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ABSTRACT

International Ocean Discovery Program (IODP) Expedition 351 ‘Izu–Bonin–Mariana (IBM) Arc

Origins’ drilled Site U1438, situated in the northwestern region of the Philippine Sea. Here volcani-

clastic sediments and the igneous basement of the proto-IBM volcanic arc were recovered. To gain
a better understanding of the magmatic processes and evolution of the proto-IBM arc, we studied

melt inclusions hosted in fresh igneous minerals and sampled from 30–40 Myr old deposits, reflect-

ing the maturation of arc volcanism following subduction initiation at 52 Ma. We performed a novel

statistical analysis on the major element composition of 237 representative melt inclusions

selected from a previously published dataset, covering the full age range between 30 and 40 Ma. In

addition, we analysed volatiles (H2O, S, F and Cl) and P2O5 by secondary ion mass spectrometry
for a subset of 47 melt inclusions selected from the dataset. Based on statistical analysis of the

major element composition of melt inclusions and by considering their trace and volatile element

compositions, we distinguished five main clusters of melt inclusions, which can be further sepa-

rated into a total of eight subclusters. Among the eight subclusters, we identified three major

magma types: (1) enriched medium-K magmas, which form a tholeiitic trend (30–38 Ma); (2)

enriched medium-K magmas, which form a calc-alkaline trend (30–39 Ma); (3) depleted low-K mag-

mas, which form a calc-alkaline trend (35–40 Ma). We demonstrate the following: (1) the eruption of
depleted low-K calc-alkaline magmas occurred prior to 40 Ma and ceased sharply at 35 Ma; (2) the

eruption of depleted low-K calc-alkaline magmas, enriched medium-K calc-alkaline magmas and

enriched medium-K tholeiitic magmas overlapped between 35 and 38–39 Ma; (3) the eruption of

enriched medium-K tholeiitic and enriched medium-K calc-alkaline magmas became predominant

thereafter at the proto-IBM arc. Identification of three major magma types is distinct from the previ-

ous work, in which enriched medium-K calc-alkaline magmas and depleted low-K calc-alkaline
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magmas were not identified. This indicates the usefulness of our statistical analysis as a powerful

tool to partition a mixture of multivariable geochemical datasets, such as the composition of melt

inclusions in this case. Our data suggest that a depleted mantle source had been replaced by an

enriched mantle source owing to convection beneath the proto-IBM arc from >40 to 35 Ma. Finally,

thermodynamic modelling indicates that the overall geochemical variation of melt inclusions

assigned to each cluster can be broadly reproduced either by crystallization differentiation assum-
ing P¼50 MPa (�2 km deep) and �2 wt% H2O (almost saturated H2O content at 50 MPa) or

P¼ 300 MPa (�15 km deep) and �6 wt% H2O (almost saturated H2O content at 300 MPa). Assuming

oxygen fugacity (fO2) of log fO2 equal to þ1 relative to the nickel–nickel oxide (NNO) buffer best

reproduces the overall geochemical variation of melt inclusions, but assuming more oxidizing con-

ditions (log fO2 ¼ þ1 to þ2 NNO) probably reproduces the geochemical variation of enriched

medium-K and calc-alkaline melt inclusions (30–39 Ma).

Key words: Izu–Bonin–Mariana arc; volatiles; melt inclusion; Amami Sankaku Basin; International
Ocean Discovery Program; statistical analysis

INTRODUCTION

The Izu–Bonin–Mariana (IBM) arc–basin system in the

Western Pacific (Fig. 1) is an ideal setting for studying

subduction initiation and the evolution of arc volcanism

because the age and duration of geological events, tem-

poral changes in magmatic composition, and the pre-

cise seismic structure have been extensively studied

(e.g. Stern & Bloomer, 1992; Taylor, 1992; Arculus et al.,

1995; Stern, 2002, 2004; Stern et al., 2003; Taylor &

Goodliffe, 2004; Hickey-Vargas et al., 2006; Ishizuka

et al., 2006, 2011a, 2011b; Reagan et al., 2008, 2010,

2017, 2019; Straub et al., 2010, 2015). Such studies in-

clude several deep-sea drilling expeditions that focused

on the IBM arc–basin system, including forearc Sites

778–780 (Fryer et al., 1995, and references therein),

Sites 782 and 786 (Pearce et al., 1992a, 1992b; Straub &

Layne, 2003a, 2003b), Sites U1439–U1442 (Reagan

et al., 2017; Shervais et al., 2019), Sites U1491–U1498

(Fryer et al., 2017), rear-arc Sites U1436 and U1437

(Busby et al., 2017), and rear-arc Site 1201 (Savov et al.,

2006). International Ocean Discovery Program (IODP)

Expedition 351 ‘Izu–Bonin–Mariana Arc Origins’ (June–

July 2014) aimed at improving our understanding of

how subduction initiated and how island arcs evolved

thereafter. This expedition drilled Site U1438 (27�23’N,

134�19’E, water depth 4700 m) in the Amami Sankaku

Basin (ASB), situated in the northwestern region of the

Philippine Sea (Fig. 1).

The magmatic evolution of the IBM arc–basin system

can be reconstructed from the geochemistry of melt

inclusions hosted in fresh igneous minerals that are

recovered throughout the sequence of coarse (sand to

gravel) volcaniclastic sediments, because melt inclu-

sions can be protected from surface processes after en-

trapment in their host minerals, if these are chemically

and physically stable. Brandl et al. (2017) have analysed

the major, trace and volatile elements (S and Cl) of 304

melt inclusions hosted in fresh clinopyroxene and

plagioclase grains from well-dated volcaniclastic sedi-

ments of Unit III of the core ranging from 30 Ma

(Rupelian; Lower Oligocene) to 40 Ma (Bartonian;

Middle Eocene) (Fig. 2), and discussed the temporal

evolution of the proto-IBM arc volcanism. They con-

cluded that (1) volcanism of the proto-IBM arc shifted

gradually from calc-alkaline to tholeiitic affinity with

time (30–40 Ma) and (2) such a compositional shift is

linked to both the volcanic productivity and the matur-

ation of an evolving island arc. We will use the terms

‘tholeiitic’ and ‘calc-alkaline’ to refer to rock series or

differentiation trends, including andesite and more sili-

cic rocks, using the SiO2 versus total FeO/MgO diagram

of Miyashiro (1974).

In this study, we applied a statistical analysis of the

published dataset of melt inclusion compositions by

Brandl et al. (2017). Statistical analysis aids in partition-

ing a mixture of multivariable geochemical datasets

and potentially helps us to reconstruct their geological

evolution (e.g. Iwamori et al., 2017). The purpose of this

study is to differentiate a multivariable geochemical

dataset of melt inclusions into several petrogenetically

distinct groups and constrain their origins. The geo-

chemical dataset of melt inclusions by Brandl et al.

(2017) can represent a ‘mixture’ of volcaniclastic sedi-

ments sourced from volcanic centres of the Kyushu–

Palau Ridge (KPR), which is about 100 km east and up-

slope of Site U1438 (Fig. 1). The KPR is the remnant part

of the currently active IBM arc and was active between

25 and 49 Ma (Ishizuka et al., 2011b, 2018). In addition,

we analysed a subset of 47 carefully selected melt inclu-

sions for their volatiles (H2O, S, F and Cl) and P2O5 con-

tent using secondary ion mass spectrometry (SIMS) to

extend the dataset of Brandl et al. (2017) and better con-

strain the temporal evolution of the proto-IBM arc vol-

canism from 30 to 40 Ma.

LITHOSTRATIGRAPHY OF SITE U1438

The IBM arc is an intra-oceanic convergent margin sys-

tem that extends approximately 2500 km south of

Honshu, Japan (Fig. 1). Volcanism of the proto-IBM arc

began in the middle Eocene (52 Ma; Ishizuka et al.,
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2018) with the onset of subduction of the Mesozoic

(120–130 Ma; Nakanishi et al., 1992) Pacific Plate be-

neath the Philippine Sea Plate. The volcanism of proto-

arc basalts (48–52 Ma; Reagan et al., 2008, 2010;

Ishizuka et al., 2011a, 2014a, 2018), which formed the at

least 250 km wide pre-arc igneous basement under an

extensional stress field (Arculus et al., 2015a; Reagan

et al., 2017), was followed by boninitic volcanism during

the middle Eocene (44–48 Ma; Ishizuka et al., 2006,

2011a, 2018; Reagan et al., 2010, 2019; Kanayama et al.,

2012, 2014; Umino et al., 2015). Boninitic volcanism

ceased at 44 Ma and was followed by coeval eruptions

of arc tholeiitic and calc-alkaline magmas (Ishizuka

et al., 2006; Kanayama et al., 2014). The proto-Izu–Bonin

arc experienced a quiescence of volcanism at 20–23 Ma,

which coincides with the period of arc rifting and open-

ing of the Shikoku and Parece Vela backarc basins (e.g.

Stern, 2004).

