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Abstract

Background: The molecular mechanisms of variations in individual longevity are not well understood, even though
longevity can be increased substantially by means of diverse experimental manipulations. One of the factors supposed to
be involved in the increase of longevity is a higher stress resistance. To test this hypothesis in a natural system, eusocial
insects such as bees or ants are ideally suited. In contrast to most other eusocial insects, ponerine ants show a peculiar life
history that comprises the possibility to switch during adult life from a normal worker to a reproductive gamergate,
therewith increasing their life expectancy significantly.

Results: We show that increased resistance against major stressors, such as reactive oxygen species and infection
accompanies the switch from a life-history trait with normal lifespan to one with a longer life expectancy. A short period of
social isolation was sufficient to enhance stress resistance of workers from the ponerine ant species Harpegnathos saltator
significantly. All ant groups with increased stress resistances (reproducing gamergates and socially isolated workers) have
lower catalase activities and glutathione levels than normal workers. Therewith, these ants resemble the characteristics of
the youngest ants in the colony.

Conclusions: Social insects with their specific life history including a switch from normal workers to reproducing
gamergates during adult life are well suited for ageing research. The regulation of stress resistance in gamergates seemed
to be modified compared to foraging workers in an economic way. Interestingly, a switch towards more stress resistant
animals can also be induced by a brief period of social isolation, which may already be associated with a shift to a
reproductive trajectory. In Harpegnathos saltator, stress resistances are differently and potentially more economically
regulated in reproductive individuals, highlighting the significance of reproduction for an increase in longevity in social
insects. As already shown for other organisms with a long lifespan, this trait is not directly coupled to higher levels of
enzymatic and non-enzymatic antioxidants.
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Introduction

Animal species differ vastly in how long they live. Some species

have life expectancies of only a few days, whereas others can live

for to be several hundred years old. To unravel the mechanisms

underlying the evolution of long lifespan, a large number of

natural and genetically tractable systems have been employed in

ageing research [1]. The major aim of these studies has been to

understand how nature controls ageing. One major common

result of these studies was that prolonged lifespan appears to be

associated with increased stress resistance [2,3,4].

The sole intervention that consistently has been shown to

increase longevity throughout the animal kingdom is caloric or

dietary restriction (CR or DR). Although CR mediated lifespan

extension has been the topic of numerous studies, the underlying

molecular mechanisms are poorly understood [5,6]. Apparently,

both, cell-autonomous and non-cell-autonomous effects contribute

to CR mediated effects. Several studies have demonstrated that

systems involved in nutrient level sensing are central for CR

mediated lifespan prolongation and thus being relevant for ageing

related processes in general. Consequently, a number of different

pathways have been shown to be involved in the phenomenon,

comprising the target of rapamycin (TOR), the AMP-activated

protein kinase, those converging onto sirtuin activation and the

insulin signalling pathway [7,8]. Proteins with a central integrator

function within these pathways are e.g. SMK-1, PGC1alpha and

FoxO factors [9,10]. Activation of these systems is believed to

increase stress resistance and life expectancy by changing the
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transcriptional profile of the cells. Among the target genes are

those coding for enzymatic antioxidants and chaperones. This

would be in line [5,7] one of the earliest molecular theories of

ageing, which proposed that reactive oxygen species (ROS)

progressively damage macromolecules, leading to a decline in

cellular function and, finally, to death [11–12]. Increased longe-

vity induced by ectopic expression of enzymatic antioxidants in

nematodes, flies, and mice supports the hypothesis that reducing

oxidative damage is important for prolonging lifespan [4,13,

14,15].

