Φν)〈f,Eλ(Φν)〉, (10)

in C∞(M). For the spectral measure dBλ on the real line corresponding to the continuous
spectrum we have for any g, f ∈ C∞

0 (M,ΛpT ∗M)

〈dBλf, g〉 =
1

2π
χ[0,∞)(λ)

∑

ν

〈f,Eλ(Φν)〉〈Eλ(Φν), g〉 dλ, (11)

so that for any bounded Borel function h : R → R we have

〈h(∆p,rel)f, g〉 = h(0)
N
∑

j=1

〈f, uj〉〈uj , g〉

+
1

2π

∑

ν

∫ ∞

0
h(λ2)〈f,Eλ(Φν)〉〈Eλ(Φν), g〉 dλ (12)

where uj’s are normalised eigenfunctions of ∆p,rel with zero eigenvalue.

Remark 2.11. The same arguments as before can be applied to the generalised eigen-
functions E−λ(Φ) and as a result one also has

〈dBλf, g〉 =
1

2π
χ[0,∞)(λ)

∑

ν

〈f,E−λ(Φν)〉〈E−λ(Φν), g〉 dλ. (13)
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This could also be deduced more directly from the functional equations (7) and (8) and
unitarity of the scattering matrix.

Theorem 2.12. If h is a Borel function with h = O((1 + λ2)−N ) for any N ∈ N we
have that h(∆p,rel) has smooth integral kernel kh ∈ C∞(M ×M ; ΛpT ∗M ⊠ (ΛpT ∗M)∗)
and

kh(x, y) = h(0)

N
∑

j=1

uj(x)⊗ (uj(y))
∗

+
1

2π

∑

ν

∫ ∞

0
h(λ2)Eλ(Φν)(x)⊗ Eλ(y)(Φν)

∗ dλ, (14)

where the sum converges in C∞(M ×M ; ΛpT ∗M ⊠ (ΛpT ∗M)∗).

Proof. Note that by functional calculus ∆s1
p,relh(∆p,rel)∆

s2
p,rel is bounded as an operator in

L2(M ; ΛpT ∗M) for any s1, s2 ∈ R. Hence, h(∆p,rel) continuously mapsHs
comp(M,ΛpT ∗M)

to Hs+k
loc (M,ΛpT ∗M) for any s ∈ R and k ∈ R and therefore has smooth integral kernel

kh in C∞(M ×M ; ΛpT ∗M ⊠ (ΛpT ∗M)∗). Denote by hn(∆p,rel) the approximation of
h(∆p,rel) defined by truncating the infinite sum, i.e.

〈hn(∆p,rel)f, g〉 = h(0)
N
∑

j=1

〈f, uj〉〈uj , g〉

+
1

2π

∑

ν,ℓν≤n

∫ ∞

0
h(λ2)〈f,Eλ(Φν)〉〈Eλ(Φν), g〉 dλ. (15)

To show the statement it is sufficient to show it for h ≥ 0 since the general case can be
deduced by decomposing h into positive and negative parts. In this case

0 ≤ ∆s1
p,relhn(∆p,rel)∆

s2
p,rel ≤ ∆s1

p,relh(∆p,rel)∆
s2
p,rel

as operators in L2(M). For any χ1, χ2 ∈ C∞
0 (M) we then obtain the estimate

|〈hn(∆
1
2
p,rel)(χ1v), χ2w〉| ≤ |〈h(∆

1
2
p,rel)(χ1v), χ1v〉|

1
2 |〈h(∆

1
2
p,rel)(χ2w), χ2w〉|

1
2

≤ Cs‖χ1v‖H−s‖χ2w‖H−s .

Hence, hn(∆
1
2
p,rel) has smooth integral kernel khn and the sequence khn is bounded in

C∞(M ×M ; ΛpT ∗M ⊠ (ΛpT ∗M)∗). By Theorem 2.10 the sequence of khn converges
weakly to kh as n → ∞. Since the sequence khn is also bounded in the space C∞(M ×
M ; ΛpT ∗M ⊠ (ΛpT ∗M)∗) the Theorem of Arzela-Ascoli implies that it converges in
C∞(M ×M ; ΛpT ∗M ⊠ (ΛpT ∗M)∗). �

3. Expansions near zero

The generalised eigenfunctions Eλ are related via Theorem 2.2 to the resolvent. In
this section we use the singularity structure of the resolvent near zero to analyse the
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behaviour of Eλ for small λ. Let R1, R2, with R1 < R2 be fixed large real numbers. If
Φ ∈ Hp

ℓ (S
d−1) is a vector-valued spherical harmonic of degree ℓ one has for |λ| < 1:

χj̃λ(Φ)(rθ) = Cd,ℓλ
ℓ+ d−1

2 rℓΦ(θ) +OC∞(Rd\{0})(λ
ℓ+ d+3

2 ), (16)

where

Cd,ℓ = (−i)ℓ
√
2π

1

2ℓ+
d
2
−1

1

Γ(ℓ+ d
2)
.

Lemma 3.1. Assume d ≥ 3 and suppose that u ∈ C∞(M ; ΛpT ∗M) satisfies ∆pu = 0
so that we have the multipole expansion

u(rθ) =
∑

ν

(

aν
1

rd−2+ℓν
Φν(θ) + bνr

ℓνΦν(θ)

)

.

For fixed Φν we have for |λ| < 1,

〈(∆p − λ2)(χj̃λ(Φν), u〉L2(M) = −(d− 2 + 2ℓν)Cd,ℓνλ
ℓν+

d−1
2 aν +O(λℓν+

d+3
2 ).

Proof. Note that (∆p−λ2)(χj̃λ(Φν)) is compactly supported. LetMR be the complement
of the region {(rθ) ∈ M | r ≤ R} in M and denote by χMR

its indicator function. For
sufficiently large R we have

〈(∆p − λ2)(χj̃λ(Φν)), u〉L2(M) = 〈χMR
(∆p − λ2)(χj̃λ(Φν)), u〉L2(M).

Integration by parts gives

〈(∆p − λ2)(χj̃λ(Φν)), u〉L2(M) = −λ2〈χMR
(χj̃λ(Φν)), u〉L2(M)

−
∫

∂MR

u(x)∂n((χj̃λ(Φν))(x)dσ(x) +

∫

∂MR

∂n(u)(x)(χj̃λ(Φν))(x)dσ(x),

where dσ is the surface measure on ∂MR. Using (16) one has

〈(∆p − λ2)(χj̃λ(Φν)), u〉L2(M) = Cd,ℓν

·
(∫

Sd−1

(∂ru)(Rθ)λ
ℓν+

d−1
2 RℓνRd−1Φν(θ)dθ −

∫

Sd−1

u(Rθ)ℓνλ
ℓν+

d−1
2 Rℓν−1Rd−1Φν(θ)dθ

)

+O(λℓν+
d+3
2 ).

Using the multipole expansion and orthonormality of (Φν) one obtains the claimed for-
mula, provided R2 ≥ R ≥ R1. Notice that the terms bν do not contribute to the
computations of the leading order term. This fact will be important for later compu-
tations. Moreover we note here the effect of χ(x)χMR

is to restrict the integral in the
inner product to an annulus which is contained in [R1, R2]. This restriction means the
expansions of j̃λ(Φ) are valid in this region with OC∞(M) terms which make sense. �

The same proof with obvious modifications in dimension two gives the following.

Lemma 3.2. Assume d = 2 and suppose that u ∈ C∞(M ; ΛpT ∗M) satisfies ∆pu = 0
so that we have the multipole expansion

u(rθ) =
∑

ν,ℓν=0

(aν log(r)Φν(θ) + bνΦν(θ)) +
∑

ν,ℓν>0

(

aν
1

rd−2+ℓν
Φν(θ) + bνr

ℓνΦν(θ)

)

.



GEOMETRIC AND OBSTACLE SCATTERING 21

For fixed Φν we have for |λ| < 1 and ℓν 6= 0:

〈(∆p − λ2)(χj̃λ(Φν), u〉L2(M) = −(d− 2 + 2ℓν)Cd,ℓνλ
ℓν+

d−1
2 aν +O(λℓν+

d+3
2 ).

In case ℓν = 0 we get for |λ| < 1:

〈(∆p − λ2)(χj̃λ(Φν), u〉L2(M) = Cd,0λ
d−1
2 aν +O(λ

d+3
2 ).

Theorem 3.3. Suppose that d > 2, u ∈ C∞(M,ΛpT ∗M) is closed and co-closed and
has a multipole expansion of the form

u(r, θ) =
∑

ν,ℓν≥0

aν
1

rℓν+d−2
Φν(θ)

for sufficiently large values of r. Then we can conclude aν = 0 whenever ℓν = 0.

Proof. We write the multipole expansion of u in a slightly different way as

u(r, θ) =
1

rd−2
ω +

∑

ν,ℓν>0

aν,k
1

rℓν+d−2
φν(θ)ek,

where (ek) is the standard basis in ΛpRd, (φν) a basis of spherical harmonics in L2(Sd−1),
and ω =

∑

k akek is a constant differential form. It follows that

du(r, θ) =
2− d

rd−1
dr ∧ ω +O

(

1

rd

)

for sufficiently large r. Here it is important that dφν is of order O(1r ) since the inner

product on one forms is given by the inverse metric g−1 = ∂r ⊗ ∂r + r−2g−1
Sd−1 on the

cotangent bundle. Therefore, dr ∧ ω = 0. Because u is also co-closed the same compu-
tation applied to ∗u which gives dr ∧ ∗ω = 0. This implies that Clifford multiplication
of ω by dr yields zero. Since Clifford multiplication by a non-zero covector is invertible,
this implies ω = 0. Assume u = uj is in kerL2(∆p,rel). Since ∆p,rel is the square of the
self-adjoint operator Qrel this implies that Qreluj = 0 and therefore uj must be closed
and co-closed. �

If u is harmonic and satisfies relative boundary conditions with the above multipole
expansion then we can integrate by parts and obtain the following.

Corollary 3.4. If d > 2 and u ∈ kerC∞(∆p) satisfies relative boundary conditions and
has a multipole expansion of the form

u(r, θ) =
∑

ν,ℓν≥0

aν
1

rℓν+d−2
Φν(θ)

when r is sufficiently large. Then we can conclude aν = 0 whenever ℓν = 0.

Corollary 3.5. We have aj(Φν) = 0 when ℓν = 0 and hence P (0) = 0.

In R
d the operator (∆p − λ2) has integral kernel

rλ(x, y) =
i

4

(

λ

2π|x− y|

)
d−2
2

H
(1)
d−2
2

(λ|x− y|))1
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if the bundle of differential forms has been trivialised with respect to the standard basis
in R

d and 1 denotes the identity matrix.
Since generalised eigenfunction are Hahn-holomorphic they have Hahn-series expan-

sions whose first terms are harmonic and satisfy relative boundary conditions. The
following Lemma clarifies how the multipole expansions of these harmonic forms appear
from Theorem 2.4.

Lemma 3.6. Let 0 < R1 < R2 and [R1, R2] be a fixed interval. Suppose that Ψλ is a

(Hahn)-holomorphic family of spherical harmonics of degree ℓ such that h̃
(1)
λ (Ψλ)(r, θ) =

O(λm) as λ → 0 uniformly in (r, θ) for r ∈ [R1, R2], θ ∈ S
d−1. Assume ℓ + d−2

2 > 0,

then Ψλ = O(λℓ+
d−3
2

+m) and

lim
λ→0

λ−mh̃(1)λ (Ψλ)(r, θ) =
Φ(θ)

rℓ+d−2
,

where

Φ = −i
1√
π
2ℓ+

d−3
2 Γ(ℓ+

d− 2

2
)

(

lim
λ→0

λ−ℓ−
d−3
2

−mΨλ

)

.

Proof. This follows from the asymptotic behavior of the Hankel function (46), which is
in Appendix E. Namely, as λ→ 0 we have

h̃
(1)
λ (Ψλ)(r, θ) ∼ −i

1√
π
2ℓ+

d−3
2 Γ(ℓ+

d− 2

2
)λ

3−d
2

−ℓr−ℓ−d+2Ψλ(θ).

�

3.1. Analysis when d is odd. In this case it follows from the explicit formula that
the free resolvent kernel is meromorphic with a simple pole at 0 if d = 1, and is entire
in case d > 1. By general arguments using a gluing construction one concludes that
on M we have that Rλ = (∆p − λ2)−1 is meromorphic also near zero with finite rank
negative Laurent coefficients. By general resolvent bounds for self-adjoint operators, Rλ
can have a pole of order at most two at zero. Hence, in odd dimensions the resolvent
(as an operator from L2

comp to H2
loc) has an expansion for |λ| small of the form

Rλ = −B−2

λ2
+ i

B−1

λ
+B(λ), (17)

where B(λ) is holomorphic near zero and B−2, B−1 : L
2
comp → H2

loc are of finite rank. By
Stone’s formula and the spectral decomposition B−2 is the orthogonal projection onto
kerL2(∆p,rel), i.e. B−2 = P . By Theorem 2.2 we have

Eλ(Φ) = χj̃λ(Φ)−Rλ(∆p − λ2)(χj̃λ(Φ)), (18)

and we can therefore obtain the Laurent series of E about λ = 0 by expanding the Bessel
functions and using the resolvent expansion. We have E0(Φ) = 0 if ℓ + d−5

2 > 0. By

Lemma 2.8, using that ∆pEλ(Φν) = λ2Eλ(Φν), one has for |λ| small,

Eλ(Φν) = OC∞(M)

(

1

Γ(ℓν +
d
2)
λℓν+

d−5
2

)

,
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uniformly in ν. Therefore, comparing the resolvent expansion with (10), we obtain that
the functions Eλ(Φ) are regular at zero and

B−1 =
1

4

∑

ℓν≤ 5−d
2

E0(Φν)〈·, E0(Φν)〉. (19)

In particular, B−1 is symmetric. In case d > 5 we conclude that B−1 = 0. In order
to compute B−1 we would like to treat the cases d = 3 and d = 5 separately. Since
the resolvent is meromorphic Lemma 2.5 implies that also Aλ is meromorphic near zero.
Since Sλ is unitary this implies that Aλ is regular at zero.

3.1.1. Resolvent expansion and generalised eigenforms in dimension three. By Theorem
2.4 we have for fixed large r that

Eλ(Φ)(r, θ) = j̃λ(Φ)(r, θ) + h̃
(1)
λ (AλΦ)(r, θ).