Gravity flows repeatedly transported material from

arc volcanic complexes of the KPR to Site U1438 in the

ASB and were probably triggered by large-volume vol-

canic eruptions and/or flank collapses (Johnson et al.,

2017). Whereas proto-arc basalts (48–52 Ma), boninites

(44–48 Ma) and subsequent volcanic rocks representing

the initial stages of arc volcanism are exposed in the

forearc region of the currently active IBM arc (e.g.

Ishizuka et al., 2006, 2011a, 2018; Reagan et al., 2010,

2019; Straub et al., 2010; Kanayama et al., 2012), few cor-

responding geological units have been recovered at the

rear-arc side to date. Ishizuka et al. (2011b) systematical-

ly sampled submarine volcanic rocks along the KPR via

dredging; however, their 40Ar/39Ar ages covered only the

youngest stages of the KPR volcanism (25–28 Ma;

Ishizuka et al., 2011b; see also Straub et al., 2010), when

magmatic activity of the proto-IBM arc ceased through

arc rifting and backarc spreading (e.g. Stern, 2004).

Studies using drill cores from Site 1201, located at the

rear-arc side of the KPR and about 900 km south of Site

U1438, found clues to the magmatic history of the proto-

IBM arc from the Eocene to the Oligocene (30–35 Ma;

Savov et al., 2006). Thus, the drill cores from Site U1438

were expected to complement our knowledge of the

magmatic history of the proto-IBM rear-arc between the

formation of proto-arc basalts (48–52 Ma) and the cessa-

tion of arc volcanism along the KPR (25–28 Ma) (Straub

et al., 2010; Ishizuka et al., 2011b).
The recovered 1611 m long core at Site U1438 is

composed of a 1461 m thick sedimentary section and

Fig. 1. Bathymetric map of the Izu–Bonin–Mariana arc–basin system in the Western Pacific, showing the location of the Amami
Sankaku Basin and the Kyushu–Palau Ridge (after Arculus et al., 2015a, 2015b). Blue is deeper seafloor and red is shallower sea-
floor. The location of IODP Site U1438 is marked by a star.
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150 m of igneous basement rocks. The good recovery

(76 %) of the sedimentary section allowed us to recon-

struct the magmatic history of the proto-IBM arc in de-

tail (Brandl et al., 2017; Johnson et al., 2017). The

sedimentary section is subdivided into four units based

on lithology (Fig. 2; Arculus et al., 2015a, 2015b). The

uppermost sedimentary Unit I (160�3 m thick) is

Holocene to late Oligocene in age and thus postdates

rifting of the proto-IBM arc. It is composed of hemipela-

gic fine-grained sediments interbedded with discrete

ash layers probably derived from explosive eruptions

along the nearby Ryukyu and Kyushu arcs (e.g. Kimura

et al., 2015). Unit II (139�4 m thick) is Oligocene in age

and is composed of turbidites (silt–very fine sand). Unit

III (1046�4 m thick) is Oligocene to Eocene in age and is

composed of coarser-grained turbidites (medium to

very coarse sand to gravel) relative to Unit II. Unit IV

(99�7 m thick) is composed of siliceous pelagic sedi-

ments interbedded with tuffaceous sand and volumet-

rically minor intrusive rocks that possibly reflect the
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Fig. 2. Summary of the lithostratigraphy of Hole U1438 and sampling depths. mbsf, meters below seafloor; cl, clay (<2�8 mm, dark
brown); si, silt (2�8–2�4 mm, brown); vfs-fs, very fine sand–fine sand (2�4–2�2 mm, light brown); ms-vcs, medium sand–very coarse
sand (2�2–21 mm, light gray); gr, gravel (>21 mm, dark gray) (after Arculus et al., 2015a; Brandl et al., 2017). Total of 237 melt inclu-
sions from 48 core locations (blue filled circles) were analysed in this study. Ages of sedimentary units are based on the age–depth
model of Brandl et al. (2017), which uses shipboard micropaleontological and paleomagnetic studies (Arculus et al., 2015a, 2015b).
The age range of oceanic igneous crust (46�8–49�3 Ma; weighted mean 48�7 Ma) was determined by Ishizuka et al. (2018).
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slow onset of arc volcanism. The age of Unit IV is 42–

49 Ma (Fig. 2), overlapping the age of boninitic volcan-

ism at the IBM arc (44–48 Ma). The deposition age of

volcaniclastic sediments is based on the age–depth

model of Brandl et al. (2017), which is consistent with

the U–Pb geochronology (Barth et al., 2017) and the

shipboard chronostratigraphy (Arculus et al., 2015a,
2015b). Most of the sedimentary units thicken east-

wards (Arculus et al., 2015b), indicating that volcaniclas-

tic sediments are sourced from the KPR at the eastern

boundary of the ASB (Fig. 1). The drilled interval of the

igneous basement rock Unit 1 is 150 m thick with 29 %

recovery. The geochemistry of the igneous basement

rocks of the ASB (Arculus et al., 2015a; Hickey-Vargas

et al., 2018; Yogodzinski et al., 2018) and their age (46�8–
49�3 Ma; Ishizuka et al., 2018) are similar to those of

proto-arc basalts of the forearc region of the IBM arc

dated at 50–52 Ma (Reagan et al., 2008, 2010; Ishizuka

et al., 2011a, 2014a).

ANALYSIS OF VOLATILES IN MELT INCLUSIONS

Samples
The 2–4 cm long half-core sections of volcaniclastic

sediments were electrically fragmented using the

‘Selfrag Lab’ at the Japan Agency for Marine-Earth

Science and Technology (JAMSTEC). Fresh silicate min-

erals containing glassy melt inclusions were hand-

picked from the fragmented samples under a binocular

microscope, mounted on epoxy resin and polished until

the melt inclusions were exposed on the surface.
Clinopyroxene and plagioclase were the predominant

minerals hosting melt inclusions. Orthopyroxene,

quartz and amphibole also hosted limited melt inclu-

sions. The shipboard X-ray diffraction analysis (Arculus

et al., 2015b) indicated the presence of quartz being

restricted to the deeper levels of Unit III [>1120 mbsf (m

below sea floor)]. Olivine was not recovered from any

samples of Unit III (Brandl et al., 2017).
Representative back-scattered electron (BSE) images

of melt inclusions are shown in Fig. 3a–c. Plagioclase-

hosted melt inclusions (<50 lm in diameter) are usually

rounded (Fig. 3a). Most of the clinopyroxene-hosted

melt inclusions (<100 lm in diameter) are either

rounded (Fig. 3b) or slightly angular (Fig. 3c). Shrinkage

bubbles are observed in some clinopyroxene-hosted

melt inclusions (Fig. 3c). Typically, post-entrapment

overgrowth of the host minerals inside the melt inclu-
sions was not identifiable. All analysed melt inclusions

are glassy, suggesting that they were rapidly quenched

after eruption. We did not analyse altered melt inclu-

sions or melt inclusions with observed daughter miner-

als. In addition to glass as melt inclusions, tiny minerals

(<100 lm long) are sometimes trapped as inclusions.

For example, Fig. 3d is a BSE image of apatite and Fe–Ti

oxide inclusions hosted by clinopyroxene.
We checked the apparent Fe–Mg partitioning be-

tween clinopyroxene host and coexisting melt inclu-

sions to ensure that the composition of clinopyroxene-

hosted melt inclusions represents the original melt

compositions before entrapment. In this study, we

excluded 67 clinopyroxene-hosted melt inclusions for

which KD(Fe–Mg)cpx–melt � 0�2 from the dataset of 304

melt inclusions reported by Brandl et al. (2017). We

assumed that melt inclusions for which KD(Fe–Mg)cpx–

melt � 0�2 are in disequilibrium with host clinopyroxene

[KD(Fe–Mg)cpx–melt is 0�28 6 0�08; Putirka, 2008] and do

not represent original melt compositions, owing to

post-entrapment overgrowth of host clinopyroxene and

significant compositional modification of melt inclu-

sions. This results in a total of 237 melt inclusions used

for this study (Supplementary Data Table S1; supple-

mentary data are available for downloading at http://

www.petrology.oxfordjournals.org).