Although, analysing long-lived mutants of genetically tractable

model organisms supplied us with a wealth of information

regarding those genes that are involved in lifespan determination,

some drawbacks of this approach have to be acknowledged. Work

with Drosophila revealed that fly strains differ dramatically in their

lifespan and their responsiveness to longevity interventions such as

CR [16]. Thus, complementary studies using systems based on

more natural population structures would greatly increase the

value of these results. One approach compared the molecular and

cellular mechanisms by which long-lived species differ from short-

lived species have been employed. Small rodents can vary in their

life expectancy by more than an order of magnitude. Under

optimal laboratory conditions, mice can reach an age of 4 years,

whereas naked mole-rats (Heterocephalus glaber), which are of similar

size, can live up to 30 years. Surprisingly, these extremely long-

lived small rodents exhibit no evidence of enhanced antioxidant

defence compared with mice [17]. Although naked mole-rats show

significantly higher levels of markers for oxidative damage

compared to mice, no ageing associated increase in these

parameters could be observed, which contrasts the situation found

in mice [18]. One major problem associated with these

comparative studies is the genetic disparities between short- and

long-lived species that may account for at least some of the

differences between them. Therefore, genetically similar or even

identical model organisms with disparate life expectancies should

be much better suited for studying ageing. The only group of

organisms that readily meet this criterion are eusocial insects

[19,20]. Eusocial insect colonies are characterized by the

occurrence of phenotypically different but genetically very similar

castes, which usually not only fulfil different tasks within the group

but which also have different life expectancies. In bees, queens live

up to ten times longer than workers [21]. Some ant species show

an even more impressive divergence in their life expectancies, as

individual queens of the garden ant Lasius niger can reach ages of

more than 28 years, whereas workers usually die after 1-2 years

[22,23]. Surprisingly, increased longevity is neither correlated with

levels of antioxidant enzymes [22] nor with telomere lengths in the

garden ant [24]. In eusocial insects, the long-living individuals are

usually the reproductive ones, which stands in contrast to

observations that reproduction and longevity are inversely

correlated [1]. The mechanisms underlying this increased

longevity in reproductive social insects are still not understood,

but it has been hypothesized that production of vitellogenin, which

has antioxidant properties, may be responsible [25,26].

Queens and workers usually differ in their ovarian development

(and thus the ability to produce offspring), but also in various other

traits such as individual morphology, physiology and nutrition,

which makes assignment of increased lifespan to one of these traits

almost impossible. Very few eusocial hymenopterans possess a type

of social organisation, which enables adult workers to become

reproductive individuals, or gamergates. This transition from

worker to gamergate is accompanied by a more than doubling of

life expectancy, which has been shown for species of at least two

different ponerine genera [27,28]. Thus, these species enable us to

study the mechanisms underlying increased lifespan, while

excluding other confounding influences. Harpegnathos saltator, the

model we choose for our studies, can endure as a colony with

secondary polygyny after the initial stage as a queenright colony

(Fig. 1). It has very recently been introduced as a model organism

for the study of eusocial insects [29]. In older colonies, a group of

inseminated, egg-laying workers supersede the late queen [30].

Workers that make the transition to dominant gamergates,

increase their lifespan more than twofold. Taking advantage of

this unique system, we tested a number of hypotheses central to

ageing research: 1) longevity is correlated with a general increase

in stress resistance, 2) antioxidant systems are of central

importance for the extension of lifespan, and 3) the switch from

normal to extended lifespan can be induced experimentally.

Results

Harpegnathos colonies tend to be very long lived in the laboratory

and can be maintained for much more than a decade. In the

course of our experiments, we have never observed workers older

than 1.5 years, whereas we observed several gamergates with

lifespans of much more than 3 years [31]. These characteristics are

congruent with those observed in other ponerine ant species

[27,28].

Differential susceptibility of workers and gamergates to
major stressors

Workers and gamergates responded differently to the experi-

mentally induced infection (Figure 2A) or injection of paraquat

(Figure 2B). Following infection, gamergates had a significantly

higher survival rate than workers (n = 30 animals per group, Cox

regression analysis, chi2 = 8.6, hazard ration 2.86, p,0.001).

Gamergates also show a statistically significant higher survival rate

than workers following injection of paraquat (statistics as above,

chi2 = 13.3, Hazard ratio 4.0, p,0.001). Even after eight days,

40% of the gamergates survived, whereas almost all infected

workers (more than 95%) died within the first 4 days following

experimental infection (Figure 2A). The experimental procedure

Figure 1. Differential life expectancies in ant colonies. Members
of a ‘‘normal’’ ant colony have widely varying life expectancies.
Reproductive animals (males and queens) differ substantially in their
lifespan compared to non-reproductive individuals. The non-reproduc-
tive animals, corresponding to members of different worker castes,
have lower life expectancies (top) than the queen. In the ancestral
ponerine ant Harpegnathos saltator, fully developed workers have the
ability to transform into reproductive individuals, called gamergates,
which increases their life expectancy several fold (bottom).
doi:10.1371/journal.pone.0014601.g001
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itself (tested by injection of similar amounts of sterile LB medium)

had no influence on survival of either gamergates or workers.