Since Eλ(Φ) is regular at zero so must be h̃
(1)
λ (AλΦ)(r, θ) and

E0(Φ)(r, θ) = lim
λ→0

h̃
(1)
λ (AλΦ)(r, θ).

Consider |λr| ≪ 1, if Φ ∈ Hp
ℓ (S

d−1) is a vector-valued spherical harmonic of degree ℓ one

has uniform asymptotics for the Hankel function in (r, θ) for r ∈ [R1, R2], θ ∈ S
d−1, in

powers of λ (given in Appendix). Combining this with the fact Aλ is holomorphic and
taking the limit λ→ 0, one sees that E0(Φ) has a multipole expansion of the form

E0(Φ) =
∑

ν

eν(Φ)
1

rℓν+1
Φν .

By construction E0(Φ) is harmonic and satisfies relative boundary conditions. It follows
from Corollary 3.4 that E0(Φ) is closed and co-closed and that eν(Φ) = 0 whenever
ℓν = 0.

If Φ is a spherical harmonic of degree ℓ = 0 then if |λ| < 1, one has

j̃λ(Φ)(r, θ) = 2λΦ(θ) +OC∞(Rd\{0})(λ
3).

Using Lemma 3.1 and the fact Eλ(Φ) is a projection over finitely many eigensections,
the order terms in the expansion of Eλ(Φ) therefore exists and make sense on M when
λ is sufficiently small.

Therefore we obtain

E0(Φ) = lim
λ→0

−i
1

λ
B−1(∆p − λ2)χj̃λ(Φ) =

i

2

∑

ν,ℓν=0

E0(Φν)eν(Φ) = 0.

If Φ is a spherical harmonic of degree ℓ = 1 then similarly for |λ| small

j̃λ(Φ)(r, θ) = −2i

3
λ2rΦ(θ) +OC∞(Rd\{0})(λ

4)

and therefore, using Lemma 3.1, one gets

E0(Φ) = lim
λ→0

λ−2P
(

(∆p − λ2)χj̃λ(Φ)
)

= 2i
N
∑

j=1

aj(Φ)uj .
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In particular it follows that in this case E0(Φ) ∈ L2(M). If Φ is a spherical harmonic of
degree higher than 1 then by the same reasoning one gets E0(Φ) = 0. We have therefore
proved the following proposition.

Proposition 3.7. If d = 3 then

• E0(Φν) = 0 if ℓν 6= 1,

• E0(Φν) = 2i
∑N

j=1 aj(Φν)uj ∈ L2 if ℓν = 1.

Moreover, we have
B−1 = P (1).

3.1.2. Resolvent expansion and generalised eigenforms in dimension five. In the case
Φ ∈ Hp

ℓ (S
d−1) is a spherical harmonic of degree ℓ = 0 then for |λ| < 1 we have

j̃λ(Φ)(r, θ) =
2

3
λ2Φ(θ) +OC∞(Rd\{0})(λ

4)

and therefore,

E0(Φ) = lim
λ→0

λ−2P
(

(∆p − λ2)j̃λ(Φ)
)

= −2
N
∑

j=1

aj(Φ)uj .

This vanishes, by 3.5. In the case Φ is a spherical harmonic of degree higher than 0 we
obtain E0(Φ) = 0. Hence, we have the following

Proposition 3.8. If d = 5 then E0(Φ) = 0 and hence B−1 = 0.

3.1.3. Expansion of Eλ(Φ) in odd dimensions. Assume that Φ is a spherical harmonic
of degree ℓ, then for |λ| < 1 we have

j̃λ(Φ)(rθ) = Cd,ℓλ
ℓ+ d−1

2 rℓΦ(θ) +OC∞(Rd\{0})(λ
ℓ+ d+3

2 ).

Therefore, using Lemma 3.1, we get in dimensions d ≥ 5, using B−1 = 0,

Eλ(Φ) = −(d− 2 + 2ℓ)Cd,ℓλ
ℓ+ d−5

2

N
∑

j=1

aj(Φ)uj +OC∞(M)(λ
ℓ+ d−1

2 ). (20)

In case d = 3 we have obtain from Lemma 3.1 that

Eλ(Φ) = −(d− 2 + 2ℓ)Cd,ℓλ
ℓ+ d−5

2

N
∑

j=1

aj(Φ)uj

+i(d− 2 + 2ℓ)Cd,ℓλ
ℓ+ d−3

2

N
∑

j,k=1

a
(1)
kj aj(Φ)uk +OC∞(M)(λ

ℓ+ d−1
2 ). (21)

In case ℓ = 0 we have aj(Φ) = 0 by Corollary 3.5. Hence, in that case Eλ(Φ) =

OC∞(M)(λ
d−1
2 ). Therefore, for any f ∈ C∞

0 (M ; ΛpT ∗M) we get
∑

ν

Eλ(Φν)〈f,Eλ(Φν)〉 = d2|Cd,1|2λd−3P (1)f +OC∞(M)(λ
d−1).

The mixed terms in dimension d = 3 and ℓ = 1 cancel out giving only even powers, which
is consistent with the right hand side being an even function. Recall the definition of
P (ℓ) in (1).
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Theorem 3.9. Suppose that d is odd and d ≥ 3. Then for any f ∈ C∞
0 (M ; ΛpT ∗M)

and for small |λ| we have

−2iλ(Rλ −R−λ)f =
∑

ν

Eλ(Φν)〈f,Eλ(Φν)〉 = d2|Cd,1|2λd−3P (1)f +OC∞(M)(λ
d−1).

3.2. Analysis when d is even. If the dimension d is even and d > 0 the free resolvent
R0,λ takes the form

R0,λ = Uλ + Vλ log λ,

where Uλ and Vλ are holomorphic and even. There is a suitable function space allowing
for expansions with log-terms and we will make use of this space of Hahn meromorphic
and Hahn holomorphic functions. We refer to Section A for details of this. In our case it
follows that R0,λ is Hahn-meromorphic with respect to the group 2Z× Z, in particular
only even powers of λ appear in the expansions. More precisely, in dimension d = 2 is
there a singularity with a finite rank negative expansion coefficient. In even dimensions
d ≥ 4 the free resolvent is Hahn holomorphic. By the general gluing construction and the
Hahn-meromorphic Fredholm theorem ([30, Theorem 4.1]) this implies that the resolvent
Rλ = (∆p−λ2)−1 onM is Hahn-meromorphic near zero and the joint span of the ranges
of all negative expansion coefficients is finite dimensional. The most general expansion
that still satisfies the resolvent bounds for self-adjoint operators is then

Rλ = − 1

λ2

∞
∑

k=0

B−2,k(− log(λ))−k +
L
∑

k=1

B−k(− log(λ))k +B(λ) (22)

where B(λ) is Hahn holomorphic. In particular, λ2Rλ is bounded uniformly in λ for
|λ| < 1 and bounded | arg λ| as a map from L2

comp to H2
loc. As in the odd-dimensional

case we can use Lemma 2.8 and ∆pEλ(Φν) = λ2Eλ(Φν) to conclude that for |λ| < 1,

Eλ(Φν) = OC∞(M)

(

1

Γ(ℓν +
d
2)
λℓν+

d−5
2

)

,

uniformly in ν in any fixed sector of the logarithmic cover. Therefore, as before we can
compare expansion coefficients of the corresponding Hahn-series in equation (10).

It follows from Stone’s formula that B−2,0 = P is the spectral projection onto the zero
eigenspace. In fact, it follows from the relation between resolvent and spectral measure
that non-zero coefficients B−2,k for k > 0 can only occur in the presence of a non-zero
leading order term B−2,1 and in dimension lower than 6.

Lemma 3.10. If d > 4 then B−2,k = 0 for any k > 0. If B−2,1 = 0 and d = 2 or d = 4
then B−2,k = 0 for any k > 0.

Proof. By induction, suppose that B−2,1, . . . , B−2,N−1 = 0 and N ≥ 1. First note that

Rλ −R−λ = (−iπ)N−1B−2,N
1

λ2(− log λ)N+1
+OB(L2

comp→H2
loc)

(

1

λ2(− log λ)N+2

)

.

Suppose, by contradiction, that B−2,N 6= 0. Then, by Theorem 2.10, (10), the expansion
of Eλ(Φν) for some ν must have a non-zero top-order term of the form

f
1

λ1/2(− log λ)
N+1

2
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and some non-zero function f . From Theorem 2.2 we have the following a-priori estimate

Eλ(Φ) = OC∞(M)

(

λ
d−5
2

1

(− log λ)N

)

.

If d > 4 then Eλ(Φ) = O(λ
1
2 ), thus f = 0 and therefore B−2,N = 0. If d = 4 and

B−2,1 = 0 then we can assume N ≥ 2 and hence N > N+1
2 . This would imply once more

f = 0 and therefore B−2,N = 0. �

Remark 3.11. It is known at least since Murata’s work [33] that generalised projections
onto the resonant states can occur in the form −B−2,1

1
λ2(− log λ)

in the case of potential

scattering in dimension four. In our case such zero resonance states do not exist in
dimension higher than two. Therefore, we obtain a much more refined result below.

Theorem 3.12. Suppose that d ≥ 4. Then Rλ (as an operator from L2
comp to H2

loc) is
Hahn-meromorphic at λ = 0 with expansion of the form

− P

λ2
+B−1(− log λ) +B(λ),

for |λ| small and in a fixed sector | arg λ| ≤ Θ, where B(λ) is Hahn-holomorphic and
P,B−1 : L

2
comp → H2

loc are of finite rank. If d > 4 then B−1 = 0.

Proof. We first show that B−2,k = 0 for any k > 0. This is the case in any dimension
greater 4, so we only need to check that case d = 4. We only need to show that B−2,1 = 0.
Suppose by contradiction that B−2,1 6= 0. By the same argument as in Lemma 3.10 there
must exist a ν such that Eλ(Φν) has non-zero top-order term of the form

fν
1

λ1/2(− log λ)
. (23)

The coefficient fν is harmonic and satisfies relative boundary conditions. By unitarity of
the scattering matrix Sλ is bounded near zero and therefore, Aλ is Hahn-holomorphic.

By Theorem 2.4 the term 23 must appear in the expansion of h̃
(1)
λ (AλΦν). Inspection

of the expansion of the Hankel function in the regime |rλ| ≪ 1, r ∈ [R1, R2] and λ → 0
shows that fν has a multipole expansion of the form

fν(r, θ) =
∑

µ

aµ
1

rℓµ+d−2
Φµ.

Therefore, by Corollary 3.4, aµ = 0 when ℓµ = 0. On the other hand B−2,1 is of the
form B−2,1 =

∑

ν,ℓν=0

fν〈·, fν〉. We can now use Lemma 3.1 to see that

− 1

λ2
B−2,0(∆p − λ2)χj̃λ(Φ) = OC∞(M)(λ

1+ d−5
2 ), (24)

− 1

λ2(− log λ)
B−2,1(∆p − λ2)χj̃λ(Φ) = OC∞(M)(λ

1+ d−5
2 ). (25)

Using Theorem 2.2 we obtain Eλ(Φ) = OC∞(M)(λ
1
2 ). We conclude that fν = 0 and

therefore B−2,1 = 0.
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Now, using again 2.10, (10) the bound Eλ(Φ) = OC∞(M)(λ
1
2 ) implies that Rλ−R−λ =

OC∞(M)(1) and therefore B−k = 0 whenever k > 1. If d > 4 then Eλ(Φ) = OC∞(M)(λ
3
2 )

and hence B−1 = 0. �

Theorem 3.13. If d = 4 then B−1 =
1
4P

(1).

Proof. Since − log λ+ log(−λ) = iπ we have

Rλ −R−λ = iπB−1.

Comparing with (10) shows that

B−1 =
1

2π

∑

ν,ℓν=1

gν〈·, gν〉,

where gν = lim
λ→0

λ−
1
2Eλ(Φν). This can be computed using Lemma 3.1.

gν = −
N
∑

k=1

4C4,1ak(Φν)uk = i

√

π

2

N
∑

k=1

ak(Φν)uk.

�

3.2.1. Expansion of Eλ(Φ) in even dimensions d ≥ 4. Assuming that Φ is a spherical
harmonic of degree ℓ, we have that (in the asymptotic regime previously described)

j̃λ(Φ)(rθ) = Cd,ℓλ
ℓ+ d−1

2 rℓΦ(θ) +OC∞(Rd\{0})(λ
ℓ+ d+3

2 ).

Therefore, using Lemma 3.1, we get in dimensions d ≥ 6, using B−1 = 0,

Eλ(Φ) = −(d− 2 + 2ℓ)Cd,ℓλ
ℓ+ d−5

2

N
∑

j=1

aj(Φ)uj +OC∞(M)(λ
ℓ+ d−1

2 ). (26)

In case d = 4 we have obtain from Lemma 3.1 that

Eλ(Φ) = −(d− 2 + 2ℓ)Cd,ℓλ
ℓ+ d−5

2

N
∑

j=1

aj(Φ)uj

+
1

4
(d− 2 + 2ℓ)Cd,ℓλ

ℓ+ d−1
2 (− log λ)

N
∑

j,k=1

a
(1)
kj aj(Φ)uk +OC∞(M)(λ

ℓ+ d−1
2 ). (27)

In case ℓ = 0 we have aj(Φ) = 0 by Corollary 3.5. Hence, in that case Eλ(Φ) =

O(λ
d−1
2 ). Therefore, for any f ∈ C∞

0 (M ; ΛpT ∗M) we get in case d ≥ 6
∑

ν

Eλ(Φν)〈f,Eλ(Φν)〉 = d2|Cd,1|2λd−3P (1)f +OC∞(M)(λ
d−1).

In dimension d = 4 we obtain the two-term expansion

∑

ν

Eλ(Φν)〈f,Eλ(Φν)〉 = d2|Cd,1|2
(

λd−3P (1)f − 1

2
λd−1(− log λ)

(

P (1)
)2
f

)

+OC∞(M)(λ
d−1).

We have proved the following theorems.
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Theorem 3.14. Suppose that d is even and d ≥ 6. Then for any f ∈ C∞
0 (M ; ΛpT ∗M)

and for |λ| small in a fixed sector | arg λ| ≤ Θ we have

−2iλ(Rλ −R−λ)f =
∑

ν

Eλ(Φν)〈f,Eλ(Φν)〉 = d2|Cd,1|2λd−3P (1)f +OC∞(M)(λ
d−1).