Analytical methods
We carefully selected a subset of 47 representative melt

inclusions (42 clinopyroxene-hosted and five

plagioclase-hosted melt inclusions) from the dataset of

Brandl et al. (2017), and then analysed them for their

volatiles (H2O, S, F and Cl) and P2O5 content using

SIMS. We used the Cameca IMS-1280HR at the Kochi

Institute for Core Sample Research of JAMSTEC. Our

samples (wafer containing one-side intersected melt

inclusions) were originally mounted in epoxy, polished,

and then carbon-coated for major element analyses by

electron probe microanalysis (EPMA; Brandl et al.,

2017). Prior to the analysis with SIMS, we removed the

carbon coatings and mounted the samples in indium

metal. The samples were cleaned using acetone and

distilled water in an ultrasonic bath, and then were

dried in a high-vacuum oven (10�7 torr) at 90 �C for sev-

eral days (>48 h). After drying, the samples were coated

with Au to avoid charge build-up during the SIMS anal-

yses. Samples were then stored in the airlock chamber

of the SIMS system at <10�8 torr for >48 h to improve

vacuum conditions before starting the analytical ses-

sion (Shimizu et al., 2017). The analyses were carried

out with an �15 lm defocused Csþ ion beam and an ion

potential of 20 kV (10 kV at the ion source and 10 kV at

the sample surface). A normal-incidence electron gun

was used for charge compensation of the sample sur-

face. Secondary ions (16OH�, 19F�, 30Si�, 31P�, 32S�, and
35Cl�) were accelerated by �10 kV and were detected by

an axial electron multiplier using a magnetic peak-

switching method. The mass-resolving power was set

to �6000. Further details of the analytical conditions

and results for a suite of basaltic reference glasses have

been presented by Shimizu et al. (2017). The volatile

element content of the basaltic reference glasses (vol-

0B, vol-005B, vol-05A, vol-1B, vol-3A, EPR-G3, IND-G1,

FJ-G2, MRN-G1, MA42, BCR-2G, BIR-1G and BHVO-1G)

is in the range of 0–4�8 wt% for H2O, 8–1018 ppm for F,

12–2833 ppm for Cl, 0–1372 ppm for S, and 0�027–

0�370 wt% for P2O5. An internal reference glass EPR-G3

was mounted together with the samples in each indium

mount to monitor for potential instrumental drift and
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check the reproducibility of the analytical results. We

excluded CO2 analyses because of the potential con-

tamination of carbon resulting from the prior carbon

coating for analyses with EPMA (e.g. Shimizu et al.,

2009).
The matrix effects of SIMS on volatile element con-

tent should be considered because we used basaltic ref-

erence glasses and analysed melt inclusions ranging

widely from basaltic to rhyolitic compositions. The H2O

content of silicic melt inclusions analysed with SIMS is

expected to be lower than the true H2O content because

of the matrix effects, whereas the S, F and Cl content is

not affected (e.g. Hauri et al., 2002; Druitt et al., 2016).

Thus, we additionally analysed the H2O content of six

silicic (dacitic and rhyolitic) melt inclusions using a

Fourier transform infrared (FTIR) spectrometer at

JAMSTEC. Details of additional analyses and results are

described in the Supplementary Appendix.

Results of the volatile element analyses of melt

inclusions
The results of the volatile element analyses combined

with the results of the major and trace element analyses

of Brandl et al. (2017) are summarized in

Supplementary Data Table S1. The average values of

2r deviation of the SIMS analyses are 100 ppm for H2O,

2 ppm for F, 4 ppm for Cl, 14 ppm for S and 30 ppm for

P2O5 based on repeated analyses of EPR-G3 reference

glass (Shimizu et al., 2017, 2019). Among the elements

analysed with SIMS in this study, P2O5, Cl and S have

already been analysed with EPMA and the results have

been published by Brandl et al. (2017). We used analyt-

ical data of these elements acquired either by SIMS or

EPMA in this study. We used P2O5 content analysed

with SIMS, because the analytical uncertainty of P2O5

with SIMS (2r¼ 30 ppm) is much smaller than that with

EPMA (2r¼ 0�1 wt%). We used Cl content (<6000 ppm)

analysed with SIMS, because the analytical uncertainty

of Cl with SIMS (2r¼ 4 ppm) is much smaller than that

with EPMA (2r¼ 200 ppm). However, we consider the

analytical results with EPMA to be more reliable for

high-Cl melt inclusions (>8000 ppm), because the refer-

ence glasses for SIMS analysis have a range of Cl con-

tent from 12 to 2833 ppm, thus extrapolating the

calibration line of Cl toward >8000 ppm may not be rea-

sonable. We used the S content determined with SIMS

if analytical data for both methods were available, be-

cause (1) the analytical uncertainty of S with SIMS

(2r¼14 ppm) is much smaller than that with EPMA

(2r¼200 ppm) and (2) the wavelength of the SKa X-ray

changes as a function of the oxidation state of S, which

can result in underestimation of the S content when

Ap

Ap Ap

Ap

Ap

Fe-Ti oxide

Ap
CPX (host)

(b)

(c)

(d)

CPX (host)

CPX (host)CPX (host)

Plagioclase (host)Plagioclase (host)

(a) E20R6-1 (host mineral ID: 103)

D27R3B-min3 (host mineral ID: 37) Core sample U1438E-50R

D21R1-21-1 (host mineral ID: 20)

Fig. 3. Backscattered electron images of melt inclusions and their host minerals. Host mineral IDs of (a)–(c) are listed in
Supplementary Data Tables S1 and S2. (a) Plagioclase hosting melt inclusions (sample D21R1-21-1, host mineral ID: 20). (b)
Clinopyroxene hosting rounded melt inclusions (sample D27R3B-min3, host mineral ID: 37). (c) Clinopyroxene hosting slightly an-
gular melt inclusions. Shrinkage bubbles are observed in melt inclusions indicated by white arrows (sample E20R6-1, host mineral
ID: 103). (d) Clinopyroxene hosting apatite inclusions (sample U1438E-50R, �40 Ma).
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using EPMA. Further details on comparison of P2O5, Cl

and S content analysed by both methods are described

in Supplementary Appendix, Fig. S1. Regarding the

H2O content of six silicic melt inclusions, analytical

results with FTIR were higher than those with SIMS be-

cause of the matrix effect. The differences in analytical

results between the two methods are systematically

larger with increasing SiO2 (Supplementary Appendix,

Fig. S2). In this study, we used the H2O data analysed

with FTIR for these six silicic melt inclusions. Further

details are described in Supplementary Appendix.

Analytical data of volatile elements of melt inclusions

are summarized in Fig. 4, where they are plotted against

the deposition age. The analyses cover a wide range of

volatile element content. For example, H2O ranges from

1�4 to 6�9 wt% (Fig. 4a) and S ranges from �10 to

3000 ppm (Fig. 4b). Generally, the upper limit of volatile

element content, excluding three high-Cl melt inclu-

sions (>8000 ppm; Fig. 4d), increases with decreasing

age, along with that of incompatible element oxides

such as P2O5 (Fig. 4e). The H2O content decreases from

basalt to andesite, but increases again with increasing

SiO2 toward rhyolitic composition (Fig. 5a). Sulphur

content monotonously decreases with increasing SiO2

(Fig. 4b) and shows a broad correlation with FeOt, which

is total iron oxides (FeO þ Fe2O3, Fig. 5c). Fluorine con-

tent correlates with K2O (�1�5 wt%; Fig. 5d). Chlorine

also correlates with K2O, except for high-Cl melt inclu-

sions (>8000 ppm; Fig. 5e). Fluorine and phosphorus

have a similar incompatibility during melting and crys-

tallization; therefore, the F/P ratio of melt inclusions can

reflect that of the mantle source (Saal et al., 2002). The

F/P ratio in elemental weight is relatively constant (0�3–

0�8) at SiO2 �60 wt% and increases to as much as 4�4 at

SiO2 � 70 wt% at younger ages (Figs 4f and 5f).

STATISTICAL ANALYSIS OF MELT INCLUSION
COMPOSITIONS

Methods
Volcaniclastic sediments can be sourced from multiple

volcanic centres in the upslope vicinity of Site U1438.

Thus, melt inclusion compositions may represent a

mixture of volcaniclastic sediments sourced from mul-

tiple vent sites, possibly not only from the KPR but, de-

pending on the plate configuration, also from the

frontal arc section of the proto-IBM arc. In addition, they

could include volcaniclastic material from primary erup-

tions and reworked sediments.

The statistical analysis of multivariable datasets of

such a mixture of materials is thus a useful approach

and may help to reconstruct their geological evolution.

Statistical approaches commonly used in petrology

and geochemistry include principal component ana-

lysis (PCA) (e.g. Zindler et al., 1982; Allègre et al., 1987;

Hart et al., 1992; Stracke, 2012; Ueki & Iwamori, 2017),

factor analysis (White & Duncan, 1996), independent

component analysis (Iwamori & Albarède, 2008;

Iwamori & Nakamura, 2012, 2015; Yasukawa et al.,

2016), K-means cluster analysis (KCA) (e.g. Temple

et al., 2008; Brandmeier & Wörner, 2016), and imple-

mentation of machine learning techniques (e.g.

Kuwatani et al., 2014; Petrelli & Perugini, 2016; Ueki

et al., 2018). Iwamori et al. (2017) demonstrated that
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the structure of a multivariable dataset is best resolved

when (1) PCA is applied to the dataset and (2) the

eigenvalue normalized-PC scores (which are called

‘whitened data’) are partitioned by KCA. PCA is com-

monly used for effectively specifying the uncorrelated

base vectors that account for the variance. KCA is also

a common statistical method used to partition the

multivariate dataset into an assigned number of clus-

ters K, in which the total distance between the mean of

a cluster and the individual data points in the cluster is

minimized (e.g. MacQueen, 1967, and references

therein).