Effects of social isolation on stress resistance
Workers isolated 24 h before infection showed a significantly

higher survival rate than the workers that were isolated following

treatment (n = 30 animals per group, Cox regression analysis,

chi2 = 13.63, Hazard ration 2.3, p,0.001). Nevertheless, the

susceptibility of both groups of workers was still higher than that of

gamergates (Fig. 2C). Injection of paraquat showed similar effects

as the bacterial infection when pre-isolated workers and workers

were compared (statistics see above, chi2 = 11.1, Hazard ratio 2.9,

p,0.001) (Fig. 2D). The individually housed animals were more

resistant to paraquat injection than the socially housed individuals.

Remarkably, isolation after injection had a negative effect as

workers in this group were more susceptible to paraquat injection

than either of the other two experimental groups, and the survival

rates were also lower than those of treated normal workers

(Fig. 2C, D). We found no behavioural peculiarities in the

corresponding ants. A brief dissection following the experiments

revealed that the one-day isolation period did not yet lead to a

visible led to the development of ovaries.

Role of ROS-detoxifying enzymes in longevity
Workers had the highest catalase activity, followed by males,

which showed a significantly reduced activity (n = 10 for all

experimental groups, one-way ANOVA, Dunnett t-test after ln-

transformation, t = 3.1, p,0.05) (Fig. 3A). The two other groups,

gamergates and callows, showed significantly reduced levels of

catalase activity, with only approximately 30% of the activity

measured in the other groups (n = 10 gamergates and callows

compared with workers, statistics as above, t = 5.1 and 6.33

respectively, p,0.001 each)(Figure 3A). SOD activities were

similar in all groups of ants, with the exception of the callows,

which had approximately 30% of the SOD activity measured in

the other groups. The difference between workers and callows was

statistically significant (n = 10 for all experimental groups, on-way

ANOVA, Games-Howell test, t = 7.78, p,0.001) (Fig. 3B). The

two major enzymes of glutathione metabolism exhibited a different

trend. GST activity was slightly higher in gamergates than in

workers, but this difference was not statistically significant

(gamergates 8016195 mU/mg; workers 6606250 mU/mg).

Males had GST activity almost identical to that of workers and

only the callows had significantly reduced activity if compared

with that of workers (n = 10 for all experimental groups, one-way

ANOVA, Games-Howell test, t = 3.24, p,0.05) (Fig. 3C). Gluta-

thione peroxidase activities were statistically indistinguishable

between all groups of ants (n = 10 for all experimental groups,

Dunnett-T-test after ln-transformation, p.0.1 each) (Fig. 3D).

A detailed analysis of glutathione metabolism itself revealed

differences that partially mirror those observed for catalase

activity. The glutathione content of workers and males was almost

identical and was significantly higher than that of gamergates and

callows (n = 10 for workers and gamergates, n = 7 for callows and

n = 4 for males, one-way ANOVA, Games-Howell test, t = 5.02

and 6.96, p,0.001 for workers vs gamergates and for workers vs

callows). Gamergates had approximately 50% of the glutathione

Figure 2. Survival rates of treated ants. Survival curves for workers
(solid circles) and gamergates (solid squares) injected with live Erwinia
carotovora (A, C) or with paraquat (B, D). The percentage of survivors is
plotted against the time following injection (6 S.E.M.). The control
animals (triangles) were injected with the same volume of sterile LB-
medium instead of bacterial suspension. Statistical analysis was
performed with Cox regression analysis; p values are given in the
figure. Survival curves for gamergates (solid squares - blue) and workers
(solid circles - black) that were injected with the Erwinia carotovora (A)
or the ROS generating compound paraquat (B). Workers isolated for
24 h prior to the experimental injections (solid circles - red), showed a
statistically significant increased survival following injection of patho-
gens (matching controls; solid circles - green) (C) and paraquat (D). The
number of animals per experimental group was n = 30. Mean values are
given 6 S.E.M., p-values are listed in the figures.
doi:10.1371/journal.pone.0014601.g002

Figure 3. Enzyme activities in different groups of ants. Four
naturally occurring groups of adult Harpegnathos were subjected to a
detailed analysis regarding their antioxidant enzyme activities. Individ-
ual workers were used for analysis and the corresponding enzyme
activities as well as the protein concentrations were measured and the
enzyme activities per mg of protein plotted. Usually, 10 independent
measurements were made for every category. The groups under
investigation were workers (wo), gamergates (ga), callows (cal), and
males (male). Workers and gamergates were identified by means of an
in depth analysis of their social behaviour. Statistically significant
differences are marked by asterisks (* p,0.05, ** p,0.01, *** p,0.001).
Catalase (A) statistical analysis with Dunnett-T-test after ln-transforma-
tion, SOD (B), glutathione-S-transferase activity (GST) (C), and glutathi-
one peroxidase activities (GPx) were measured (D). Statistical analysis
for SOD, GST and GPx was performed with the Games-Howell-test.
doi:10.1371/journal.pone.0014601.g003
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content observed in workers and callows approximately 30%