Theorem 3.15. Suppose that d = 4, then for any f ∈ C∞
0 (M ; ΛpT ∗M) and |λ| small

in a fixed sector | arg λ| ≤ Θ we have

−2iλ(Rλ −R−λ)f =
∑

ν

Eλ(Φν)〈f,Eλ(Φν)〉

=
π

2
λP (1)f − π

4
λ3(− log λ)

(

P (1)
)2
f +OC∞(M)(λ

3).

3.3. Analysis when d = 2. Finally we treat that fairly special case of dimension two.

Lemma 3.16. In case p = 0, d = 2 we have P = 0 and B−2,k = 0 for all k > 0.

Proof. The fact P = 0 follows immediately from the maximum principle which implies
there are no L2-harmonic functions on M . By Lemma 3.10 it suffices to show that
B−2,1 = 0. Assume by contradiction B−2,1 6= 0. By Theorem 2.10, (10) this means in
the expansion of Eλ(Φ) we must have a non-zero top-order term of the form

f
1

λ1/2(− log λ)

for some Φ. By Theorem 2.7 −iEλ(dr ∧ Φ) has a leading expansion term of the form

i
1

λ3/2(− log λ)
df.

This leading term must vanish because of general bounds of the resolvent on one forms
and 2.10, (10), hence df = 0. In case ∂O 6= ∅ this already implies f = 0 as f , by
construction, satisfies relative boundary conditions. We will now show that this is also
the case if the boundary is empty. By Theorem 2.4 and since j̃λ(Φ) = O(λ1/2) this
singularity must appear in the expansion of

h̃
(1)
λ (AλΦ).

Morever, since f is constant it must appear in

h̃
(1)
λ (Ψλ),

where Ψλ is a Hahn holomorphic family of spherical harmonic of degree ℓ = 0. We have
used here that Aλ is Hahn-holomorphic and thus bounded. This function is of the form

λ1/2H
(1)
0 (λr)Ψλ

and is therefore of order O(λ1/2 log λ). This shows that f = 0. �

In the case p = 0, d = 2 we denote by Φ0 = 1√
2π

the normalised constant function

that spans the space of spherical harmonics of degree zero. In case p = 2, d = 2 we let
Φ0 = ∗ 1√

2π
.
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Lemma 3.17. If p = 0 and d = 2 then the resolvent, for |λ| small and in a fixed sector
| arg λ| ≤ Θ, has an expansion of the form

B−1(− log λ) +B(λ),

where B(λ) is Hahn-holomorphic and B−1 : L2
comp → H2

loc is of rank at most one. If
∂O 6= ∅ we have B−1 = 0. In case ∂O = ∅ any element in the range of B−1 is a multiple
of the constant function 1.

Proof. By Lemma 3.16 and the general form (22) the resolvent has a Hahn-expansion of
the form

Rλ =

N
∑

k=1

B−k(− log λ)k +B(λ),

where B(λ) is Hahn-holomorphic and the B−k are of finite rank. A leading term of the
form B−N (− log λ)N with N > 1 gives a leading order term −iπB−N (− log λ)N−1 in the
expansion of Rλ − R−λ. Therefore B−N is symmetric and this leading term must arise

from a leading term of the expansion of Eλ(Φ) of the form λ1/2(− log λ)
N−1

2 f . Since

then Eλ(dr ∧ Φ) has a singularity of the form −iλ−1/2(− log λ)
N−1

2 df this implies that
df = 0 since any singularity in Rλ − R−λ for p = 1 must be weaker than 1

λ2
. In that

case we therefore have B−N = c〈·, 1〉1. Application of 3.2 shows that this term does not
contribute to Eλ. We therefore get

Eλ(Φ) = OC∞(M)(λ
1/2),

thus implying that N = 1. In case ∂O 6= ∅ the Dirichlet boundary condition (relative in
case p = 0 is equivalent to Dirichlet boundary conditions) implies that f = 0. Hence, in
this case B−1 = 0. �

Proposition 3.18. Assume p = 0, d = 2.

• Suppose ∂O 6= ∅, then B−1 = 0 and Eλ(Φ) = OC∞(M)(
λ1/2

− log λ) for |λ| small in a

fixed sector | arg λ| ≤ Θ. If Φ is a spherical harmonic of degree ℓ, the function

G(Φ) = lim
λ→0

λ−1/2(− log λ)Eλ(Φ)

is nonzero only if ℓ = 0. In this case G(Φ) is the unique harmonic function
satisfying Dirichlet boundary conditions at ∂O such that

G(Φ)−
√
2πΦ log

r

2
= OC∞(M)(1).

• Suppose ∂O = ∅. Then B−1 has rank one and its range is spanned by the constant
function. Moreover, if F is a harmonic function satisfying Dirichlet boundary
conditions such that

F − a log
r

2
= OC∞(M)(1),

then a = 0.

Proof. Assume that B−1 = 0. Then there is no constant term in the expansion of

Rλ − R−λ, which implies the bound Eλ(Φ) = OC∞(M)(
λ1/2

− log λ). Since the resolvent has
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no singular terms we also have Eλ(Φ) = OC∞(M)(λ
ℓ+ 1

2 ) if Φ has degree ℓ. Therefore
G(Φ) = 0 if ℓ > 0. If ℓ = 0 and Φ 6= 0 we have

λ−
1
2 〈Eλ(Φ),Φ〉L2(S1r)

=

√

π

2

(

2J0(λr) + a(λ)H
(1)
0 (λr)

)

‖Φ‖2L2(S1)

where a(λ) = ‖Φ‖−2
L2(S1)

〈AλΦ,Φ〉. Since the left hand side converges to 0 as λ → 0 we

obtain from the asymptotics of the Hankel function (47) by comparing the expansion
coefficients

a(λ) =
π

i(− log λ)
+O

(

1

(log λ)2

)

,

and

lim
λ→0

λ−
1
2 (− log λ)〈Eλ(Φ),Φ〉L2(S1

r )
=

√
2π log

r

2
‖Φ‖2 +O (1) .

We have shown that B−1 = 0 implies the existence of a non-zero harmonic function
G(Φ0) with asymptotic behaviour

G(Φ0) =
√
2πΦ0 log

r

2
+O (1) , r → ∞.

Next note that the existence of such a function rules out the existence of a harmonic
function f satisfying Dirichlet boundary conditions such that

f(r, θ) = 1 +O

(

1

r

)

, r → ∞.

Indeed, if such a function existed, then we would have

0 = 〈∆G(Φ0), f〉 − 〈G(Φ0),∆f〉 =
∫

S1

Φ0(θ)dθ 6= 0.

Conversely, if the constant function satisfies Dirichlet boundary conditions then B−1 6= 0.
Hence, B−1 = 0 if and only if ∂O 6= ∅. Since the range of B−1 consists of constant
functions satisfying Dirichlet boundary conditions this proves the second statement. It
only remains to show uniqueness of the harmonic function G(Φ) satisfying Dirichlet
boundary conditions. If there were two such functions the difference would have a
multipole expansion for large enough r. By the above the constant coefficient in the
multipole expansion has to vanish. Thus, the difference is a harmonic function that
satisfies Dirichlet boundary conditions and vanishes at infinity. The maximum principle
implies that such a function vanishes. �

The non-trivial 2-form ∗1 satisfies absolute boundary conditions independent of whether
∂O is non-empty. The same argument as in the previous proposition then gives the fol-
lowing statement.

Proposition 3.19. Suppose p = 2, d = 2, then the resolvent has an expansion of the
form

B−1(− log λ) +B(λ),

for |λ| small in a fixed sector | arg λ| ≤ Θ, where B(λ) is Hahn-holomorphic and B−1 :
L2
comp → H2

loc is of rank at one and its range is spanned by the volume form ∗1. In
particular B−1 6= 0.
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Proposition 3.20. Assume p = 0, d = 2 and let Φ ∈ H0
1(S

d−1) be a spherical harmonic

of degree 1. Then Eλ(Φ) = OC∞(M)(λ
3/2) for |λ| small in a fixed sector | arg λ| ≤ Θ,

and the function

G1(Φ) := lim
λ→0

λ−
3
2Eλ(Φ)

is harmonic, satisfies Dirichlet boundary conditions, and we have

G1(Φ)(r, θ) = −i

√

π

2
Φr +O(1),

for sufficiently large r. This function is uniquely determined by this property in case
∂O 6= ∅ and is uniquely determined modulo a constant in case ∂O = ∅.
Proof. The fact that Eλ(Φ) = OC∞(M)(λ

3/2) follows from Theorem 2.2 and the expansion
(16). Note that B−1 = c〈·, 1〉1 for some c ∈ C. Therefore, by Lemma 3.2, the singularity
B−1(− log λ) in the resolvent does not contribute to Eλ(Φ). Since Eλ(Φ) is Hahn-

holomorphic therefore the limit G1(Φ) = lim
λ→0

λ−
3
2Eλ(Φ) exists. On the other hand, by

Theorem 2.4, we have

G1(Φ) = lim
λ→0

λ−
3
2

(

j̃λ(Φ) + h̃
(1)
λ (AλΦ)

)

By the Hankel function asymptotics (46) in case ℓν > 0 the existence of the limit

lim
λ→0

λ−
3
2 h̃

(1)
λ (AλΦ) implies that 〈AλΦν ,Φ〉 = O(λℓν+1) and lim

λ→0
λ−

3
2 h̃

(1)
λ (AλΦ) = O( 1

rℓν
)

for r large. (see Lemma 3.6 for a similar argument). For ℓν = 0 we get in the same

way, using (47), 〈AλΦν ,Φ〉 = O( λ
− log λ) and lim

λ→0
λ−

3
2 h̃

(1)
λ (AλΦ) = O(1) for r large. Now

the expansion of the Bessel function (16) gives the expansion of G1(Φ) as claimed in the
theorem. The uniqueness statement follows from the maximum principle. �

If Φ is in H1
0(S

d−1) then we can write uniquely Φ = 1
2Ψdr + Φ̃, where Ψ ∈ H0

1(S
d−1)

and Φ̃ ∈ H1
2(S

d−1). Then, d(Ψr) = Φ.

Definition 3.21. In case d = 2 let Φ ∈ H1
0(S

d−1), we define the one-form ϕ(Φ) ∈
C∞(M ;T ∗M) as

ϕ(Φ) = i

√

2

π
dG1(Ψ),

where Ψ is the unique spherical harmonic of degree zero such that d(Ψr) = Φ.

By the above we have

ϕ(Φ) = Φ +O(
1

r
),

as r → ∞. Moreover, ϕ(Φ) is harmonic and satisfies relative boundary conditions.
We have the following corollary.

Corollary 3.22. Suppose that p = 1 and d = 2 and let Φ ∈ H1
0(S

d−1), then Eλ(Φ) =

O(λ
1
2 ) for |λ| small in a fixed sector | arg λ| ≤ Θ, and

lim
λ→0

λ−
1
2Eλ(Φ) =

√
2πϕ(Φ).
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Proof. As explained above we can write Φ = 1
2Ψdr+ Φ̃. Since Eλ(Φ̃) = O(λ

5
2 log λ) and

dEλ(Ψ) = −iλEλ(Ψdr) we obtain Eλ(Φ) = O(λ
1
2 ) and

lim
λ→0

λ−
1
2Eλ(Φ) = lim

λ→0

i

2
λ−

3
2dEλ(Ψ) =

i

2
dG1(Ψ) =

√
2πϕ(Φ).

�

Proposition 3.23. Assume p = 0, d = 2 and ∂O 6= ∅ and let Φ0 ∈ H0
0(S

d−1) be the
constant function 1√

2π
. Then there exists a holomorphic function q(z), defined near zero,

such that for |λ| ≪ 1 we have q(0) = 1 and, for |λ| small in a fixed sector | arg λ| ≤ Θ,
we get

Eλ(Φ0) =
λ1/2

− log λ
q(− 1

log λ
)G(Φ0) +OC∞(M)(λ

5/2(− log λ)N )

for some N > 0.

Proof. The resolvent is Hahn-holomorphic with coefficient group 2Z×Z. Therefore only
even powers of λ appear in its expansion. Since Eλ(Φ0) is Hahn-holomorphic near 0 we
have by Proposition 3.18 that

Eλ(Φ0) =

∞
∑

k=0

akλ
1/2

(

1

− log λ

)k+1

+OC∞(M)(λ
5/2(− log λ)N )

for some N > 0 where the series converges normally. The same proof as that of Prop.
3.18 shows that the coefficients are harmonic functions satisfying Dirichlet boundary
conditions with an expansion of the form

ak(r) = αk
√
2πΦ0 log(

r

2
) +O(1).

By Prop. 3.18 this implies ak(r) = G(φ0)αk and α0 = 1. Hence, the series

q(z) =
∑

k=0

αkz
k

converges normally and therefore defines a holomorphic function near zero with the
required properties. �

Proposition 3.24. Suppose d = 2 and either p = 0 and ∂O = ∅, or p = 2, if Φ 6= 0 has
degree ℓ, then

H(Φ) := lim
λ→0

λ−
1
2Eλ(Φ)

is non-zero if and only if ℓ = 0. In case ℓ = 0 we have H(Φ) =
√
2πΦ. Moreover, we

have for |λ| small in a fixed sector | arg λ| ≤ Θ that

Eλ(Φ)− λ
1
2H(Φ) = OC∞(M)(λ

3
2 )

and a(λ) = 〈AλΦ0,Φ0〉 = O(λ2).

Proof. For ℓ > 0 the resolvent expansion (Propositions 3.18 and 3.19) implies the bound

Eλ(Φ) = OC∞(M)(λ
ℓ+ 1

2 ), We used here that B−1 does not yield a contribution in Lemma
3.2 since constant terms in the multipole expansion do not contribute. Hence, H(Φ) van-
ishes if ℓ > 0. We now consider the case ℓ = 0 and p = 0. Since B−1 6= 0 (Proposition
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3.18) the expansion (10) implies that H(Φ) is a non-zero multiple of the constant func-
tion. Comparing coefficients in (∆ − λ2)Eλ(Φ) = 0 shows that any coefficient in the

Hahn expansion of Eλ(Φ) of order less than λ
5/2 is harmonic and satisfies the boundary

conditions. Since there is no harmonic form with a leading non-zero log r term in its
multipole expansion (3.18) this implies a(λ) = O(λ2). Here we have used (47). Now
just use the expansion of Eλ(Φ) and Theorem 2.4 to obtain H(Φ) =

√
2πΦ. More-

over, the expansion coefficients of Eλ(Φ) − λ
1
2H(Φ) of order less than λ2 are harmonic

and decay at infinity. They must therefore vanish. Hence, in case ℓ = 0 we obtain

Eλ(Φ) − λ
1
2H(Φ) = OC∞(M)(λ

2). Since the argument above also applies to absolute
boundary conditions an application of the Hodge star operator reduces the case p = 2
to the case p = 0. �

Proposition 3.25. Let d = 2 and suppose either p = 0 and ∂O = ∅, or p = 2, then we
have the equality:

B−1 =
1

2π
〈·, H(Φ0)〉H(Φ0).