In this study, we applied PCA and KCA to the major

element compositions (10 elements) of 237 melt inclu-

sions, following the procedures of Iwamori et al. (2017).

We did not include S and Cl content into our dataset to

perform statistical analysis because (1) some melt inclu-

sions are devoid of S and Cl content (Table S2 of Brandl

et al., 2017) and (2) volatile elements are subject to

degassing. First, the raw geochemical data of the 237
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melt inclusions, on which is imposed a constant-sum

(normalized to 100 wt%) constraint, were transformed

into logarithmic space by performing centred log-ratio

transformation (e.g. Aitchison, 1982, 1984, 1986). Then,

the data were processed by primary standardization

using the mean and standard deviation.

Next, ‘whitening’ (division of PC scores by the square

root of the eigenvalues) was applied to the dataset to

decorrelate the variables. Based on the eigenvalues and

eigenvectors, a minimum number of variables that ac-

count for a sufficiently large proportion (i.e. �90 %) of

the sample variance was chosen. The number of eigen-

vectors that individually account for �5 % of the vari-

ance for the dataset of 237 melt inclusions is five

(Fig. 6a). In addition, the cumulative contribution of the

first five eigenvectors accounts for �90 % of the vari-

ance (Fig. 6b), which suggests that the number of varia-

bles can be reduced from 10 (number of elements) to

five or slightly more eigenvectors (Iwamori et al., 2017).

Then, we performed KCA on the pre-processed data

from 100 random and different initial conditions by

varying K from four to 12 and varying the number of in-

dependent components (nic) from three to eight. We fi-

nally found that the geochemical dataset of melt

inclusions consists of essentially five clusters with five

independent components (K¼5 and nic¼ 5). Results of

statistical analysis of the 237 melt inclusions by KCA,

including their principal components and independent

components, are given in Supplementary Data

Table S2.

Results of statistical analyses
The results of KCA are summarized in oxide variation

diagrams (Fig. 7). Further details of the results are sum-

marized in Supplementary Appendix, Figs S3 and S4.

Downhole distributions of melt inclusions assigned to

each cluster are summarized in Fig. 8. Cluster 1 melt

inclusions (n¼ 84) are medium-K mafic melts that form

a tholeiitic differentiation trend (Fig. 7e and g) and occur

from 38 to 30 Ma (Fig. 8a). They are characterized by

higher TiO2, suggesting that they represent melts from

a fertile mantle source. Cluster 2 melt inclusions (n¼ 61)

form a calc-alkaline differentiation trend (Fig. 7d) and

can be separated further into two subclusters in terms

of K2O (Fig. 7g): Cluster 2a melt inclusions (n¼ 2) are

high-K melts and Cluster 2b melt inclusions (n¼ 59) are

medium-K melts. Cluster 2a melt inclusions only occur

at �30 Ma, whereas Cluster 2b melt inclusions occur at

the full range from 30 to 40 Ma (Fig. 8). Cluster 3 melt

inclusions (n¼ 67) are low-K melts that form a calc-

alkaline differentiation trend (Fig. 7d and g). They can

be further separated into two subclusters: Cluster 3a

melt inclusions (n¼2) are characterized by higher Al2O3

(Fig. 7b) and lower MgO (Fig. 7e) at given SiO2 than

Cluster 3b melt inclusions (n¼65). Clusters 3a and 3b

can also be distinguished in terms of their ages; the for-

mer occur at �30 Ma, whereas the latter occur from 35

to 40 Ma (Fig. 8). Cluster 4 melt inclusions (n¼ 22) are

dacitic and rhyolitic melts that form a calc-alkaline

trend. They can be separated further into two subclus-

ters: the Cluster 4a melt inclusion (n¼ 1) is distin-

guished in terms of lower Al2O3 (Fig. 7b), higher FeOt

(Fig. 7c) and lower K2O (Fig. 7g) than Cluster 4b melt

inclusions (n¼ 21) at given SiO2. Clusters 4a and 4b can

also be distinguished in terms of their ages; the former

occur at �37 Ma, whereas the latter occur at �30 Ma

(Fig. 8). Cluster 5 melt inclusions (n¼ 3) are character-

ized by low P2O5 (�0 wt%; Supplementary Appendix

Fig. S4j and Supplementary Data Table S1).

Twenty-five whole-rock core samples contain melt

inclusions assigned to more than one cluster (Fig. 8a),

suggesting that the whole-rock core samples are in fact

mixtures of volcaniclastic sediments from different vol-

canic series. Such volcaniclastic sediments might have

been mixed during long-distance transport by gravity

flow and deposited around Site U1438. The 237 melt

inclusions included in this study are hosted in 145 indi-

vidual host minerals. In the case where two or more

melt inclusions are hosted in a single host mineral,

these melt inclusions usually fall into an identical
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cluster. However, we found 11 exceptional clinopyrox-

ene minerals hosting two or more melt inclusions that

are assigned to different clusters (Fig. 8b and Table 1).

Most of these cases can be explained by heterogeneity

of the host minerals. For example, three host clinopyr-

oxene minerals (D19R3B-min1, D55R3A-min2 and

D31R6-min5) are zoned, and the melt inclusions located

in the different zones are assigned to different clusters

(Fig. 9a–c). However, the case of the clinopyroxene

D55R3B-min3 (Fig. 9d) is more complicated: a low-Fe

zone is surrounded by a middle- to high-Fe zone and

the melt inclusions are located around the low-Fe zone.

Melt inclusions #2, #3 and #4 (Cluster 1) are hosted by

high-Fe clinopyroxene and melt inclusions #5 and #6

(Cluster 2b) are hosted by middle-Fe clinopyroxene, al-

though the compositional zoning from the middle- to

high-Fe zone is gradual. Melt inclusions hosted by this

clinopyroxene (D55R3B-min3) are characterized by

high Cl content of up to �10 000 ppm (Figs 4d and 5e).

The origin of these high-Cl melt inclusions will be
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discussed below. In another case, two melt

inclusions, which are assigned to different clusters, are

hosted in a homogeneous clinopyroxene mineral

(D27R3B-min4; Fig. 9e). This shows that heterogeneity

of the host minerals is not the sole explanation for melt

heterogeneity.

The temporal evolution of the melt as reflected by

SiO2, TiO2, Al2O3, FeOt, MgO, CaO and K2O content is

shown in Fig. 10 and interpreted in Fig. 11. It is import-

ant to note that the ages of the first appearance of

Clusters 1 (38 Ma), 2b (39 Ma) and 3b (40 Ma) are signifi-

cantly different, although the data are sparse for this

time period (38–40 Ma).

Characteristics of volatile elements in each

cluster
The results of the volatile element analyses of melt

inclusions, combined with the results of KCA, are pre-

sented in Fig. 12. Analytical data of volatile elements

are available for Cluster 1, 2b, 3b and 4b melt inclu-

sions. We distinguished two coeval subgroups in

Cluster 3b melt inclusions: a low-H2O subgroup and a

high-H2O subgroup (Figs 11 and 12). Both subgroups

represent magmas that erupted simultaneously in the

period from 40 to 35 Ma. Some Cluster 1 and 3b (high-

H2O subgroup) melt inclusions (such as D20R4B-min2-

mi1 and D27R3B-min4-mi2) contain 6–7 wt% H2O, which

is the maximum range of H2O content of melt inclusions

reported from island arcs (e.g. Plank et al., 2013; 2–

6 wt%). Generally, the H2O content of melt inclusions

decreases from 50 to 60 wt% SiO2 but increases again

from 60 to 70 wt% SiO2 (Fig. 12a). In terms of sulphur

content, systematic differences are observed among

the four clusters. Some Cluster 1 melt inclusions

enriched in H2O are also enriched in sulphur, and the

maximum sulphur content of Cluster 1, 2b, 3b and 4

melt inclusions is �3000 ppm (D27R3B-min4-mi2),

�760 ppm, �1200 ppm and �260 ppm, respectively

(Fig. 12b and c). The sulphur content decreases mono-

tonically with increasing SiO2 (Fig. 12b).

The F content linearly correlates with K2O

(�1�5 wt%), except for the Cluster 4b melt inclusions

when K2O � 1�5 wt% (Fig. 12d). The Cl content also posi-

tively correlates with K2O, except for three high-Cl (up

to �10 000 ppm) melt inclusions (D55R3B-min3-mi2,

D55R3B-min3-mi3 and D55R3B-min3-mi5), all of which

are hosted in a single clinopyroxene D55R3b-min3 (Figs

9d and 12e). The F and Cl content of Cluster 3b melt

inclusions is lower than that of the other clusters

(Fig. 12d and e). The deviation of the F/P ratio is relative-

ly small (0�3–0�8) at SiO2 � 60 wt% (Clusters 1, 2b and
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3b), which reflects that of the mantle source (Saal et al.,

2002). The differences in the F/P ratio (0�3–0�8) are due

to the differences in P2O5 content of the melt inclusions;

higher F/P ratios (�0�8) correspond to low P2O5 (around

0�1 wt%) and lower F/P ratios (�0�3) correspond to high

P2O5 (0�2–0�3 wt%) (Fig. 12f). The F/P ratio significantly

increases from one to five at SiO2 � 70 wt% (Cluster 4b;

Fig. 12f).