(Fig. 4A). Levels of oxidized glutathione (GSSG) were also much

lower in gamergates (not significantly) and callows (n = 10 for

workers and gamergates, n = 7 for callows and n = 4 for males,

one-way ANOVA, Dunnett t-test, t = 3.97, p,0.05) compared to

workers (Fig. 4B). Males had an even lower concentration, which

was also statistically significant (statistics as above, t = 7,8,

p,0.001). Similarly, levels of reduced glutathione were lower in

gamergates and callows than workers (n = 10 for workers and

gamergates, n = 7 for callows and n = 4 for males, one-way

ANOVA, Games-Howell-test, t = 5.13 and 8.04, p,0.001 for

workers vs gamergates and for workers vs callows) (Fig. 4C).

Consequently, the ratios between reduced and oxidized glutathi-

one were almost identical in workers, gamergates, and callows. In

contrast, males had an approximately ten fold higher ratio than

workers (n = 10 for workers and gamergates, n = 7 for callows and

n = 4 for males, one-way ANOVA, Mann-Whitney U-Test,

t = 24.68, p,0.01) (Fig. 4D).

We also measured catalase and SOD activities under high

oxidative stress conditions induced by injection of a paraquat

solution into the hemocoel. Injection of paraquat into the

hemocoel of workers resulted in a dramatic reduction of catalase

activity (n = 10 for all experimental groups, one-way ANOVA,

Dunnett t-test after ln-transformation, t = 9.07, p,0.001). In

gamergates, which have a much lower basal catalase activity, the

reduction was only slight but also highly significant (statistics, see

above, t = 8.37, p,0.001). The catalase activity of stressed

gamergates was significantly higher than that of stressed workers

(statistics, see above, t = 4.83, p,0.01 treated workers vs treated

gamergates) (Fig. 5A). For SOD activities, similar patterns were

observed in workers and gamergates. ROS-injection induced a

slight decline in the SOD activity in both experimental groups.

This decline was found to be significant in gamergates only (n = 10

for all experimental groups, Games-Howell test, t = 3.84, p,0.05)

(Fig. 5B). Pre-isolation completely changed the enzymatic

behaviour of workers. The catalase activities were significantly

lower than those of workers (n = 10 for both groups, Dunnett-T-

test after ln-transformation, t = 9.12 p,0.001) (Fig. 5C) and the

SOD activity significantly higher (n = 10 for all experimental

groups, Games-Howell test, t = 8.05, p,0.001)(Fig. 5D).

Discussion

One of the long-standing dogmas of ageing research has been

that stress resistance and longevity are positively correlated

[3,32,33]. Here, we show that in a natural system, the switch

from a caste with normal life expectancy to one with a much

longer life expectancy is indeed associated with significantly higher

stress resistance. This increased resistance can be observed for

different stressors such as ROS and pathogen contact. Harpegnathos,

like some other ponerine ants, has the peculiar ability to switch

from a non-reproductive to a reproductive lifestyle during adult

life, thus excluding any confounding differences that may originate

developmentally. Recent in-depth analyses of long-lived mutants

have identified non-genetically based reasons for increased

longevity [34], thus further supporting the usefulness of the

natural systems such as Harpegnathos for ageing research. As already

pointed out, major parameters relevant for ageing research are

strictly strain dependent in model organisms, highlighting the role

Figure 4. Glutathione metabolism in different groups of ants.
Different parameters of the glutathione metabolism were quantified.
The experimental setup was exactly as described in figure 3. The
glutathione level (A), the levels of oxidised glutathione (GSSG) (B), those
of reduced glutathione (GSH)(C), as well as the ratios of reduced and
oxidised glutathione (D) were measured. Statistically significant
differences are marked by asterisks (* p,0.05, ** p,0.01,
*** p,0.001). Number of independent samples for workers and
gamergates were n = 10, for callows n = 7 and for males n = 4. Analyses
in A and C were performed with the Games-Howell-test, in B using
the Dunnett-T-test after ln-transformation, in D using the Mann-
Whitney-U-test.
doi:10.1371/journal.pone.0014601.g004