Proof. This follows immediately from iπB−1 = i
2〈·, H(Φ0)〉H(Φ0), which is obtained

from the expansion (10) by comparing coefficients. �

Theorem 3.26. Suppose that d = 2, p = 1 and ∂O 6= ∅, and let g(Φ0) be the unique
harmonic function satisfying relative boundary conditions such that

g(Φ0) = log
r

2
Φ0 + βΦ0 +O

(

1

r

)

for r sufficiently large. The function ψ(Φ0) = dg(Φ0) is then closed and co-closed,
satisfies relative boundary conditions, and

ψ(Φ0) =
dr

r
Φ0 +O

(

1

r2

)

.

Let Q = 〈·, ψ(Φ0)〉ψ(Φ0) and T =
∑

ℓν=0

〈·, ϕ(Φν)〉ϕ(Φν). Then, for |λ| small and in a

fixed sector | arg λ| ≤ Θ, the resolvent has an expansion of the form

Rλ = − P

λ2
− 1

λ2
1

− log λ+ iπ
2 + β − γ

Q+B−1(− log λ) +B(λ)

where B(λ) is Hahn holomorphic, γ is the Euler-Mascheroni constant. We have that
B−1 is given by

B−1 =
P (2)

4
+ T. (28)

Proof. For Φ ∈ H1
ℓ (S

d−1) we have a unique decomposition

Φ = αΦ0dr + Φ̃dr + ιdr(dr ∧ Φ),

where α = α(Φ) = 〈ιdrΦ,Φ0〉L2(Sd−1), and Φ̃ is orthogonal to Φ0. We then have

Eλ(Φ) =

(

αEλ(Φ0dr) + Eλ(Φ̃dr)−
i

λ
δEλ(dr ∧ Φ)

)

.
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By Proposition 3.24, as δH(dr ∧ Φ) = 0, we have − i
λδEλ(dr ∧ Φ) = OC∞(M)(λ

1
2 ). By

Prop 3.23 we have

− i√
2π
Eλ(Φ0dr) =

q(− 1
log λ)

λ
1
2 (− log λ)

ψ(Φ0) +OC∞(M)(λ
5
2 log λN ). (29)

for some N > 0. Since Eλ(Φ̃) = OC∞(M)(λ
3/2) the general form of the resolvent and

(10) imply the resolvent has the form

Rλ = − P

λ2
− 1

λ2
h

(

1

− log λ+ iπ
2

)

Q+B−1(− log λ) +OC∞(M)(1),

where h(z) is a holomorphic function defined near zero that is determined by

h

(

z

1 + iπ
2 z

)

− h

(

z

1− iπ
2 z

)

= −πiz2q(z)q(z).

Since for λ ∈ eiπ/2R the resolvent is self-adjoint the function h must be real-valued for
real arguments, thus implying h(z) = h(z). Using this fact, we have

Eλ(Φ0dr) =
1

λ2
h

(

1

− log λ+ iπ
2

)

Q(∆− λ2)(χj̃λ(Φ0dr)) (30)

+
1

λ2
P (∆− λ2)(χj̃λ(Φ0dr)) +OC∞(M)((− log λ)λ3/2).

Now we use Lemma 3.2 to conclude that the second term vanishes and

Eλ(Φ0dr) = i
√
2π

1

λ
1
2

h

(

1

− log λ+ iπ
2

)

ψ(Φ0) +OC∞(M)((− log λ)λ3/2).

By Theorem 2.10 we obtain
(

h

(

1

− log λ+ iπ
2

)

− h

(

1

− log λ− iπ
2

))

Q

= −iπh

(

1

− log λ+ iπ
2

)

h

(

1

− log λ− iπ
2

)

Q

This implies that the function h satisfies the following equation

h(
t

1 + t iπ2
)− h(

t

1− t iπ2
) = −iπh(

t

1 + t iπ2
)h(

t

1− t iπ2
).

where we substituted t = 1
− log λ . By (29) we have h(t) = t + O(t2). It follows that

the function 1
h is meromorphic and one can use the functional equation above to see

that g(t) = 1
h(t) − 1

t defines a holomorphic function near zero that is invariant under the

transformation t 7→ t
1−πit . It follows that g is constant. Hence, if h(t) = t− αt2 +O(t3)

we have

h(t) =
t

1 + αt
, h

(

1

− log λ+ iπ
2

)

=
1

− log λ+ iπ/2 + α
.
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In order to relate α and β note that it follows from the form of h that

〈Aλ(Φ0dr),Φ0dr〉L2(Sd−1) =
π

i(− log λ+ iπ/2 + α)
+O(λ).

Because dr∧ commutes with Aλ this implies

a(λ) =
π

i(− log λ+ iπ/2 + α)
+O(λ).

In the expansion of Eλ(Φ0) = j̃λ(Φ0) + h̃
(1)
λ (AλΦ0) for large r one obtains

lim
λ→0

λ−
1
2 (− log λ)

1√
2π
Eλ(Φ0) = log

(r

2

)

+ α+ γ +O(1/r),

using the asymptotic properties of the Hankel function found in Appendix E. This shows
that β = α+ γ. To find B−1 we consider

Rλ −R−λ = − 1

λ2

(

Q

− log λ+ iπ
2 + α

− Q

− log λ− iπ
2 + α

)

+B−1(iπ) +O(
1

− log λ
)

(31)

and compare coefficients with the expansion (10). The term ℓ = 0 contributes

i

2λ

∑

ℓν=0

Eλ(Φν)〈f,Eλ(Φν)〉 = πi T +O(
1

log λ
).

For ℓ = 1 we can use Theorem 2.2, Lemma 3.2 and the fact that P (1) = 0 to obtain

i

2λ

∑

ℓν=1

Eλ(Φν)〈f,Eλ(Φν)〉 = − 1

λ2

(

Q

− log λ+ iπ
2 + α

− Q

− log λ− iπ
2 + α

)

+O(λ).

In the same way we get for ℓ = 2

i

2λ

∑

ℓν=2

Eλ(Φν)〈f,Eλ(Φν)〉 =
i

2
|4C2,2|2P (2) +O(

1

log λ
).

Finally, the terms with ℓ > 2 are of order O(λ2). Comparing coefficients and using
C2,2 = −

√

π
32 we obtain

B−1 = T +
P (2)

4
.

�

Corollary 3.27. Suppose that d = 2, p = 1 and ∂O 6= ∅. Let Φ be a spherical harmonic
of degree ℓ. Then, for |λ| small and in a fixed sector | arg λ| ≤ Θ:

• if ℓ = 0 we have Eλ(Φ) =
√
2πϕ(Φ)λ

1
2 +OC∞(M)(

λ1/2

− log λ).

• if ℓ = 1 we have

Eλ(Φ) = i
√
2πλ−

1
2

1

− log λ+ iπ
2 + β − γ

α(Φ)ψ(Φ0)

−i
√
2π
∑

ℓν=0

aϕ(Φν)(Φ)ϕ(Φν)λ
3
2 (− log λ) +OC∞(M)(λ

3/2).
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• if ℓ > 1 we have

Eλ(Φ) = −2ℓC2,ℓλ
ℓ− 3

2

N
∑

j=1

aj(Φ)uj − 2ℓC2,ℓλ
ℓ− 3

2
1

− log λ+ iπ
2 + β − γ

aψ(Φ0)(Φ)ψ(Φ0)

+2ℓC2,ℓλ
ℓ+ 1

2 (− log λ)





1

4

N
∑

j,k=1

a
(2)
kj aj(Φ)uk +

∑

ℓν=0

aϕ(Φν)(Φ)ϕ(Φν)



+OC∞(M)(λ
ℓ+ 1

2 ).

Proof. The case ℓ = 0 follows immediately from Corollary 3.22. The other cases are
computed using Theorem 2.2 and Lemma 3.1. �

Similarly, in case there are no obstacles, we have the following.

Proposition 3.28. Suppose that d = 2, p = 1 and ∂O = ∅ and let T =
∑

ℓν=0

〈·, ϕ(Φν)〉ϕ(Φν).
Then the resolvent has an expansion of the form

Rλ = − P

λ2
+B−1(− log λ) +B(λ)

where B(λ) is Hahn holomorphic, γ is the Euler-Mascheroni constant.We have that B−1

is given by

B−1 =
P (2)

4
+ T. (32)

Proof. Proposition 3.24 together with

Eλ(Φ) =
i

λ
(dEλ(ιdrΦ)− δEλ(dr ∧ Φ))

implies the bound Eλ(Φ) = O(λ1/2). The same method as in the proof of the previous
proposition then allows us to conclude that the resolvent has the claimed form. The

computation of B−1 = P (2)

4 + T is exactly the same as in the proof of the previous
proposition with the simplification that the terms containing Q are absent. �

Corollary 3.29. Suppose that d = 2, p = 1 and ∂O = ∅. Let Φ be a spherical harmonic
of degree ℓ. Then

• if ℓ = 0 we have Eλ(Φ) =
√
2πϕ(Φ)λ

1
2 +OC∞(M)(

λ1/2

− log λ).

• if ℓ = 1 we have

Eλ(Φ) = −i
√
2π
∑

ℓν=0

aϕ(Φν)(Φ)ϕ(Φν)λ
3
2 (− log λ) +OC∞(M)(λ

3/2).

• if ℓ > 1 we have

Eλ(Φ) = −2ℓC2,ℓλ
ℓ− 3

2

N
∑

j=1

aj(Φ)uj

+2ℓCd,ℓλ
ℓ+ d−1

2 (− log λ)





1

4

N
∑

j,k=1

a
(2)
kj aj(Φ)uk +

∑

ℓν=0

aϕ(Φν)(Φ)ϕ(Φν)



+OC∞(M)(λ
ℓ+ 1

2 ).
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4. General bounds and expansion of the scattering amplitude

Summarising the results from the previous two sections we have the following asymp-
totic behaviour of the generalised eigenfunctions Eλ(Φ).

Lemma 4.1. Let d ≥ 2 and suppose that Φ ∈ Hp
ℓ (S

d−1) is a spherical harmonic of degree
ℓ then as λ→ 0 we have

Eλ(Φ) = OC∞(M)(λ
d−1
2 ) if ℓ = 0,

Eλ(Φ) = OC∞(M)(λ
ℓ+ d−5

2 ) if ℓ ≥ 1.

By unitarity of the scattering matrix the operator family Aλ is holomorphic at zero in
odd dimensions and Hahn-holomorphic in even dimensions, respectively. The expansion
of Theorem 2.4 together with the analytic properties of the Hankel function can be used
to obtain much more detailed information about Aλ.

Theorem 4.2. Suppose that Φ is a spherical harmonic of degree ℓ and that for |λ| small

Eλ(Φ) = λℓ+
d−5
2

∑

α,β

Fα,β(Φ)λ
α(− log λ)−β +OC∞(M)(λ

ℓ+ d−1
2 ),

where
∑

α,β Fα,β(Φ)λ
α(− log λ)−β is Hahn-holomorphic. If (α, β) < (2, 0), the function

Fα,β(Φ) is harmonic and bounded, and in this case let F να,β(Φ) be ν-coefficient in its
multipole expansion

Fα,β(Φ)(r, θ) =
∑

ν

F να,β(Φ)
1

rℓν+d−2
Φν

for large r ≫ 0. We then have in case ℓν +
d−2
2 > 0

〈AλΦ,Φν〉L2(Sd−1)

=
i

2
(−1)ℓνCd,ℓν (d− 2 + 2ℓν)





∑

α,β

F να,β(Φ)λ
ℓ+ℓν+d−4+α(− log λ)−β



+O(λℓ+ℓν+d−2).

If d = 2 and ℓν = 0 we have for |λ| small

〈AλΦ,Φν〉L2(Sd−1)

= i

√

π

2





∑

α,β

F να,β(Φ)λ
ℓ−2+α(− log λ)−β−1



+O(
λℓ

− log λ
) = i

√

π

2
F ν2,−1(Φ)λ

ℓ +O(
λℓ

− log λ
).

Proof. We have, by Theorem 2.4 and the expansion (16),

λℓ+
d−5
2

∑

α,β

Fα,β(Φ)λ
α(− log λ)−β = h̃

(1)
λ (AλΦ) +OC∞(M)(λ

ℓ+ d−1
2 ).

Multiplication by Φν and integration over the sphere of radius R≫ 0 gives

λℓ+
d−5
2

∑

α,β

F να,β(Φ)λ
α(− log λ)−βR−ℓν−d+2

= (−i)ℓνh
(1)
ℓν

(λR)λ
d−1
2 〈AλΦ,Φν〉+O(λℓ+

d−1
2 ).
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In case ℓν +
d−2
2 > 0 theorem now follows from the expansion

(

h
(1)
ℓν

(x)
)−1

=
1

2
iℓν+1 (d− 2 + 2ℓν)Cd,ℓν x

ℓν+d−2 +O(xℓν+d), x→ 0,

which is valid with this error term if ℓν + d−2
2 ≥ 1 (see e.g. [34, 10.8.1] in the even

dimensional case and [34, 10.53.1,10.53.2] in the case of odd dimensions). Note that
there are no non-zero terms with ℓν = 0 in dimension 3. If d = 2 and ℓν = 0 we have

(

h
(1)
ℓν

(x)
)−1

= i

√

π

2
(− log x)−1 +O(

1

(log x)2
).

In this case F να,β(Φ) = 0 if (α, β) < (2,−1). �

This shows the bounds for the scattering amplitude stated in Theorem 1.10. More
precisely, in dimensions 2, 3 and 5 the expansions of Aλ are therefore.