Characteristics of trace elements in each cluster
Brandl et al. (2017) analysed the trace element composi-

tions of selected melt inclusions by laser ablation

inductively coupled plasma mass spectrometry (LA-ICP-

MS; Supplementary Data Table S1). Trace element pat-

terns of 34 selected melt inclusions, assigned to

Clusters 1, 2b, 3b, 4a and 4b, are normalized to the

depleted mid-ocean ridge basalt (MORB) mantle (DMM;

Workman & Hart, 2005) and presented in Fig. 13a–d.

Trace element compositions of melt inclusions

assigned to other clusters are not available in this study.

Figure 13a–d also indicates the compositional ranges of

selected trace element ratios (La/Yb, Nb/Zr and Zr/Yb

ratios) of melt inclusions. Trace element patterns of arc

tholeiitic and calc-alkaline series rocks (40–45 Ma;

Kanayama et al., 2014) and boninites (44–48 Ma; Umino

et al., 2015) from the Ogasawara (Bonin) islands, an

uplifted segment of the proto-IBM forearc, are also

shown for comparison (Fig. 13e–g). It is important to

note, however, that the latter suites from the frontal

proto-IBM arc volcanoes (40–48 Ma; Kanayama et al.,

2014; Umino et al., 2015) may not be directly compar-

able with our rear-arc melt inclusions (30–40 Ma).
The trace element patterns of Cluster 1 and 2b melt

inclusions (Fig. 13a and b) overlap as a whole, with a

(b)

(d)(a)

(c)

(e)

2 (Cluster 1)

1 (Cluster 2b)

1

2

D19R3B-min1 (host mineral ID: 16)

D55R3A-min2 (host mineral ID: 53)

E31R6-min5 (host mineral ID: 129)

D55R3B-min3 (host mineral ID: 60)

D27R3B-min4 (host mineral ID: 38)

2

1 (Cluster 3b)

2 3
 (Cluster 2b)

2 3 (Cluster 3b)

4(Cluster 2b)

2 (Cluster 1) 

3 (Cluster 1) 4 (Cluster 1) 

5 

6 
(Cluster 2b) 

(Cluster 3a) 

(Cluster 1) 

(Cluster 2b) 

Low-FeLow-Fe
zonezone

High-FeHigh-Fe

Middle-FeMiddle-Fe

Fig. 9. (a–e) Representative back-scattered electron images of host clinopyroxene minerals and melt inclusions, where melt inclu-
sions are assigned to different clusters in a host mineral. Host mineral ID is listed in Table 1 and Supplementary Data Tables S1 and
S2. (See main text for a detailed description.)

12 Journal of Petrology, 2020, Vol. 0, No. 0

D
ow

nloaded from
 https://academ

ic.oup.com
/petrology/advance-article-abstract/doi/10.1093/petrology/egaa022/5740005 by guest on 19 M

ay 2020

https://academic.oup.com/petrology/article-lookup/doi/10.1093/petrology/egaa022#supplementary-data
https://academic.oup.com/petrology/article-lookup/doi/10.1093/petrology/egaa022#supplementary-data
https://academic.oup.com/petrology/article-lookup/doi/10.1093/petrology/egaa022#supplementary-data
https://academic.oup.com/petrology/article-lookup/doi/10.1093/petrology/egaa022#supplementary-data
https://academic.oup.com/petrology/article-lookup/doi/10.1093/petrology/egaa022#supplementary-data


Table 1: Pairs of melt inclusions hosted in a single clinopyroxene but assigned to different clusters

Host mineral: 10 16 20 38

Melt inclusion: U1438D-
18R2W-I7

U1438D-
18R2W-I8

D-19R3B-
min1-mi1

D-19R3B-
min1-mi2

D21R1-
21-1-I1

D21R1-
21-1-I2

D27R3B-
min4-mi1

D27R3B-
min4-mi2

Cluster: 2a 1 2b 1 1 2b 3a 1

SiO2 53�2 53�1 54�2 53�0 51�7 49�8 48�5 49�1
TiO2 0�92 1�22 1�14 1�23 1�36 0�95 0�84 0�88
Al2O3 17�4 15�1 14�5 13�9 16�8 16�9 17�0 17�2
FeOt 7�08 10�4 11�0 11�9 8�86 9�17 8�0 8�6
MnO 0�14 0�16 0�23 0�24 0�18 0�19 0�16 0�22
MgO 4�60 5�49 4�63 5�01 4�15 4�56 4�17 4�06
CaO 8�55 8�89 7�82 8�47 8�32 8�50 8�55 7�51
Na2O 3�53 2�98 2�97 2�43 3�44 3�89 2�52 2�52
K2O 2�30 0�67 1�16 0�59 0�77 0�78 0�45 0�53
P2O5 0�56 0�17 0�33 0�14 0�25 0�20 0�15 0�16
Total 98�24 98�15 97�90 97�01 95�90 94�92 90�26 90�76

Host mineral: 52 53

Melt inclusion: D55R3-4-I1 D55R3-4-I2 D55R3-4-I3 D55R3A-min2-mi1 D55R3A-min2-mi2 D55R3A-min2-mi3
Cluster: 2b 1 1 3b 2b 2b

SiO2 60�7 61�4 57�4 52�3 55�2 54�2
TiO2 1�02 1�24 1�43 0�84 0�67 0�89
Al2O3 13�8 12�1 13�3 14�3 15�3 14�6
FeOt 8�9 9�7 10�8 9�98 7�76 9�1
MnO 0�24 0�23 0�22 0�26 0�14 0�15
MgO 3�01 2�80 3�84 5�93 4�80 5�18
CaO 6�72 6�22 7�18 9�31 8�39 8�54
Na2O 3�27 2�93 3�12 2�29 3�29 3�15
K2O 1�43 1�84 1�18 0�39 0�75 0�58
P2O5 0�09 0�18 0�32 0�09 0�16 0�10
Total 99�13 98�64 98�69 95�70 96�46 96�48

Host mineral: 56 60

Melt inclusion: D55R3A-
min7-mi1

D55R3A-
min7-mi2

D55R3A-
min7-mi3

D55R3A-
min7-mi4

D55R3B-
min3-mi2

D55R3B-
min3-mi3

D55R3B-
min3-mi4

D55R3B-
min3-mi5

D55R3B-
min3-mi6

Cluster: 2b 1 1 3b 1 1 1 2b 2b

SiO2 52�8 51�6 51�8 51�1 52�6 54�4 51�3 55�6 55�8
TiO2 0�94 0�93 0�91 0�84 1�12 1�01 1�07 0�80 0�78
Al2O3 14�2 13�8 13�1 14�0 14�4 14�7 13�4 14�3 15�7
FeOt 8�86 10�5 11�9 10�4 10�91 9�26 11�5 8�87 8�17
MnO 0�16 0�18 0�24 0�21 0�17 0�19 0�18 0�21 0�17
MgO 5�53 5�68 5�98 5�92 4�11 3�91 4�29 3�75 3�70
CaO 9�20 9�62 9�27 10�05 8�13 7�88 8�53 7�65 7�82
Na2O 2�77 2�66 2�46 2�45 3�06 2�99 2�91 3�10 3�18
K2O 0�53 0�39 0�37 0�32 0�58 0�63 0�63 0�78 0�62
P2O5 0�12 0�08 0�07 0�09 0�12 0�10 0�11 0�14 0�11
Total 95�14 95�43 96�04 95�32 95�22 95�08 93�93 95�19 96�10

Host mineral: 107 122 129

Melt inclusion: U1438E-
22R6W-I3

U1438E-
22R6W-I4

U1438E-
22R6W-I5

U1438E-
27R5W56-I10

U1438E-
27R5W56-I11

E31R6-
5-mi2

E31R6-
5-mi3

E31R6-
5-mi4

Cluster: 3b 3b 5 2b 1 3b 3b 2b

SiO2 54�6 56�1 54�6 50�7 50�6 53�5 52�6 53�7
TiO2 0�67 0�50 0�70 1�09 1�09 0�65 0�59 0�68
Al2O3 15�0 15�5 14�9 14�7 14�7 14�6 15�1 14�5
FeOt 9�01 7�57 9�2 10�04 10�27 9�25 9�18 7�10
MnO 0�16 0�15 0�18 0�15 0�20 0�17 0�16 0�17
MgO 6�13 5�95 5�81 6�83 7�06 4�97 5�18 4�51
CaO 10�4 10�7 10�56 10�48 10�38 9�11 9�43 9�06
Na2O 2�32 2�36 2�30 2�55 2�36 1�58 1�45 2�01
K2O 0�32 0�36 0�30 0�56 0�50 0�47 0�37 0�56
P2O5 0�02 0�04 0 0�12 0�25 0�12 0�08 0�10
Total 98�61 99�26 98�52 97�26 97�41 94�40 94�18 92�45
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few exceptions [U1438E-13R2W-I1 (Fig. 13a) and

U1438D-15R1W-I3 (Fig. 13b)]. Some Cluster 1 melt

inclusions are characterized by depletion of the high
field strength elements (HFSE) such as Zr and Hf

(Fig. 13a). In contrast, Cluster 2b melt inclusions show

no obvious depletions of HFSE. An andesitic Cluster 2b

melt inclusion (U1438D-15R1W-I3) shows a different

trace element pattern from others in the same cluster,

which are either basalt or basaltic andesite (Fig. 13b).