Figure 5. Effect of oxidative stress and pre-isolation on
catalase and SOD activities. Catalase (A, C) and SOD (B, D) activities
of experimentally manipulated animals were measured. The experi-
mental setup was exactly as described in figure 3. Workers (wo) and
gamergates (ga) were subjected to oxidative stress (wo-ox and ga-ox)
or workers were pre-isolated 24 h before measurement (pi-wo). Effect
of paraquat injection on catalase activities (A) and SOD activities (B), as
well as pre-isolation on catalase activities (C) and SOD activities (D) were
determined. Statistically significant differences are marked by asterisks
(* p,0.05, ** p,0.01, *** p,0.001). Analyses in A and C were
performed with the Dunnett-T-test after ln-transformation, in B and D
using the Games-Howell-test.
doi:10.1371/journal.pone.0014601.g005
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of the genetic background. The colonies used in our study had

been obtained in the 90ies from related sampling sites as

gamergate-right colonies and maintained since than as inbred

colonies, thus representing a situation comparable to that of a

certain fly strain or isofemale line. Therefore, using animals from

10 different colonies is comparable to an experimental approach

where 10 different isofemale lines are taken, a diversity that should

cover most of the genetic variability observable in a natural

population [35].

Surprisingly, the age of colonies in the wild does not correlate

with the observation in the lab, because relatively short colony

survival times have been reported. This discrepancy may be

accounted to extrinsic factors such s heavy monsoon rains, drought

or predators [36], but regarding the usefulness of H. saltator as a

model in ageing research, its quantifiable characteristics in lab

cultures are much more relevant.

Social isolation increases stress resistance
Of special interest is the observation that a short period of social

isolation has a significant protective effect. In isolated workers,

stress resistance against ROS reached levels similar to those

observed in gamergates, whereas resistance against infections was

intermediate between that observed in workers and gamergates,

indicating that different mechanisms are involved. The 24 h

period of social isolation is not sufficient to induce visible signs of

ovary maturation. In addition, animals were supplied with

sufficient nutrients to exclude starvation as a confounding variable.

Mild starvation, known as dietary restriction, is the most consistent

way to increase lifespan in almost all animals studied [5,37]. Some

ants appear to be extraordinarily starvation resistant as colonies of

the myrmecine ants Temnothorax rugatulus can survive several

months of complete starvation [38]. Thus, the effects of social

isolation cannot be attributed to starvation, which would also

induce an increased stress resistance via mechanisms similar to

those operative in dietary restriction. Harpegnathos workers have the

ability to found a colony on their own at least under laboratory

conditions [39]. Under normal conditions, workers mate with

males produced in the colony and the sperm is stored for long

periods. Isolation of these inseminated but infertile workers taken

from a normal colony is sufficient to transform them into

reproducing animals that lay eggs and produce offspring, which

may lead to the foundation of a new colony [39].

Our results imply that as soon as inhibitory fertility signals from

dominant females are removed, the process of transformation to a

reproductively active individual is initiated. Even before the ability

to produce offspring (maturation of ovaries) is detectable, the

increased stress resistance occurs. Therefore, we can speculate that

removal of the inhibitory factors from the fertile animals in the

colony triggers a multifaceted response, which includes ovarian

development on the one hand, but which, on the other hand, also

alters other factors governing stress resistance.

Role of enzymatic detoxification of ROS in stress
resistance and survival

Since Harman introduced his free radical theory of ageing [11],

antioxidants, either enzymatic or non-enzymatic, have been

considered of central importance in lifespan control [2,4,13]. This

common ground in ageing research has recently been destabilized,

generating doubts as to the simple correlation between increased

enzyme levels and increased lifespan [40,41]. Those animals that

are normally long-lived tend to have lower amounts of antioxidant

enzymes such as catalase or SOD [18,42], an observation that has

also been made in social insects [22,43]. A more complex

correlation between oxidative stress and longevity emerges if

recent results regarding the life prolonging effects of mild stressors

are taken into account. Hormesis, chronic mild stress, has a

significant lifespan enhancing effect [44,45,46]. Recently, it has

been shown that downregulation rather than upregulation of

catalase activity increases lifespan in the yeast Saccharomyces,

presumably also via induction of hormesis [47]. Reactive oxidant

species are not only metabolic by-products that induce ageing,

they are also signalling molecules within the organism. This dual

function of oxidant/antioxidant systems should nevertheless not

compromise the interpretation of antioxidant activities measured

in whole animals, because the signalling function is usually

spatially restricted and accounts only for a small percentage of the

overall activity.