Case d = 3:

〈AλΦ,Φν〉 = − i

2
(2ℓ+ 1)(2ℓν + 1)C3,ℓC3,ℓν λ

ℓ+ℓν−1

×





N
∑

j=1

aj(Φ)aj(Φν)− iλ
N
∑

j,k=1

a
(1)
kj aj(Φ)aj(Φν)



+O(λℓ+ℓν+1)

Case d = 4:

〈AλΦ,Φν〉 = −2i(ℓ+ 1)(ℓν + 1)C4,ℓC4,ℓν λ
ℓ+ℓν

×





N
∑

j=1

aj(Φ)aj(Φν)−
1

4
λ2(− log λ)

N
∑

j,k=1

a
(1)
kj aj(Φ)aj(Φν)



+O(λℓ+ℓν+2)

Case d = 2, p = 1:

〈AλΦ,Φν〉 = −2iℓ ℓν C2,ℓC2,ℓνλ
ℓ+ℓν−2

×









N
∑

j=1

aj(Φ)aj(Φν)



+
1

− log λ+ iπ
2 + β − γ

aψ(Φ0)(Φ)aψ(Φ0)(Φν)

− (− log λ)λ2





1

4

N
∑

j,k=1

a
(2)
kj aj(Φ)ak(Φ) +

∑

ℓµ=0

aϕ(Φµ)(Φ)aϕ(Φµ)(Φν)







+O(λℓ+ℓν ).

Note that Aλ is (as an operator) Hahn holomorphic (Corollary 2.6). The above
implies that the expansion coefficients of order less than λd−2 must vanish, which can
be summarised into the following corollary.

Corollary 4.3. Suppose that d ≥ 3, then for any s ∈ R we have ‖Aλ‖L2→Hs = O(λd−2).
In case d = 2 we have ‖Aλ‖L2→Hs = O( 1

− log λ).
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5. Scattering and Cohomology

In order to describe the cohomology spaces of X and M is is convenient to introduce
some additional spaces which we describe first. Since (X, g) is Euclidean at infinity,

there exist compact sets K ⊂ X and K̃ ⊂ R
d such that X \K is isometric to R

d \ K̃.

We choose R > 0 large enough so that the interior of BR = BR(0) contains K̃ ∪ O.
Then, Rd \ int(BR) is isometric to the complement of a compact subset Y ⊂ X with
∂Y = S

d−1
R. We then have thatN = Y \O is a compact subset ofM and ∂N = ∂Y ∪∂O.

Let (r, θ) ∈ (R,∞) × S
d−1 be spherical coordinates on M \ Y . The substitution x = 1

r

gives coordinates (x, θ) ∈ (0, 1
R) × S

d−1. Then (x, θ) ∈ [0, 1
R) × S

d−1 are coordinates

endowing the radial compactification X of X with the structure of a manifold with
boundary ∂X ∼= S

d−1. Similarly, M = X \ O is the radial compactification of M and
has boundary ∂M = ∂X ∪ ∂O.

We will use the ring R for the cohomology groups without further reference, so we
will simply write Hp(M) for Hp(M,R) and Hp(M,∂O) for Hp(M,∂O,R) for the rel-
ative cohomology groups. Hence all cohomology groups may be realised by deRham
cohomology, i.e. by the complex of differential forms. Note that the inclusions Y →֒ X,
N →֒ M , X →֒ X, and M →֒ M are homotopy equivalences and hence the induced
maps in cohomology are isomorphisms. We therefore have natural isomorphisms

Hp(N) ∼= Hp(M) ∼= Hp(M),

Hp(N,O) ∼= Hp(M,O) ∼= Hp(M,O).

Since M is the interior of a manifold with boundary M we also have natural isomor-
phisms

Hp
0 (M) ∼= Hp(M,∂X),

Hp
0 (M,∂O) ∼= Hp(M,∂X ∪ ∂O) ∼= Hp

0 (X \ O),

induced by the inclusion maps. Unless stated otherwise we will identify ∂X with the
sphere S

d−1.
We then have the following standard exact sequences:

Hp−1(Sd−1) Hp
0 (M,∂O) Hp(M,∂O) Hp(Sd−1) , (33)

and

Hp−1(Sd−1) Hp
0 (M) Hp(M) Hp(Sd−1) . (34)

Recall that the kernel of ∆p,rel consists of the L
2-harmonic p-forms Hp

rel(M), and this
space is isomorphic to the L2-cohomology spaces. As explained in the introduction we
have in case d ≥ 3:

Hd
rel(M) = {0},

Hd
rel(M) ∼= Hp

0 (M,∂O) ∼= Hp(M,∂O ∪ ∂X),

where the isomorphism Hd
rel(M) → Hp(M,∂O ∪ ∂X) is given by understanding an L2-

harmonic form u ∈ Hp
rel(M) as a differential form on M whose restriction to O ∪ ∂X



40 A. STROHMAIER AND A. WATERS

vanishes. The fact that u is smooth up to ∂X follows from the fact that u has a multipole
expansion of the form

u(r, θ) =
∑

ν

aν(u)
1

rℓν+d−2
Φν(θ) =

∑

ν

aν(u)x
ℓν+d−2Φν(θ).

In dimension d = 2 we have

H0
rel(M) = H2

rel(M) = {0},
H1
rel(M) ∼= H1(M,∂O),

in which case the isomorphism H1
rel(M) → H1(M,∂O) is given by simply mapping the

square integrable harmonic form u to its equivalence class in Hp(M,∂O). We define the
map

σℓ : Hp
rel(M) → Hp

ℓ (S
d−1),

u 7→ σℓ(u) =
∑

ν,ℓν=ℓ

aν(u)Φν .

We say u has order m if aν(u) = 0 when ℓν < m. Thus, u ∈ Hp
rel(M) is of order

m if and only if u = O(r−(m+d−2)) for sufficiently large r. Denote the vector space of
elements u ∈ Hp

rel(M) of order m by Hp,m
rel (M). Of course we have

Hp,m+1
rel (M) ⊂ Hp,m

rel (M)

and therefore this defines a filtration of Hp
rel(M). Since the multipole expansion con-

verges on compact sets it follows from unique continuation that

Hp,∞
rel (M) =

⋂

m≥0

Hp,m
rel (M) = {0}.

We have the following exact sequence

0 Hp,m+1
rel (M) Hp,m

rel (M) Hm(S
d−1).

σm (35)

We will denote that quotient Hp,m
rel (M)/Hp,m+1

rel (M) by Kp,m
rel (M). We can also use the

L2-inner product to identify Kp,m
rel (M) with the orthogonal complement of Hp,m+1

rel (M)
in Hp,m

rel (M). All together we have

Hp
rel(M) ∼=

∞
⊕

m=0

Kp,m
rel (M).

Note that the map σℓ does however not in general commute with the projection onto
the summands in the direct sum. Contributions to the multipole expansion proportional
to 1

rℓν+d−2Φν(θ) are square integrable if and only if 2ℓν + d > 4. Therefore, we have

Kp,0
rel(M) = {0} and Kp,1

rel(M) = {0} if d = 2. As a consequence of Corollary 3.5 one

always has Kp,0
rel(M) = {0} for any d ≥ 2.

Given Φ ∈ Hp
ℓ (S

d−1) define

Fℓ(Φ) := lim
λ→0

λ−ℓ−
d−5
2 Eλ(Φ).
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It follows from the top term of the expansion of Eλ(Φ) that the limit exists in the
locally convex topological vector space C∞(M ; ΛpT ∗M) and is in Hp

rel(M). Therefore

Fℓ is a linear map Fℓ : Hp
ℓ (S

d−1) → Hp
rel(M). The following theorem paraphrases the

asymptotic

Eλ(Φ) ∼ −(d− 2 + 2ℓ)Cd,ℓλ
ℓ+ d−5

2

N
∑

j=1

aj(Φ)uj

as λ→ 0.

Theorem 5.1. The map Fℓ is the adjoint of −(d− 2 + 2ℓ)Cd,ℓ σℓ, i.e.

〈Fℓ(Φ), u〉L2(M) = −(d− 2 + 2ℓ)Cd,ℓ〈Φ, σℓ(u)〉L2(Sd−1).

Corollary 5.2. If Kp,m
rel = 0 for all m < ℓ, then the range of Fℓ equals Kp,ℓ

rel(M).

Proof. By assumption Hp
rel(M) = Hp,ℓ

rel(M). The range of Fℓ is then the orthogonal
complement of the kernel of σℓ. �

Our first observation is the following.

Proposition 5.3. If d ≥ 3 and 2 ≤ p < d, then Kp,1
rel(M) = {0}. Hence, in this case

Hp
rel(M) = Hp,2

rel(M).

Proof. First note that it follows from the exactness of (33) that the canonical map

Hp
0 (M,∂O) → Hp(M,∂O) is injective if 2 ≤ p < d. Suppose that v ∈ Hp,1

rel(M) and

assume that v is orthogonal to Hp,2
rel(M). Hence, by Corollary 5.2,

v = F (Φ) = lim
λ→0

λ
3−d
2 Eλ(Φ)

for some Φ ∈ Hp
1(S

d−1). Now write Φ = dr ∧ Φ− + ιdrΦ+ and note that Φ± is a linear
combination of spherical harmonics of degree 0 and 2:

Φ± = Φ±,0 +Φ±,2.

Since the L2-harmonic forms are closed and co-closed the expansions of Theorem 1.4

give dEλ(Φ±,2) = O(λ
d+3
2 ) and δEλ(Φ±,2) = O(λ

d+3
2 ). By Lemma 4.1 the limits

v± = i lim
λ→0

λ
1−d
2 Eλ(Φ±,0)

exist and by construction v = dv− − δv+. Moreover, v± satisfy relative boundary con-
ditions. By Proposition 5.4 we have that dv− and δv+ are L2-harmonic. Therefore v−
represents a cohomology class the kernel of the map Hp

0 (M,∂O) → Hp(M,∂O). Thus,
dv− = 0. Similarly, applying the Hodge star operator, ∗δv+ represents a cohomology

class the kernel of the map Hd−p
0 (M) → Hd−p(M). Hence, again δv+ = 0. �

Proposition 5.4. Assume d ≥ 3 and suppose that Φ ∈ Hp
0(S

d−1) is a spherical harmonic
of degree 0, i.e. Φ is independent of θ. The limit

G(Φ) = lim
λ→0

λ−
d−1
2 Eλ(Φ)
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exists. Moreover, G(Φ) is harmonic, satisfies relative boundary conditions, and we have

G(Φ)(r, θ) = Cd,0Φ+O

(

1

rd−2

)

for sufficiently large r. In particular, we have that dG ∈ L2.

Proof. The function G(Φ) exists because Eλ(Φ) is Hahn holomorphic and of order λ
d−1
2 .

By construction this function is harmonic and satisfies relative boundary conditions.
The asymptotic behaviour follows from Lemma 3.6, as for large θ we have Eλ(Φ)(r, θ) =

j̃λ(Φ)(r, θ) + h̃
(1)
λ (AλΦ). We have

lim
λ→0

λ−
d−1
2 h̃

(1)
λ (〈AλΦ,Φν〉Φν) = Cν

1

rℓν+d−2
Φν .

Thus, lim
λ→0

λ−
d−1
2 j̃λ(Φ) = Cd,0Φ implies the asymptotic form. �

Proposition 5.5. If d ≥ 3, we have that K1,1
rel(M) is canonically isomorphic to the kernel

of the map H1
0 (M,∂O) → H1(M,∂O), i.e. K1,1

rel(M) = {0} if O = ∅ and K1,1
rel(M) ∼= R

if O 6= ∅. In the latter case K1,1
rel(M) is generated by dG(1).

Proof. The map

H1
1(S

d−1) → K1,1
rel(M), Φ 7→ i lim

λ→0
λ

3−d
2 Eλ(Φ±)

is onto. Let v be the image of some Φ ∈ H1
1(S

d−1). As in the proof of the previous propo-

sition write Φ = dr ∧ Φ− + ιdrΦ+ for Φ ∈ H1(S
d−1). Then, v± = i limλ→0 λ

3−d
2 Eλ(Φ±)

and as above v = dv− − δv+, where v± = G(Ψ±) and Ψ± is the degree 0 part of Φ±.
If ∂O = ∅ then v− is proportional to the constant function and therefore dv− = 0. If
O 6= ∅ then dv− 6= 0. By construction dv− satisfies harmonic boundary conditions and
is L2-harmonic. We will now show that δv+ vanishes, thus completing the proof. By
construction ∗δv+ is L2-harmonic, satisfies absolute boundary conditions and is exact.
It represents therefore a class in the kernel of the map Hd−1

0 (M) → Hd−1(M). It follows
that δv+ = 0. �

6. The Birman-Krein formula and expansions of the spectral shift

function

The spectral shift function usually describes the trace of the difference of functions of
perturbed and unperturbed operators in scattering theory. In our setting these operators
act on different Hilbert spaces so a suitable domain decomposition is needed. Let K be a
compact subset ofM such thatM \K is isometric to R

d\K̃, with K̃ a compact subset of

R
d. Hence, L2(M \K) is identified with L2(Rd \ K̃). Let p be the orthogonal projection

L2(M) → L2(M \ K), and let p0 be the orthogonal projection L2(Rd) → L2(Rd \ K̃).
The Birman-Krein formula then reads:
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Theorem 6.1. Let f ∈ C∞
0 (R) be an even compactly supported smooth function. Then,

Tr
(

(1− p)f(∆1/2)(1− p)
)

− Tr
(

(1− p0)f(∆
1/2
0 )(1− p0)

)

+Tr
(

pf(∆1/2)p− p0f(∆
1/2
0 )p0

)

= (βp + βres)f(0)

+
1

2πi

∫ ∞

0
f(λ)TrL2(Sd−1)

(

S∗(λ)S ′(λ)
)

dλ.

Here βp = dimHp
rel(M) is the dimension of the L2-kernel of ∆p,rel, i.e. the relative

L2-Betti number of M . The number βres is zero unless d = 2, p = 1, ∂O 6= ∅, in which
case we have βres = 1.