The trace element patterns of Cluster 1 melt inclusions
(30–38 Ma) and Cluster 2b melt inclusions (30–39 Ma)

are similar but not comparable with those of the tholeiit-

ic and calc-alkaline series rocks of the Ogasawara

(Bonin) islands (40–45 Ma; Kanayama et al., 2014),
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respectively (Fig. 13d and e). The trace element patterns

of Cluster 3b and 4a melt inclusions are almost identical

(Fig. 13c). Combined with major element composition,

Cluster 4a lies on the trend of Cluster 3b in SiO2–K2O

space (Fig. 7g). This observation indicates that melt

inclusions assigned to Clusters 3b and 4a can be

derived from the same mantle source. Cluster 3b melt

inclusions (35–40 Ma; Fig. 13c) are not directly compar-

able with boninites (44–48 Ma; Fig. 13g). Silicic melt

inclusions assigned to Cluster 4b show higher trace

element abundances with TiO2 depletion (Fig. 13d).

DISCUSSION

Origin of the high-Cl melt inclusions
Three melt inclusions hosted in a single clinopyroxene

D55R3B-min3 (host mineral ID 60; Table 1) contain high

Cl content up to �10 000 ppm (Fig. 12e). Straub & Layne

(2003a, 2003b) recognized ‘halogen-rich andesites’ at

their IBM fore-arc sites, where they reported enriched F

(up to 900 ppm) and Cl (up to 9000 ppm) (Fig. 14a and

b). The three Cl-rich melt inclusions hosted by clinopyr-

oxene D55R3B-min3 contain only �400 ppm F (Fig. 14c),

whereas their Cl content surges to up to 10 000 ppm

(Fig. 14d), and therefore they cannot be melts associ-

ated with ‘halogen-rich andesites’ as proposed by

Straub & Layne (2003a, 2003b). We infer that brine as-

similation probably explains the origin of the three

Cl-rich melt inclusions. Brine assimilation has been

commonly proposed at mid-ocean ridges and ocean

islands to explain extraordinarily high Cl content of

melt inclusions (e.g. Michael & Cornell, 1998; Coombs

et al., 2004), but it also occurs at submarine arc volcanic

systems (Ishizuka et al., 2014b). Among the three melt

inclusions hosted by clinopyroxene D55R3B-min3, two

melt inclusions D55R3B-min3-mi2 and D55R3B-min3-
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mi3 are assigned to Cluster 1 and a melt inclusion

D55R3B-min3-mi5 is assigned to Cluster 2b (Figs 12e

and 14d; Table 1). Other two melt inclusions hosted in

the same host clinopyroxene (D55R3B-min3) are

D55R3B-min3-mi4 (Cluster 1) and D55R3B-min3-mi6

(Cluster 2b) (Table 1). The clinopyroxene D55R3B-min3

accommodates both Cluster 1 and 2b melt inclusions.

Cluster 1 melt inclusions are hosted by high-Fe clino-

pyroxene whereas Cluster 2b melt inclusions are hosted

by middle-Fe clinopyroxene, as described above

(Fig. 9d). These observations imply (1) mixing of

Clusters 1 and 2b melts in magma chambers, (2) assimi-

lation of brine into mixed melts, and (3) crystallization

of clinopyroxene D55R3B-min3 from this mixed, brine-

assimilated magma.

Characteristics of clusters from a volatiles

perspective
The primary melts of Cluster 1 melt inclusions can be

enriched in H2O (�6–7 wt%) and S (�2000–3000 ppm)

inferred from high content of H2O (6–7 wt%) and S

(2000–3000 ppm) in some Cluster 1 basaltic melt inclu-

sions (Fig. 12a and b). Cluster 2b melt inclusions contain

lower H2O (2–3 wt%) and lower S (<1000 ppm) than

Cluster 1 melt inclusions (Fig. 12a and b), suggesting

that the H2O and S contents of the primary melts corre-

sponding to Cluster 2 may be lower than those of

Cluster 1. Experimental studies have shown that H2O-

rich and H2O-poor primitive melts control magmatic

differentiation along a calc-alkaline or tholeiitic differen-

tiation trend (e.g. Hamada & Fujii, 2008; Tatsumi &

Suzuki, 2009; Zimmer et al., 2010). However, these

experimental constraints are in contrast to our observa-

tions from Cluster 1 (tholeiitic affinity and possibly H2O-

rich primary melt) and Cluster 2b (calc-alkaline affinity

and possibly H2O-poor primary melt) melt inclusions.

We infer that Cluster 1 melt inclusions form a tholeiitic

differentiation trend because H2O is effectively lost

from the melt during differentiation (Fig. 12a). Cluster

2b melt inclusions form a calc-alkaline differentiation

trend, although they have a lower H2O content than

Cluster 1 melt inclusions. Thus, other factors than the

differentiation of a H2O-rich primitive melts may explain

the origin of calc-alkaline Cluster 2 melt inclusions,

which may include slab melting and/or crustal assimila-

tion (e.g. Francis et al., 1980; Yogodzinski et al., 1995;

Benito et al., 1999).

The F and Cl contents of Cluster 3b melt inclusions

(both high-H2O and low-H2O subgroups) are lower than

those in Cluster 1 and 2b melt inclusions (Fig. 12d and

e). The lower F and Cl contents are consistent with our

inference that the mantle source of Cluster 3b melt

inclusions is more depleted in incompatible elements.

Partial melting of such a depleted and possibly refrac-

tory mantle source may be possible through the add-

ition of slab-derived fluids (e.g. Pearce et al., 1992b;

Morishita et al., 2011).

Cluster 4b melt inclusions are characterized by the

highest F content reported in our study (Fig. 12d). The F

content linearly correlates with K2O (�1�5 wt%) but devi-

ates from this correlation when K2O � 1�5 wt%. In add-

ition, the F/P ratio of Cluster 4b melt inclusions

increases at SiO2 � 70 wt% (Fig. 12f). The deviation of F

and subsequent increase in F/P may result from the

crystallization of F-bearing apatite (e.g. Green &

Watson, 1982) and is consistent with our petrographic

observations. Indeed, apatite occurs as mineral inclu-

sions in clinopyroxene in silicic core samples (e.g.

U1438E-50R, �40 Ma; Fig. 3d).

Characteristics of clusters from an igneous
petrology perspective
In addition to geochemical constraints, the conditions

under which each cluster was formed can also be eval-

uated from the perspective of igneous petrology.

Pearce element ratio plots can be used to interpret bas-

altic suites that experienced various degrees of mag-

matic differentiation (e.g. Pearce, 1968; Ernst et al.,

1988; Russell & Nicholls, 1988). Among the proposed

Pearce element ratio plots, an Al/K versus (2Ca þ Na)/K

plot was applied to the mafic melt inclusions assigned

to Clusters 1, 2b and 3b (Fig. 15a). Cluster 1, 2b and 3b

(low-H2O subgroup) melt inclusions show an identical

trend, implying that the geochemical variation of these

melt inclusions can be explained by the crystallization

of clinopyroxene and plagioclase—a result not surpris-

ing given that our melt inclusions are hosted in these

minerals. Melt inclusions assigned to Cluster 3b (high-

H2O subgroup) are offset from the main trend (Fig. 15a).

Clinopyroxene and plagioclase crystallize synchronous-

ly in the low-H2O melts (Fig. 15b), resulting in approxi-

mately constant Al2O3 with increasing SiO2. In the case

of the high-H2O melts (Fig. 15b), clinopyroxene crystalli-

zes first (increasing Al2O3 with increasing SiO2), to be

followed later (at �50 wt% SiO2) by the crystallization of

plagioclase (decreasing Al2O3 with increasing SiO2), be-

cause the onset of plagioclase crystallization is sup-

pressed under H2O-rich conditions (Fig. 15a and c).

Brandl et al. (2017) analysed melt inclusions hosted

in clinopyroxene and plagioclase and did not find oliv-

ine in any of the core samples from Unit III. However,

this does not necessarily mean that olivine did not crys-

tallize from the corresponding parental melts at all, be-

cause olivine is easily altered by seawater and/or

hydrothermal fluids (e.g. Pokrovsky & Schott, 2000;

Ueda et al., 2017) and therefore may not be preserved

in volcaniclastic sediments deposited at the seafloor.

We assume that olivine crystallized from mafic melts, in

addition to clinopyroxene and plagioclase. This as-

sumption is necessary to apply projection of melts satu-

rated with olivine þ clinopyroxene þ plagioclase in the

basalt tetrahedron as a geobarometer (e.g. Walker

et al., 1979; Grove & Bryan, 1983; Grove & Baker, 1984;

Baker & Eggler, 1987). The normative composition of

melt inclusions was calculated following the procedures
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of Tormey et al. (1987) and Grove (1993) and projected

from the plagioclase apex, with olivine þ clinopyroxene

þ plagioclase cotectics at 0�1 MPa (Walker et al., 1979)

and 200 MPa (Berndt et al., 2005) and with orthopyrox-

ene þ clinopyroxene þ plagioclase cotectics at 400 MPa

(Hamada & Fujii, 2008) as pressure references (Fig. 16).

A caveat is that a post-entrapment overgrowth of host

clinopyroxene could slightly shift the projected position

of melt inclusions off the clinopyroxene (CPX) apex,

resulting in apparently higher pressure. Cluster 1 and

2b melt inclusions are projected between pressure

references of 0�1 and 200 MPa (Fig. 16a and b). Two lev-

els are identified regarding Cluster 3b melt inclusions:

lower pressures (0�1–200 MPa) for the low-H2O sub-

group and higher pressures (200–400 MPa) for the high-

H2O subgroup (Fig. 16c). Considering the experimental

constraint that clinopyroxene crystallizes earlier than

plagioclase from hydrous basaltic melt at pressure con-

ditions corresponding to middle to lower crust

(�300 MPa; Hamada & Fujii, 2008), it is reasonable to at-

tribute the distinction between the low- and high-H2O

subgroups of Cluster 3b to a crystallization differenti-

ation under lower (0�1–200 MPa) and higher (�400 MPa)

pressures, respectively. We argue that (1) a new

magma chamber was formed at shallower levels as the

magma-plumbing system evolved (e.g. Ushioda et al.,

2018) and therefore several magma chambers at differ-

ent depths in the crust may have been present, (2) the

melt was saturated with H2O as most arc melts are (e.g.

Plank et al., 2013; 2–6 wt%), and (3) the saturated-H2O

content of Cluster 3b melts decreased with decreasing

pressures (e.g. Hamada et al., 2011, 2014). There seems

to be no systematic difference in the pressure condi-

tions under which crystallization differentiation pro-

ceeded (0�1–200 MPa) among Cluster 1, 2b and 3b (low-

H2O subgroup) melt inclusions (Fig. 16).

Origin of each cluster constrained by
thermodynamic modelling
Clusters 1, 2b, 3b (low-H2O subgroup) and 3b (high-H2O

subgroup) are composed of larger numbers of melt

inclusions when compared with other clusters, and

range in composition from basalt to andesite as a result

of crystallization differentiation. Here, using thermo-

dynamic modelling, we test whether geochemical vari-

ation of these four clusters can be explained solely by

crystallization differentiation. Among the thermo-

dynamic models designated to simulate crystallization

differentiation, we use COMAGMAT 3.72 (e.g. Ariskin

et al., 1993; Ariskin 1999; Ariskin & Barmina, 2004), be-

cause it simulates crystallization differentiation of hy-

drous arc magmas more reliably than MELTS (e.g.

Almeev et al., 2004; Hamada, 2006; Kimura & Ariskin,

2014). COMAGMAT 3.72 is based on the two-lattice

melt model, a kind of sub-ideal solution model after

Bottinga & Weill (1972), Drake (1976) and Nielsen &

Drake (1979), combined with a series of experimentally

determined, mineral–melt geothermometers with em-

pirical terms to compensate for the non-ideality of sili-

cate melts. When simulating crystallization

differentiation using COMAGMAT 3.72, the starting con-

ditions must be given a priori, and we performed for-

ward simulation of ‘fractional crystallization’ starting

from the most undifferentiated melt in each cluster.

After performing multiple simulations, we found that

geochemical variation of Cluster 1 melt inclusions can

be reproduced from their most undifferentiated melt

with 2 wt% H2O (U1438E-27R5W56-I11) at a pressure of

50 MPa (Fig. 17). This pressure condition is in agree-

ment with the estimated pressure range (0�1–200 MPa;

Fig. 16a), and the H2O content agrees with the analytical

results of H2O measurements in most of our melt inclu-

sions (2–3 wt%) (Fig. 12a). Variation in Al2O3 (Fig. 17b),
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which is not reproduced perfectly, can be explained by

changes in initial H2O content (0–2 wt%). Oxygen fuga-

city (fO2) is the main control on the stability field of mag-

netite, the crystallization of which affects the TiO2 and

FeOt content of the evolving melts. Thus, we performed

our simulations at variable oxygen fugacities of log fO2

equal to 0, þ1 and þ2 relative to the nickel–nickel oxide

(NNO) buffer and found that log fO2 ¼ þ1 NNO best

reproduces the geochemical variation of Cluster 1 melt

inclusions (Fig. 17).

In a similar manner, the geochemical variation of

Cluster 2b melt inclusions can be explained by crystal-

lization differentiation at P¼ 50 MPa from their most un-

differentiated melt with 2�0 wt% H2O (U1438D-60R4-I1;

Fig. 18). These pressure and H2O conditions are in

agreement with the estimated pressure range (0�1–

200 MPa; Fig. 16b) and analytical results of H2O in melt

inclusions (2–3 wt%; Fig. 12a). Variation in Al2O3

(Fig. 18b) can be reproduced by changing the initial H2O

content (0–2 wt%). Trends in K2O are not perfectly

reproduced (Fig. 18g), probably because the initial K2O

content was set too high. A more oxidizing condition

(log fO2 ¼ þ1 to þ2 NNO) than that of Cluster 1 probably

reproduces geochemical variation of Cluster 2b melt

inclusions (Fig. 18). We previously suggested that the

calc-alkaline differentiation trend of Cluster 2b may be

explained by slab melting and/or crustal assimilation.

Here, however, we demonstrate that the tholeiitic differ-

entiation trend of Cluster 1 and the calc-alkaline differ-

entiation trend of Cluster 2b may result from relatively

lower and higher fO2 conditions, respectively (e.g.

Hamada & Fujii, 2008).

The origin of Cluster 3b should be discussed with re-

spect to the H2O content of the individual subgroups.

The low-H2O subgroup can be explained by crystalliza-

tion differentiation at P¼ 50 MPa from their most undif-

ferentiated melt with 2�0 wt% H2O (U1438D-63R1W-I6;

Fig. 19) at log fO2 ¼ þ1 NNO. The Cluster 4a melt inclu-

sion, which extends from the geochemical range of

Cluster 3b melt inclusions towards higher SiO2 content,
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Fig. 16. Projections of normative composition of melt inclusions from the plagioclase apex for (a) Cluster 1 melt inclusions, (b)
Cluster 2b melt inclusions, and (c) Cluster 3b melt inclusions.

20 Journal of Petrology, 2020, Vol. 0, No. 0

D
ow

nloaded from
 https://academ

ic.oup.com
/petrology/advance-article-abstract/doi/10.1093/petrology/egaa022/5740005 by guest on 19 M

ay 2020



can be reproduced by crystallization differentiation

from the undifferentiated Cluster 3b melt inclusions

(low-H2O subgroup) (Fig. 19). This argument is consist-

ent with similar trace element patterns observed in

Cluster 3b and 4a melt inclusions (Fig. 13c). Trends in
TiO2 (Fig. 19a) and K2O (Fig. 19g) are not perfectly

reproduced, probably because the initial TiO2 and K2O

content was set too high. The small numbers of melt

inclusions assigned to the high-H2O subgroup make a

thorough evaluation difficult. However, they can be

reproduced at P¼ 300 MPa and by assuming an initial

H2O of 6 wt% (D55R3A-min8-mi4; Fig. 20) and are thus

in agreement with our previous pressure estimates and

H2O analyses. The geochemical variation of Cluster 3b

melt inclusions (high-H2O subgroup) is best reproduced
at log fO2 ¼ NNO.

The magmatic processes producing the geochemical

variations observed in each cluster are likely to be more

complex (e.g. crystallization differentiation following

magma ascent and degassing) than the constant
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conditions assumed in this thermodynamic modelling.

However, the overall geochemical variation of melt

inclusions assigned to each cluster can be broadly

reproduced by crystallization differentiation assuming

constant pressure P¼ 50 MPa (�2 km deep) and �2 wt%

H2O (almost saturated H2O content at 50 MPa) for

Cluster 1, 2b and 3b (low-H2O subgroup) melt inclu-

sions, and assuming constant pressure P¼ 300 MPa

(�15 km deep) and �6 wt% H2O (almost saturated H2O

content at 300 MPa) for Cluster 3b (high-H2O subgroup)

melt inclusions. We infer that proto-IBM arc magmas

underwent polybaric crystallization differentiation

under H2O-saturated conditions, as discussed in the

petrological study of the Izu–Oshima volcano, present-

day IBM arc (e.g. Hamada et al., 2011, 2014).