As similar statement involving domain decomposition was proved by Christiansen
([9]) in the special case of functions and also in the more general setting of scattering
manifolds in [10]. The case of obstacle scattering in R

3 for functions is discussed in great
detain in Taylor’s book ([38, Chapter 9]). We are considering differential forms and also
allow the test function f to be non-zero in any dimension. For the sake of completeness
we provide a detailed proof in our setting

Proof. Since both sides are distributions in D′(R) it suffices to check this for a dense class
of functions. We will thus assume here that f is real analytic in some neighborhood of
zero, depending on f , and real valued on the real line. By Theorem 2.12, the operators

f(∆1/2) and f(∆
1/2
0 ) have smooth integral kernels k(x, y) and k0(x, y) respectively. We

define the family (kν)ν of smooth kernels kν ∈ C∞(M ×M ; ΛpT ∗M ⊠ (ΛpT ∗M)∗) by

kν(x, y) =
1

4π

∫ ∞

−∞
f(λ)Eλ(Φν)(x)⊗ Eλ(y)(Φν)

∗ dλ.

In the same way we construct k0,ν ∈ C∞(Rd×R
d; ΛpT ∗

R
d
⊠(ΛpT ∗

R
d)∗) for f(∆1/2

0 ). By

Theorem 2.12 and Mercer’s Theorem (1− p)f(∆1/2)(1− p) and (1− p0)f(∆
1/2
0 )(1− p0)

are trace-class and their trace is given by

Tr
(

(1− p)f(∆1/2)(1− p)
)

=

∫

K
tr k(x, x)dx = βpf(0) +

∫

K

∑

ν

tr kν(x, x)dx,

Tr
(

(1− p0)f(∆
1/2
0 )(1− p0)

)

=

∫

K̃
tr k0(x, x)dx =

∑

ν

∫

K̃

∑

ν

tr k0,ν(x, x)dx,

where tr denotes the pointwise trace on the fibre End(ΛpT ∗
xM) of ΛpT ∗M ⊠ (ΛpT ∗M)∗

at the point (x, x). We have used that fact that f is even here and Remark 2.11. Now

let pR be the indicator function of a large ball BR such that K̃ ⊂ BR. Then, again by
Mercer’s theorem:

Tr
(

pR

(

pf(∆1/2)p− p0f(∆
1/2
0 )p0

)

pR

)

=

∫

BR\K̃
tr (k(x, x)− k0(x, x))dx.

By Corollary B.2 the operator pf(∆1/2)p− p0f(∆1/2
0 )p0 is trace-class and by dominated

convergence theorem applied to the trace we obtain

Tr
(

pf(∆1/2)p− p0f(∆
1/2
0 )p0

)

= lim
R→∞

∫

BR\K̃
tr (k(x, x)− k0(x, x))dx.
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Collecting everything we have

−βpf(0) + Tr
(

(1− p)f(∆1/2)(1− p)
)

− Tr
(

(1− p0)f(∆
1/2
0 )(1− p0)

)

+Tr
(

pf(∆1/2)p− p0f(∆
1/2
0 )p0

)

= lim
R→∞

∑

ν

(∫

MR

tr kν(x, x)dx−
∫

BR

tr k0,ν(x, x)dx

)

,

where MR is obtained from M by removing the subset identified with R
d \ BR. It is

common to use the following trick to compute these integrals. Since (∆−λ2)Eλ(Φν) = 0,
differentiation in λ yields (∆ − λ2)E ′

λ(Φν) = 2λEλ(Φν), where E
′
λ(Φν) = d

dλEλ(Φν).
Hence, integration by parts and the general bounds on Eλ give

∫

MR

tr kν(x, x)dx = lim
ǫ→0+

1

2π

∫

MR

∫ ∞

ǫ
f(λ)|Eλ(Φν)|2dλdx

= lim
ǫ→0+

1

4π

∫

MR

∫ ∞

ǫ

1

λ
f(λ)〈(∆− λ2)E ′

λ(Φν), Eλ(Φν)〉dλdx

= lim
ǫ→0+

1

4π

∫ ∞

ǫ
f(λ)

1

λ
bR(E

′
λ(Φν), Eλ(Φν))dλ.

Here bR(F,G) is the boundary pairing of forms F and G and defined by

bR(F,G) =

∫

∂MR

〈F (x), ∂nG(x)〉 − 〈∂nF (x), G(x)〉dσ(x),

where dσ is the surface measure of the sphere ∂MR. We conclude that
∫

MR

(tr kν(x, x)− tr k0,ν(x, x)) dx = lim
ǫ→0+

1

4π

∫ ∞

ǫ

1

λ
f(λ)ην,R(λ)dλ,

ην,R(λ) = bR

(

d

dλ

(

j̃λ(Φν) + h̃
(1)
λ (AλΦν)

)

, j̃λ(Φν) + h̃
(1)

λ
(AλΦν)

)

−bR
(

d

dλ

(

j̃λ(Φν)
)

, j̃λ(Φν)

)

= bR

(

d

dλ

(

j̃λ(Φν) + h̃
(1)
λ (AλΦν)

)

, h̃
(1)

λ
(AλΦν)

)

+bR

(

d

dλ

(

h̃
(1)
λ (AλΦν)

)

, j̃λ(Φν)

)

.

We have d
dλ

(

h̃
(1)
λ (AλΦν)

)

= h̃
(1)
λ (A′

λΦν) + h̃
(1)′
λ (AλΦν). Unitarity of S(λ) implies the

identity A(λ) +A∗(λ) +A∗(λ)A(λ) = 0, and therefore we have

bR

(

h̃
(1)′
λ (AλΦν), h̃

(1)

λ
(AλΦν)

)

+ bR

(

h̃
(1)′
λ (Φν), h̃

(1)

λ
(AλΦν)

)

+bR

(

h̃
(1)′
λ (AλΦν), h̃

(1)

λ
(Φν)

)

= 0.

Using bR(h̃
(1)
λ (Φν), h̃

(2)

λ
(Φν)) = 0 and j̃λ(Φν) = h̃

(1)
λ (Φν) + h̃

(2)
λ (Φν) one obtains

ην,R(λ) =
(

〈A′
λΦν , AλΦν〉+ 〈A′

λΦν ,Φν〉
)

bR(h̃
(1)
λ (Φν), h̃

(1)

λ
(Φν))

+〈Φν , AλΦν〉bR(h̃
(2)′
λ (Φν), h̃

(1)

λ
(Φν)) + 〈AλΦν ,Φν〉bR(h̃(1)′λ (Φν), h̃

(2)

λ
(Φν))
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The term bR(h̃
(1)
λ (Φν), h̃

(1)

λ
(Φν)) is independent of R and is actually given in terms of a

Wronskian between Hankel functions. One obtains

bR(h̃
(1)
λ (Φν), h̃

(1)

λ
(Φν)) = −2iλ.

The terms 〈AλΦν ,Φν〉bR(h̃(1)′λ (Φν), h̃
(2)

λ
(Φν)) and 〈Φν , AλΦν〉bR(h̃

(2)
λ (Φν), h̃

(1)′
λ

(Φν)) are

complex conjugates of each other for positive λ. As long as λ > 0 their sum is therefore

2Re
(

〈AλΦν ,Φν〉bR(h̃(1)λ (Φν), h̃
(2)′
λ

(Φν))
)

= 2Re(g(λ)).

Using the functional equation for Aλ and one shows that the function

g(λ) = 〈AλΦν ,Φν〉bR(h̃(1)′λ (Φν), h̃
(2)

λ
(Φν))

satisfies g(−λ) = −g(λ). Thus, Re(g(λ)) is odd. Using Lemma 6.2 below and the bound

|〈AλΦν ,Φν〉| = O(λ
2ℓν+d−4

(ℓν !)2
) (Lemma 2.9), one obtains

lim
ǫ→0+

1

4π

∫ ∞

ǫ

1

λ
f(λ)2Re

(

〈AλΦν ,Φν〉bR(h̃(1)′λ (Φν), h̃
(2)

λ
(Φν))

)

dλ

= Re lim
ǫ→0+

1

4π

∫

Rǫ

1

λ
f(λ)〈AλΦν ,Φν〉bR(h̃(1)′λ (Φν), h̃

(2)

λ
(Φν))dλ

= Re(bν)f(0) + Re(cν)f(0)R
−2ℓ−d+4 +O((1 + ℓ2ν)R

−1ecℓν .
λ2ℓν+d−4

(ℓν !)2
),

where Rǫ = R \ [−ǫ, ǫ]. Here bν are non-zero only in finitely many cases (in fact only

when d = 2, ℓ = 1), and cν computes to 2
2ℓν+d−4

∑N
j=1 |aj(Φν)|2 in case 2ℓν + d − 4 > 0

using the expansion of the scattering amplitude from Theorem 1.10. Since the uj are

square integrable one obtains the bound
∑

ν

∑N
j=1R

−2ℓ|aj(Φν)|2 < ∞. All together we
get the estimate
∑

ν

lim
ǫ→0+

1

4π

∫

Rǫ

1

λ
f(λ)〈AλΦν ,Φν〉bR(h̃(1)′λ (Φν), h̃

(2)

λ
(Φν))dλ = f(0)

∑

ν

bν +O(R−1).

Unless d = 2, ℓ = 1, p = 1, ∂O 6= ∅ the bounds on the scattering amplitude imply
that bν = 0 and this implies the theorem in these cases. It remains to compute the
contribution from bν when d = 2, ℓ = 1, p = 1, ∂O 6= ∅. By the bounds on 〈AλΦν ,Φν〉 we
obtain a contribution only when ℓν = 1, and in this case 〈AλΦν ,Φν〉 = −iπ(− log λ)−1+
o((− log λ)−1). Lemma 6.2 then gives a contribution of

∑

ν bν = 1. This concludes the
proof. �

It is easy to see that the function bR(h̃
(1)′
λ (Φν), h̃

(2)

λ
(Φν)) depends only on ℓν and λR.

We can therefore define Hℓ by Hℓ(λR) = bR(h̃
(1)′
λ (Φν), h̃

(2)

λ
(Φν)).

Lemma 6.2. Let as before Hℓ(λR) := bR(h̃
(1)′
λ (Φν), h̃

(2)

λ
(Φν)). Suppose that f ∈ C∞

0 (R)

is supported in (−T, T ) and extends holomorphically near zero to a function analytic in

a neighborhood of the closed ball Bδ(0). Let K := [−T, T ]× [0, δ1] be any rectangle with
δ1 > 0. Then for every k ∈ N there exists a constant Ck > 0, independent of ν such that
for any R > δ−1 and any g that is holomorphic in the interior of K and continuous on
K we have the following estimates for R > 1;
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• if d = 2 and ℓν = 0 then

| lim
ǫ→0+

∫

Rǫ

1

λ
f(λ)g(λ)Hℓ(λR)dλ− (−2 i g(0))f(0)| ≤ Ck

Rk
sup
x∈K

|g(x)|

• if d = 2 and ℓν = 1 and g(λ) = a
− log λ + o( 1

− log λ) for |λ| < 1/2 then

| lim
ǫ→0+

∫

Rǫ

1

λ
f(λ)g(λ)Hℓ(λR)dλ− (4 i a)f(0)| ≤ Ck

Rk
sup
x∈K

|g(x)|

• if d = 3 and ℓν = 0 then

| lim
ǫ→0+

∫

Rǫ

1

λ
f(λ)g(λ)Hℓ(λR)dλ− (−πg(0))f(0)| ≤ Ck

Rk
sup
x∈K

|g(x)|.

• if 2ℓ+ (d− 4) > 0 and g(λ) = aλ2ℓ+d−4 + o(λ−2ℓ−d+4) for |λ| < 1 then

| lim
ǫ→0+

∫

Rǫ

1

λ
f(λ)g(λ)Hℓ(λR)dλ− aγd,ℓR

−2ℓ−d+4|

≤ Ck(1 + ℓ)2

Rk
sup
x∈K

|g(x)|e2(1+ d
2
)2R−1δ−1(1+ℓ)2 ,

where γd,ℓ = i 22ℓ+d−3Γ(ℓ+ d−2
2 )Γ(ℓ+ d−5

2 ).

Proof. We choose a compactly supported almost analytic extension f̃ ∈ C∞
0 (R2) of f ,

i.e. ∂f = O(Im(λ)N ) for any N > 0. Since f was assumed to be analytic near zero we
can arrange this almost analytic extension to be analytic in Bδ and supported in the
interior of K. Then, by Stokes’ formula

lim
ǫ→0+

∫

Rǫ

1

λ
f(λ)g(λ)Hℓ(λR)dλ− lim

ǫ→0+

∫

C(ǫ)

1

λ
f(λ)g(λ)Hℓ(λR)dλ

= 2i

∫

K\Bδ

(∂f̃)(x, y)g(x+ iy)
1

x+ iy
Hℓ((x+ iy)R)dxdy,

where C(ǫ) is the semi-circle in the upper half plane centered at zero of radius ǫ. Note
that ∂f vanishes on Bδ(0) and we therefore can integrate over the complement of Bδ(0).
The function Hℓ can be expressed explicitly as

Hℓ(λ) =
1

8
πλ ( λH

(1)
d
2
+ℓ−2

(λ)2 − 2(H
(1)
d
2
+ℓ−1

(λ) + λH
(1)
d
2
+ℓ
(λ))H

(1)
d
2
+ℓ−2

(λ)

+2λH
(1)
d
2
+ℓ−1

(λ)2 + λH
(1)
d
2
+ℓ
(λ)2 − λH

(1)
d
2
+ℓ−3

(λ)H
(1)
d
2
+ℓ−1

(λ)

+H
(1)
d
2
+ℓ−1

(λ)(2H
(1)
d
2
+ℓ
(λ)− λH

(1)
d
2
+ℓ+1

(λ)) )

For Imλ ≥ 0 and |λ| > 0 we have the following asymptotics for the Hankel function ([34,
10.17.13-10.17.15])

H
(1)
k (λ) =

(

2

πλ

) 1
2

ei(λ−
k
2
π−π

4
)
(

1 +R+
1 (k, λ)

)

,

with

|R+
1 (k, λ)| ≤ |k2 − 1

4
||λ|−1e(|k

2− 1
4
||λ|−1).
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This gives the uniform bound for |Rλ| > 1 and |λ| > δ

|Hℓ(Rλ)| ≤ C(1 + ℓ)2e−2R Imλe2(1+
d
2
)2R−1|λ|−1(1+ℓ)2

≤ C(1 + ℓ)2e−2R Imλe2(1+
d
2
)2R−1δ−1(1+ℓ)2 ,

where C depends on d only. Now there is a constant C̃ such that ∂f̃(x + iy) ≤ C̃ yk.
Integrating this gives for R > 1 the bound

| lim
ǫ→0+

∫

Rǫ

1

λ
f(λ)g(λ)Hℓ(λR)dλ− lim

ǫ→0+

∫

Cǫ

1

λ
f(λ)g(λ)Hℓ(λR)dλ|

≤ CkR
−k(1 + ℓ)2 sup

x∈K
|g(x)|e2(1+ d

2
)2R−1δ−1(1+ℓ)2 .

Using the asymptotics of the Hankel function in case 2ℓ + (d − 4) > 0 as x → 0 in the
upper half plane

Hℓ(x) = O(x−2ℓ−d+4),

and in this case the integral over the circle converges to zero as ǫ→ 0. In case d = 3, ℓ = 0
one can compute Hℓ(x) = ie2ix and therefore Hℓ(x) = i + O(x). If d = 2, ℓ = 0 one has
Hℓ(x) = − 2

π + O(x2), and if d = 2, ℓ = 1 we have Hℓ(x) = − 4
π log x + O(1). This gives

the claimed values. �

The Birman-Krein formula can also be stated, using integration by parts, as

Tr
(

(1− p)f(∆1/2)(1− p)
)

− Tr
(

(1− p0)f(∆
1/2
0 )(1− p0)

)

+Tr
(

pf(∆1/2)p− p0f(∆
1/2
0 )p0

)

= −
∫

f ′(λ)ξ(λ2)dλ, (36)

where ξ ∈ L1
loc(R) is the spectral shift function defined by

ξ(µ) =

{

0 µ < 0,

(βp + βres) +
1
2πi

∫

√
µ

0 tr (S∗(λ)S′(λ)) dλ µ ≥ 0.

Remark 6.3. Our proof is along the same lines as similar computations involving the
Maass-Selberg relations, with the additional complication of interchanging the summation
over ν and the limit R → ∞ that poses a problem when the test function has zero con-
tained in its support. In case of potential scattering in dimension three one can also use
this method and the Lemma above to compute the contribution 1

2 of a possible zero reso-
nance state. We note here that the Maass-Selberg trick was also used by Parnovski in [35]
in the context of manifolds with conical ends to compute the asymptotics of the spectral
function and hence the spectral shift function. His method also applies to our situation
with obvious changes and one therefore has a Weyl law for the spectral shift function.
Therefore version (36) of the Birman-Krein formula also holds for even Schwartz func-
tions. The Weyl law for the scattering phase in case p = 0 was first proved for obstacle
scattering by Majda and Ralston [26] for convex domains and finally for smooth domains
by Melrose [29].
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7. Proofs of the main theorems

For the purposes of presentation we have stated our main theorems into Section 1.2.
In this section we summarise how they follow from the statements in the body of the
text.

Proof of Theorem 1.4: The expansions were shown in (20), (21), (26), and (27). That

P (1) = 0 unless p = 1 and ∂O 6= ∅ follows immediately from Prop 5.3 and Prop 5.5.

Proof of Theorem 1.5: The resolvent expansion was shown in Section 3.1. In particular
B−1 was computed to be 0 in dimension greater 5, as a result of the analysis of equation
(19). Propositions 3.7 and 3.8 show the result in dimension 3 and 5.

Proof of Theorem 1.6: The resolvent expansion was shown in Section 3.2. The theorem
is a combination of Theorems 3.12 and 3.13.

Proof of Theorem 1.7: The theorem follows from the discussion in Section 3.3. The
particular form of the resolvent is contained in Lemma 3.17 and the coefficients were
computed in Propositions 3.19, 3.24, and 3.25.

Proof of Theorem 1.8: This theorem the result of a combination of Corollary 3.27 and
Corollary 3.29.

Proof of Theorem 1.9: This theorem is the result of combination of Theorem 3.26 and
Proposition 3.28.

Proof of Theorem 1.10: This was proved in Section 4 and follows directly by applying
Theorem 4.2 to the expansions of the generalised eigenfunctions as stated in Theorem
1.4.

Proof of Theorem 1.11: Was proved in Section 4 and follows directly by applying Theo-
rem 4.2 to the expansions of the generalised eigenfunctions as stated in Theorem 1.8.

Proof of Theorem 1.12: This is a combination of Propositions 5.3 and 5.5.

Proof of Theorem 1.13: The Birman-Krein formula shows that the relation between the
spectral shift function and η is as claimed. Moreover, we have

η(λ2) =
1

2πi
log detS(λ) =

1

2πi
log det (1 +A(λ)) ,

where the branch of the logarithm is chosen continuous on the positive real line. Suppose
that p ≥ 1. Then P (1) = 0. Recall from Prop. 5.4 that for |λ| < 1 we have Eλ(Φν) =

G(Φν)λ
d−1
2 + o(λ

d−1
2 ) where dG(Φν) ∈ L2 and G(Φν) = Cd,0Φν +O( 1

rd−2 ) as r → ∞. In
particular, dG(Φν) is a trivial class in cohomology and from the discussion in Section
1.12 we conclude that dG(Φν) = 0. In particular, by Corollary 3.4, this implies that
there is no ℓ = 0 term in the multipole expansion of G(Φν) and since a term of order
λd−2 in the expansion of 〈AλΦν ,Φν〉 would give rise to such a term, we must have
〈AλΦν ,Φν〉 = o(λd−2). This means in odd dimensions 〈AλΦν ,Φν〉 = O(λd−1) and in even

dimensions 〈AλΦν ,Φν〉 = O( λd−2

− log λ). Now simply note that, using ‖Aλ‖1 = O(λd−2), we

have

log det(1 +Aλ) = tr(Aλ) +O(λ2d−4).
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Then the leading order terms consist solely of the ℓν = 1 contributions. The expansions
1.10 and 1.11 then imply the claimed formulae when p ≥ 1. The case p = 0 follows from
the fact that Aλ commutes with dr∧ and ιdr. Therefore the expansion for p = 1 can be
derived from the expansion for p = 2 and for p = 0.

Appendix A. Hahn holomorphic and Hahn meromorphic functions

The theory of Hahn analytic functions was developed in [30] in a very general setting.
For the purposes of this paper we restrict our considerations to so-called z-log(z)-Hahn
holomorphic functions and refer to these as Hahn holomorphic. To be more precise,
suppose that Γ ⊂ R

2 is a subgroup of R2. We endow Γ and R
2 with the lexicographical

order. Recall that a subset A ⊂ Γ is called well-ordered if any subset of A has a smallest
element. A formal series

∑

(α,β)∈Γ
aα,β z

α(− log z)−β

will be called a Hahn-series if the set of all (α, β) ∈ Γ with aα,β 6= 0 is a well ordered
subset of Γ.

In the following let Z be the logarithmic covering surface of the complex plane without
the origin. We will use polar coordinates (r, ϕ) as global coordinates to identify Z as a
set with R+ × R. Adding a single point {0} to Z we obtain a set Z0 and a projection
map π : Z0 → C by extending the covering map Z → C\{0} by sending 0 ∈ Z0 to
0 ∈ C. We endow Z with the covering topology and Z0 with the topology generated
by the open sets in Z together with the open discs Dǫ := {0} ∪ {(r, ϕ) | 0 ≤ r < ǫ}.
This means a sequence ((rn, ϕn))n converges to zero if and only if rn → 0. The covering
map is continuous with respect to this topology. For a point z ∈ Z0 we denote by |z|
its r-coordinate and by arg(z) its ϕ coordinate. We will think of the positive real axis

embedded in Z as the subset {z | arg(z) = 0}. Define the following sectors D
[σ]
δ = {z ∈

Z0 | 0 ≤ |z| < δ, |ϕ| < σ}.
In the following fix σ > 0 and a complex Banach space V . We say a function f : D

[σ]
δ →

V is Hahn holomorphic near 0 in D
[σ]
δ if there exists a Hahn series with coefficients in

V that converges normally to f , i.e. such that

f(z) =
∑

(α,β)∈Γ
aα,β z

α(− log z)−β ,

∑

(α,β)∈Γ
‖aα,β‖‖zα(− log z)−β‖

L∞(D
[σ]
δ )

<∞,

and there exists a constant C > 0 such that aα,β = 0 if −β > Cα. This implies also that
aα,β = 0 in case (α, β) < (0, 0). As shown in [30], in case V is a Banach algebra the set
of Hahn holomorphic functions with values in V is an algebra. A meromorphic function

on D
[σ]
δ \{0} is called Hahn meromorphic with values in a Banach space V if near zero

it can be written as a quotient of a Hahn holomorphic function with values in V and a
Hahn holomorphic function with values C. Note that the algebra of Hahn holomorphic
functions with values in C is an integral domain and Hahn meromorphic functions with
values in C form a field. There exists a well defined injective ring homomorphism from
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the field of Hahn meromorphic functions into the field of Hahn series. This ring homo-
morphism associates to each Hahn meromorphic function its Hahn series. The theory
is in large parts very similar to the theory of meromorphic functions. In particular the

following very useful statement holds: if V is a Banach space and f : D
[σ]
δ → V Hahn

meromorphic and bounded, then f is Hahn holomorphic. The main result of [30] states
that the analytic Fredholm theorem holds for this class of functions.

Appendix B. Resolvent gluing

In this section all Laplace operators will be operators acting on p-forms. As in Section
1.1 we fix a compact subset K ⊂ X such that X \K is isometric to R

d \ K̃. We assume
here that K is chosen large enough so that O ⊂ int(K). We can also assume without

loss of generality that K̃ is a ball of radius R > 0 so that ∂K is smooth. Then K \O is a
smooth manifold with boundary ∂O∪∂K. We can also choose a closed set K1 ⊂ X that
does not intersect O that is isometric to R

d \BR−δ for a suitably small δ > 0. Thus, K1

and K cover X with a slight overlap. The resolvent kernel of ∆rel can be constructed by
gluing the free resolvent R0,λ of the Laplace operator ∆0 on R

d and the resolvent RD,λ
of the self-adjoint operator ∆D constructed by imposing Dirichlet boundary conditions
at the additional boundary ∂K and relative boundary conditions at ∂O on L2(K\O).
Namely, we have that

Rλ = (χ1RD,λη1 + χ2R0,λη2) (1 +Qλ), (37)

where, for any s ∈ R, Qλ is a meromorphic family of operators mappingHs
comp(M ; ΛpT ∗M)

to smooth functions with compact support in a neighborhood of K. Here χ1, η1, χ2, η2
are suitably chosen cutoff functions such that

η1χ1 = η1, η2χ2 = η2, η1 + η2 = 1,

suppχ1 ⊂ K, suppχ2 ⊂ K1, dist(suppχ′
1, η1) > 0, dist(suppχ′

2, η2) > 0.

It follows that the resolvent Rλ admits a meromorphic extension as a map

Hs
comp(M ; ΛpT ∗M) → Hs+2

loc (M ; ΛpT ∗M)

whenever R0,λ does.
The technique of gluing resolvents can be slightly modified to show trace-class prop-

erties of differences of operator functions. Let N ∈ N and consider the operator
Tλ = (∆rel + 1)−N (∆rel − λ2)−1. Similarly, let

T0,λ = (∆0 + 1)−N (∆0 − λ2)−1,

TD,λ = (∆D + 1)−N (∆D − λ2)−1,

and define
T̃λ = χ1TD,λη1 + χ2T0,λη2.

One then computes (∆ + 1)N (∆− λ2)T̃λ = 1 +Q1 + (∆+ 1)NQ2(λ), where

Q1 = [(∆ + 1)N , χ1](∆D + 1)−Nη1 + [(∆ + 1)N , χ2](∆0 + 1)−Nη2,

Q2(λ) = [∆, χ1]TD,λη1 + [∆, χ2]T0,λη2.

Therefore, one has
T̃λ = Tλ + TλQ1 +RλQ2(λ).
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By the support properties of the cutoff functions Q1 is a smoothing operator mapping
to a space of functions with support in a fixed compact set. Hence, Q1 is a trace-class
operator. For Q2(λ) we have

Q2(λ) = Q3(λ) +Q4(λ),

Q3(λ) = [∆, χ1](∆D + 1)−N (∆D − λ2)−1η1,

Q4(λ) = [∆, χ2](∆0 + 1)−N (∆0 − λ2)−1η2.

If 2N −1 > d the operators [∆, χ1](∆D+1)−N and [∆, χ2](∆0+1)−N continuously map
L2 into the space Hs

0(Ω) for s = 2N − 1, where Ω is a bounded subset of Rd. It follows
that these operators are trace-class. We now conclude that Q3 and Q4 are trace class
for any λ in the upper half plane and that ‖Q3(λ)‖1 ≤ C3

1
Im(λ2)

, ‖Q4(λ)‖1 ≤ C4
1

Im(λ2)
.

Since ‖Rλ‖1 ≤ 1
Im(λ2)

we finally have

‖TλQ1 +RλQ2(λ)‖1 ≤ C
1

|Im(λ2)|2

for some constant C > 0. We have proved:

Lemma B.1. If N > d+1
2 then Tλ − T̃λ is trace-class and there exists C > 0 such that

for the trace norm we have

‖Tλ − T̃λ‖1 ≤ C
1

|Im(λ2)|2 .

Now let Z ⊂ M be such that η1(x) = χ1(x) = 0 and η2(x) = χ2(x) = 1 for all x ∈ Z
and let p be the operator of multiplication by the indicator function χZ of Z. Then, by
the above we have for all N > d+1

2 the bound

‖p(∆ + 1)−N (∆− λ2)−1p− p(∆0 + 1)−N (∆0 − λ2)−1p‖1 ≤ CN
1

|Im(λ2)|2 .

Corollary B.2. For any even function f ∈ S(R) we have that pf(∆1/2)p−pf(∆1/2
0 )p is

trace-class and the mapping f 7→ Tr
(

pf(∆1/2)p− pf(∆
1/2
0 )p

)

is a tempered distribution.