New insights based on Site U1438 melt inclusion
study
Brandl et al. (2017) concluded the following: (1) the vol-

canism of depleted calc-alkaline affinity shifted
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gradually to enriched tholeiitic affinity with time (30–

40 Ma); (2) such a compositional shift is linked to both

the volcanic productivity, as expressed by deposition

rates of volcanic sediments, and the maturation of an

evolving island arc. As an extended study of Brandl

et al. (2017), this study separated the geochemical data-

set of melt inclusions into five statistically robust clus-

ters, which can be further separated into a total of eight

subclusters, and their origins were discussed. We

separated the ‘calc-alkaline affinity’ of Brandl et al.

(2017) into two distinct clusters: a cluster of medium-K

calc-alkaline melt inclusions (Cluster 2b) and another

cluster of low-K calc-alkaline melt inclusions (Cluster

3b) representing geochemically enriched and depleted

mantle sources, respectively.

We have demonstrated the following: (1) the erup-

tion of depleted low-K calc-alkaline magmas (Cluster

3b) occurred prior to 40 Ma and ceased sharply at
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35 Ma; (2) eruption of depleted low-K calc-alkaline mag-

mas (Cluster 3b), enriched medium-K calc-alkaline mag-

mas (Cluster 2b) and enriched medium-K tholeiitic

magmas (Cluster 1) overlapped temporally between 35

and 38–39 Ma; (3) the eruption of enriched medium-K tho-

leiitic and enriched depleted medium-K calc-alkaline mag-

mas became predominant thereafter (Figs 10 and 11).

Our findings thus present a different, more detailed over-

view of the temporal evolution of the proto-IBM arc vol-

canism when compared with those of Brandl et al. (2017).

Of particular interest is the question regarding the

nature of the mantle source that generated depleted

low-K calc-alkaline magmas (Cluster 3b) in the time

period of 35–40 Ma. Previous modelling of rare earth

elements has shown that both tholeiitic and

calc-alkaline arc basalts of the Ogasawara (Bonin)

Islands (38–45 Ma) were generated by partial melting of

fertile lherzolitic mantle more enriched than DMM

(Fig. 13e–g; Kanayama et al., 2014; Umino et al., 2015).

This argument suggests that mantle convection was
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established soon after the beginning of the Pacific slab

subduction at 52 Ma (e.g. Arculus et al., 2015a; Reagan

et al., 2017) and replaced the depleted residual mantle

after extraction of proto-arc basalts by more fertile man-

tle through convection by 45 Ma. Such mantle convec-

tion was induced by the drag force of the subducting

slab lithosphere and was accompanied by mantle up-

welling as counter-flow from the deeper rear-arc

regions (e.g. Iwamori, 1998). Mantle convection has

been an essential driving force to activate the arc vol-

canism of the IBM arc and the geochemical evolution of

the source mantle (e.g. Straub et al., 2010). The volcan-

ism of the proto-IBM arc shifted from the eruption of

boninites on Chichijima–Mukojima–Guam (44–48 Ma) to

the eruption of arc magmas on Hahajima Island and the

western scarp of the Bonin Ridge (38–45 Ma; Ishizuka

et al., 2006, 2011a; Kanayama et al., 2014; Umino et al.,

2015). Arc volcanism along the KPR followed (25–49 Ma;

Ishizuka et al., 2011b, 2018), on which we have focused

in this study. Cluster 3b melt inclusions (35–40 Ma;

Fig. 13c) are less depleted than boninites (Fig. 13g), and

we thus infer that the mantle source of Cluster 3b melt

inclusions may reflect the residue of proto-arc basalts at

the rear-arc side (Reagan et al., 2017). High H2O content

(6–7 wt%) in some Cluster 3b melt inclusions (high-H2O

subgroup) is consistent with the idea of partial melting

of a depleted and possibly refractory mantle source

through the addition of slab-derived fluids to generate

primary Cluster 3b melts. Numerical simulation sug-

gests that fluids derived from a subducted slab hydrate

a limited area of overriding lithosphere at the shallower

level when subduction initiates, and that dehydration

reaches a steady state where the hydration of serpen-

tine becomes predominant at deeper levels thereafter

(Arcay et al., 2005). The high H2O content in some

Cluster 3b melt inclusions may be explained by a

focused release of slab-derived fluids following subduc-

tion initiation at 52 Ma. We infer that the rocks with

enriched medium-K tholeiitic (Cluster 1) and enriched

medium-K calc-alkaline affinities (Cluster 2b) represent

differentiated rock series from primary melts generated

by partial melting of replenished, more enriched mantle

sources. We also infer that slight differences in oxygen

fugacities of such primary melts resulted in the forma-

tion of coeval tholeiitic and calc-alkaline affinities, as

discussed in this study based on thermodynamic

modelling.

CONCLUSIONS

IODP Expedition 351 recovered volcaniclastic sediments

from Site U1438 that represent a continuous record of

the magmatic evolution of the proto-IBM arc between

30 and 40 Ma. We analysed volatiles (H2O, S, F and Cl)

and P2O5 for 47 selected melt inclusions (>20 lm) with

SIMS and performed statistical analysis on the major

element composition of 237 representative melt inclu-

sions from Unit III of Hole U1438 (30–40 Ma; Brandl

et al., 2017). We statistically distinguished five main

clusters, which can be further separated into a total of

eight subclusters by considering their trace and volatile

element compositions. The Cluster 1 melt inclusions

(n¼ 84; 30–38 Ma) are enriched medium-K melts, which

form a tholeiitic differentiation trend. Some melt inclu-

sions are characterized by relatively high S content
(�1000 ppm). The Cluster 2 melt inclusions (n¼ 61) can

be divided into two subclusters: Clusters 2a (n¼ 2) and

2b (n¼59). The Cluster 2b melt inclusions (30–39 Ma)

are enriched medium-K calc-alkaline melts. The Cluster

3 melt inclusions (n¼ 67) can be divided into two sub-

clusters: Clusters 3a (n¼ 2) and 3b (n¼ 65). The Cluster

3b melt inclusions (n¼ 65) are depleted low-K calc-alka-

line melts, which can be generated by partial melting of

a depleted mantle source. The Cluster 3b melt inclu-
sions (35–40 Ma) can be further divided into high-H2O

and low-H2O subgroups, reflecting the crystallization

differentiation of H2O-saturated melts at deeper and

shallower crustal levels, respectively. Cluster 4 melt

inclusions (n¼22) are dacitic and rhyolitic melts, which

form a calc-alkaline trend. Cluster 5 melt inclusions

(n¼ 3) are medium-K melts characterized by low P2O5.

We have demonstrated the following: (1) the eruption
of depleted low-K calc-alkaline magmas (Cluster 3b)

occurred from >40 Ma and ceased sharply at 35 Ma; (2)

the eruption of depleted low-K calc-alkaline magmas

(Cluster 3b), enriched medium-K calc-alkaline magmas

(Cluster 2b) and enriched medium-K tholeiitic magmas

(Cluster 1) overlapped temporally between 35 and 38–

39 Ma; (3) the eruption of enriched medium-K tholeiitic

magmas (Cluster 1) and enriched medium-K calc-alka-
line magmas (Cluster 2b) became predominant there-

after. Such temporal evolution of the proto-IBM arc

volcanism reflects a replenishment of enriched mantle

into depleted mantle through convection. Identification

of such distinct magma types becomes possible by (1)

using drilled core samples from the deep sea of the

rear-arc side, because no corresponding geological re-

cord of the proto-IBM rear-arc volcanism has been

recovered to date, and (2) applying statistical analysis
on multivariable major element composition of melt

inclusions and interpreting the findings combined with

their trace and volatile element compositions.

Thermodynamic modelling indicates that the overall

geochemical variation of melt inclusions assigned to

each cluster can be broadly reproduced by crystalliza-

tion differentiation assuming P¼ 50 MPa (�2 km deep)

and �2 wt% H2O (almost saturated H2O content at
50 MPa) for Cluster 1, 2b and 3b (low-H2O subgroup)

melt inclusions, and assuming P¼ 300 MPa (�15 km

deep) and �6 wt% H2O (almost saturated H2O content at

300 MPa) for Cluster 3b (high-H2O subgroup) melt inclu-

sions. The estimated H2O content (�2 wt% or �6 wt%) is

consistent with the analytical results of volatile ele-

ments in melt inclusions with SIMS. Assuming an oxy-

gen fugacity (fO2) of log fO2 equal to þ1 relative to the
nickel–nickel oxide (NNO) buffer best reproduces the

geochemical variation of melt inclusions assigned to

Clusters 1 and 2b, but assuming a more oxidizing
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condition (log fO2 ¼ þ1 to þ2 NNO) probably reprodu-

ces geochemical variation of Cluster 3b melt inclusions

(low-H2O subgroup). We infer that slight differences in

oxygen fugacities resulted in the formation of coeval

tholeiitic and calc-alkaline affinities.

SUPPLEMENTARY DATA

Supplementary data are available at Journal of

Petrology online.
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