Proof. Define g ∈ S(R) by g(λ) = (1+ λ2)Nf(λ). Let g̃ be an almost analytic extension

of g such that ∂g̃∂z = O(|Im(z)|m) for some fixedm ≥ 5. Such an almost analytic extension
can always be constructed as

g̃(x+ iy) =

m
∑

k=0

1

k!
g(k)(x)(iy)kχ(y),

where χ ∈ C∞
0 (R) is chosen such that it equals one near 0. By the Helffer-Sjöstrand

formula we have

f(∆1/2) =
2

π

∫

Im(z)>0

z
∂g̃

∂z
Tzdm(z),
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and the analogous formula holds for ∆0. Here dm denotes the Lebesgue measure on C.
Hence,

(

pf(∆1/2)p− pf(∆
1/2
0 )p

)

=
2

π

∫

Im(z)>0

∂g̃

∂z

(

p(∆ + 1)−N (∆− z2)−1p− p(∆0 + 1)−N (∆0 − z2)−1p
)

zdm(z),

which implies the statement as the trace norm is finite and can be estimated as

Tr
(

pf(∆1/2)p− pf(∆
1/2
0 )p

)

≤ C
2

π

∫

Im(z)>0

|∂g̃
∂z

| |z|
|Im(z2)|2dm(z).

�

Appendix C. Incoming and outgoing sections

Recall that f ∈ C∞(M ; ΛpT ∗M) is called outgoing if f = Rλh for some compactly
supported h ∈ C∞

0 (M ; ΛpT ∗M). Obviously the space of outgoing functions for λ ∈
R \ {0} is a vector space. In the following we fix a real λ 6= 0.

Lemma C.1. Suppose that f ∈ C∞
0 (M ; ΛpT ∗M) and g = (∆p − λ2)f , then f = Rλg.

Proof. Let gµ = (∆p − µ2)f , then gµ is a holomorphic family of compactly supported
functions such that gλ = g. Since f is in the domain of the operator, we have f = Rµgµ
for all µ in the lower half plane. Now simply take the limit µ→ λ. �

This implies immediately the following corollary.

Corollary C.2. Any f ∈ C∞
0 (M ; ΛpT ∗M) is outgoing for λ.

Corollary C.3. Let χ ∈ C∞(M) be supported in M \ K such that 1 − χ ∈ C∞
0 (M).

Then f ∈ C∞
0 (M) is outgoing if and only if χf is outgoing.

Proof. This follows immediately from the fact that (1− χ)f is outgoing. �

Note that if χ is supported in M \K then we can understand it as a function on R
d

as M \K is identified with R
d \ K̃.

Proposition C.4. Let χ ∈ C∞(M) be supported in M \K such that 1− χ ∈ C∞
0 (M),

then f ∈ C∞
0 (M) is outgoing if and only if χf is outgoing for the Laplace operator on

R
d.

Proof. Let R0,λ be the free resolvent of ∆p on R
d. Then both R0,µ and Rµ are holo-

morphic in µ near R \ {0} and map to L2 in the lower half plane. Now f is outgoing
if and only if χf is outgoing, by the above corollary. Let us therefore assume w.l.o.g.
that f is supported in M \K. Since f = Rλh for some compactly supported h we have
(∆p−λ2)f = h. Therefore, h is compactly supported inM \K. Now define fµ := χRµh.
The section fµ is in L2(M ; ΛpT ∗M) for Im(µ) > 0. We can now think of fµ as a p-form

on R
d, and then we have

(∆p − µ2)fµ = [∆p, χ]fµ + h ∈ C∞
0 (Rd,ΛpRd).
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For µ in the upper half-plane we therefore have

fµ = R0,µ ([∆p, χ]fµ + h)) .

Now taking the limit µ→ λ we obtain

fλ = R0,λ ([∆p, χ]fλ + h)) ,

so fλ = χf is outgoing for the free Laplacian on R
d. This proves that if f is outgoing,

then so is χf for the free Laplacian. To show the converse, exactly the same argument
with M and R

d interchanged applies, and one can conclude that f is outgoing whenever
χf is for the free Laplacian. �

Lemma C.5. Suppose that f ∈ C∞(M ; ΛpT ∗M) is outgoing for λ. Then there exists a
function Φ ∈ C∞(Sd−1; ΛpRd) such that for r sufficiently large

f(rθ) = h̃
(1)
λ (Φ)(rθ) = λ

d−1
2

∑

ν

aν(Φ)φν(θ)h
(1)
ℓν

(λr)(−i)ℓν ,

where the notation is as in Definition 2.3.

Proof. By Prop. C.4 it is sufficient to prove this for R
d. In this case the bundle ΛpRd

is trivial and the operators do not mix components. It is therefore sufficient to consider
the case p = 0. We have u = R0,λf , where f is compactly supported. It is easy to see
from the formula of the outgoing resolvent kernel

R0,λ(x, y) =
i

4

(

λ

2π|x− y|

)
d−2
2

H
(1)
d−2
2

(λ|x− y|)

that

u(rθ) ∼ eirλe−
iπ(d−1)

4

r
d−1
2

Φ(θ) (38)

for a smooth function Φ ∈ C∞(Sd−1). In fact Φ is analytic, but we will not need this
at this stage. Let (φν) be an orthonormal basis in L2(Sd−1) consisting of spherical
harmonics of degree ℓν . The function Φ can be expanded as

Φ =
∑

ν

aνφν ,

with convergence in C∞(Sd−1). The functions

uν(r) =

∫

Sd−1

u(rθ)φν(θ)dθ

are defined for r > 0, and solve the spherical Bessel equation of order ℓν . Moreover,

u(rθ) =
∑

ν

uν(r)φν(θ)

converges in C∞(Rd \ {0}).
By (38) they have an asymptotic expansion

uν(r) ∼
eirλe−

iπ(d−1)
4

r
d−1
2

〈Φ, φν〉L2(Sd−1) =
eirλe−

iπ(d−1)
4

r
d−1
2

aν
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for sufficiently large r. Comparing the expansions using (43) one obtains

uν(r) = λ
d−1
2 (−i)ℓνaνh

(1)
d,ℓν

(λr),

and therefore, u = h̃
(1)
λ (Φ)(rθ). �

Appendix D. Multipole expansions

Let u ∈ C∞(Rd \ BR) and suppose that ∆u = 0, where ∆ is the Laplace operator
on functions. We denote by (φν)ν be an orthonormal basis in L2(Sd−1) consisting of
spherical harmonics of degree ℓν . Then one can use separation of variables to expand u
into spherical harmonics.

Lemma D.1. In case d > 2, we have that

u(rθ) =
∑

ν

(

aν
1

rd−2+ℓν
φν(θ) + bνr

ℓνφν(θ)

)

, (39)

which converges in C∞(Rd \ BR). If bν = 0 the above series converges uniformly on
R
d \BR together with its derivatives.

Proof. The functions

uν(r) =

∫

Sd−1

u(rθ)φν(θ)dθ

are defined for r > R. Moreover,

u(rθ) =
∑

ν

uν(r)φν(θ)

converges in C∞(Rd \BR). Then, the uν(r) satisfy an ordinary differential equation that
has 1

rd−2+ℓν
and rℓν as a system of fundamental solutions. From this one obtains the

claimed expansion. �

The same result holds in case d = 2 with the only modification that when ℓ = 0 the
two fundamental solutions of the resulting ODE are 1 and log r. Therefore one has

u(rθ) = a0 log(r) + b0 +
∑

ν,ℓν>0

(

aν
1

rd−2+ℓν
φν(θ) + bνr

ℓνφν(θ)

)

. (40)

Appendix E. Spherical Bessel functions

The spherical Bessel functions jℓ are usually defined as jℓ(x) =
√

π
2xJℓ+ 1

2
(x). These

functions appear when separating variables for the three dimensional Helmholtz equa-
tion. Here we will need the higher dimensional analog, which we define as

jd,ℓ(x) =

√

π

2
x

2−d
2 Jℓ+ d−2

2
(x),
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and refer to as the d-dimensional spherical Bessel function. Similarly, the corresponding
d-dimensional spherical Hankel functions are defined as

h
(1)
d,ℓ(x) =

√

π

2
x

2−d
2 H

(1)

ℓ+ d−2
2

(x),

h
(2)
d,ℓ(x) =

√

π

2
x

2−d
2 H

(2)

ℓ+ d−2
2

(x).

The properties of the Hankel functions ([34, 10.11.1-10.11.9]) then imply that

h
(1)
d,ℓ(xe

iπ) = −(−1)ℓ+dh
(2)
d,ℓ(x), (41)

h
(2)
d,ℓ(xe

iπ) = (−1)ℓ
(

h
(1)
d,ℓ(x) + (1 + (−1)d)h

(2)
d,ℓ(x)

)

. (42)

For real λ 6= 0 the asymptotic behaviour as x→ ∞ of these functions is as follows

h
(1)
d,ℓ(x) ∼

1

x
d−1
2

ei(x−
π
2
ℓ−π

4
(d−1)) (43)

h
(2)
d,ℓ(x) ∼

1

x
d−1
2

e−i(x−π
2
ℓ−π

4
(d−1)). (44)

The asymptotic behavior as x→ 0+ is

h
(1)
d,ℓ(x) ∼ −i

1√
π
2ℓ+

d−3
2 Γ(ℓ+

d− 2

2
)x−ℓ−d+2, (45)

h
(2)
d,ℓ(x) ∼ i

1√
π
2ℓ+

d−3
2 Γ(ℓ+

d− 2

2
)x−ℓ−d+2, (46)

if ℓ+ d−2
2 > 0 and

h
(1)
d,ℓ(x) ∼ −i

√

2

π
(− log x), (47)

h
(2)
d,ℓ(x) ∼ i

√

2

π
(− log x), (48)

if d = 2 and ℓ = 0. In case ℓ+ d−2
2 > 0 one also has, uniformly in x on compact sets,

xℓ+d−2h
(1)
d,ℓ(x) ∼ −i

1√
π
2ℓ+

d−3
2 Γ(ℓ+

d− 2

2
), (49)

xℓ+d−2h
(2)
d,ℓ(x) ∼ i

1√
π
2ℓ+

d−3
2 Γ(ℓ+

d− 2

2
), (50)

as ℓ→ ∞. This can be inferred from the series expansions for the Hankel functions [34,
10.8.1, 10.53.2].

In this section we give a simple proof of the formula

1

(2π)
d−1
2

∫

Sd−1

exp(−iλx · ω)g(ω)dω = 2
∑

ν

aνφν

(x

r

)

jd,lν (λr)(−i)lν ,
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where aν = 〈φν , g〉L2(Sd−1). This formula follows for d = 3 from integral formulae for
spherical Bessel functions and Legendre polynomials. In higher dimensions it is equiva-

lent to the following identity for Gegenbauer polynomials C
d−2
2

k

1

(2π)
d−1
2

∫

Sd−1

exp(−iλx · ω)C
d−2
2

k (θ · ω)dω = 2jd,lν (λr)(−i)lνC
d−2
2

k (θ · x
r
).

Since we could not find this identity in the literature we give here a very short proof
which is based on Rellich’s uniqueness theorem. First we note that it is sufficient to
prove the identity for g = φν . Next we observe that both sides of the equation satisfy
the eigenfunction equation (∆−λ2)f = 0. By Rellich’s uniqueness theorem such solutions
for real λ > 0 are uniquely determined by their asymptotic expansion

f(rθ) ∼ e−iλr

r
d−1
2

h−(θ) +
eiλr

r
d−1
2

h+(θ)

for sufficiently large r. It is therefore sufficient to show that the expansions on both
sides are the same. An application of the stationary phase Lemma to the left hand side
gives
∫

Sd−1

e−iλx·ωg(ω)dω =

(

2π

λr

)
d−1
2 (

e−iλrei
(d−1)π

4 g(θ) + eiλre−i
(d−1)π

4 g(−θ)
)

+O((λr)−( d+1
2

))

(51)

as λr → ∞. Here the order terms depending on ‖g(ω)‖H2(Sd−1) by stationary phase,

provided |λr| ≫ 1. This expansion can be differentiated term by term in x, and ex-
panded again using stationary phase to obtain asymptotics of the differentiated terms.
A comparison to the asymptotics of the spherical Bessel ([34]) function shows the result.
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Physique théorique, volume 48, pages 175–204, 1988.
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Poincaré, volume 2, pages 675–711. Springer, 2001.

[37] I. Rodnianski and T. Tao. Effective limiting absorption principles, and applications. Communica-
tions in Mathematical Physics, 333(1):1–95, 2015.

[38] M. E. Taylor. Partial differential equations II. Qualitative studies of linear equations, volume 116
of Applied Mathematical Sciences. Springer, New York, second edition, 2011.

[39] B. Vaillant. Index and spectral theory for manifolds with generalized fibred cusps. 2001.
[40] B. R. Vainberg. On the short wave asymptotic behaviour of solutions of stationary problems and

the asymptotic behaviour as t → ∞ of solutions of non-stationary problems. Russian Mathematical
Surveys, 30(2):1, 1975.

[41] A. Vasy. Resolvent near zero energy on Riemannian scattering (asymptotically conic) spaces. arXiv
preprint arXiv:1808.06123, 2018.

[42] A. Vasy. Limiting absorption principle on Riemannian scattering (asymptotically conic) spaces, a
lagrangian approach. arXiv preprint arXiv:1905.12587, 2019.

[43] A. Vasy. Resolvent near zero energy on Riemannian scattering (asymptotically conic) spaces, a
Lagrangian approach. arXiv preprint arXiv:1905.12809, 2019.

[44] X. P. Wang. Threshold resonance in geometric scattering. Mat. Contemp, 26:135–164, 2004.
[45] X. P. Wang. Asymptotic expansion in time of the schrödinger group on conical manifolds. In Annales

de l’institut Fourier, volume 56, pages 1903–1945, 2006.

School of Mathematics, University of Leeds, Leeds , Yorkshire, LS2 9JT, UK

Email address: a.strohmaier@leeds.ac.uk

University of Groningen, Bernoulli Institute, Nijenborgh 9, 9747 AG Groningen, The

Netherlands

Email address: a.m.s.waters@rug.nl


	1. Introduction and Setting
	1.1. Precise setup and notations
	1.2. Statement of the main theorems
	1.3. Possible generalisations

	2. Stationary scattering theory and the spectral resolution
	3. Expansions near zero
	3.1. Analysis when d is odd 
	3.2. Analysis when d is even
	3.3. Analysis when d=2

	4. General bounds and expansion of the scattering amplitude
	5. Scattering and Cohomology
	6. The Birman-Krein formula and expansions of the spectral shift function
	7. Proofs of the main theorems
	Appendix A. Hahn holomorphic and Hahn meromorphic functions
	Appendix B. Resolvent gluing
	Appendix C. Incoming and outgoing sections
	Appendix D. Multipole expansions
	Appendix E. Spherical Bessel functions
	Acknowledgements
	References