In the different groups of Harpegnathos individuals, we have a

similarly complex pattern of anti-oxidant activities. We measured

catalase and SOD as the most relevant ROS detoxifying enzymes,

but also measured enzymes involved in glutathione metabolism to

obtain a largely complete picture. Surprisingly, gamergates, the

long-lived reproductive individuals, have significantly lower

catalase activity than workers. This mirrors the situation observed

in honey bee queens [43]. Another group of ants, the callows,

corresponding to the youngest individuals in the colony, have a

similarly low catalase activity, further indicating that stress

resistance or age and levels of enzymatic antioxidants are not

positively correlated. The similarities between the enzymatic

characteristics of gamergates and callows hold true also for the

total, as well as the reduced, glutathione contents. Although

gamergates tend to be older (or, at least, are assumed to be older)

than normal workers, they show enzymatic characteristics closely

resembling those observed in the youngest animals. The

interpretation of the low levels of antioxidant enzymes in the

youngest animals is more complex, as they require strong oxidative

activities to enable darkening of their cuticle when they make their

conversion to ‘‘normal’’ workers. However, the observation that

the ratio between reduced and oxidized glutathione is similar in

callows, workers and gamergates argues against this possibility.

The very high values of glutathione and the high ratio of GSH/

GSSG in males may be interpreted as prearrangements to cope

with the highly energy demanding maiden flight.

A possible reason for this counterintuitive regulation of

antioxidant activities was provided by another experiment.

Stressing animals by injection of the ROS-generating compound

paraquat induced a dramatic drop in the catalase activity of

workers, whereas the drop in activity in gamergates was only

marginal. A comparable situation has been observed in foraging

honey bees. Young foraging bees increase their catalase activity

approximately 3 fold following prolonged flight. Old foragers

experience a dramatic drop in catalase activity following this

procedure [48]. This supports the assumption that workers have to

cope with high oxidative stress during their normal life and that

their reserve pool for this enzyme is not sufficient to cope with

additional external stress. It appears that the long-lived individuals

may experience lower levels of oxidative stress, allowing them to

survive with less ROS-related enzymatic activity than the short-

lived individuals. This difference may allow them to regulate

expression of the enzymes in times of stress over a greater range,

which should be beneficial for longevity.

Ponerine ants such as those of the genus Harpegnathos offer the

unique opportunity to study the transition towards increased

lifespan as part of the normal life history trait. When workers shift

to reproduction as a gamergate, they also change the regulation of

stress resistance, which may be causally linked to increased

lifespan. Epigenetic mechanisms have recently been proposed to

be candidates mediating these long lasting switches in life history

Stress Resistance in Ants
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traits. In addition, insulin-signalling appears to be modulated,

which may lead to changes in typical target genes of the

transcription factor Foxo, namely enzymatic antioxidants [29].

Even though gamergates show an increased resistance to major

stressors such as infection or oxidative stress, they seem to invest

less in stress resistance than normal workers. In fact, their very low

levels of catalase activities and glutathione levels resemble more

the pattern of young individuals, which suggests that the life

confined to inside the nest allows for the lower investments in stress

resistance. A switch towards more stress resistant animals can also

be induced by a brief period of social isolation that may already be

associated with a shift to a reproductive trajectory. In Harpegnathos

saltator, different systems of stress resistance are differently and

potentially more economically regulated in reproductive individ-

uals, highlighting again the significance of reproduction for an

increase in longevity in social insects.

Materials and Methods

Colony maintenance and experimental groups
Individual ants for all experimental procedures were taken from

a total of 17 gamergate-right colonies. These colonies were

collected as gamergate-right colonies in the years 1994, 1995 and

1999 in the area of Jog Falls in Karnataka State, South India and

kept under laboratory conditions as inbred colonies since then.

The colonies were housed in plastic boxes (19 cm619 cm610 cm)

containing a floor of plaster with a carved out nest chamber

covered with a glass plate. The colonies were provided with live

crickets ad libitum and housed at 25uC under a 12 h/12 h light/

dark regime. Ants were taken from fully reproductive colonies that

fulfilled the following criteria: i) the minimum size of the colony

was 80 ants, ii) the colonies contained eggs, larvae and pupae, iii)

the colonies showed an established and stable dominance

hierarchy.

Sampling strategy
To exclude colony dependent biases, we used a matching

sample strategy. At the same time, this strategy ensures that a

population covering genetic diversity is reflected in the experi-

ments. For survival experiments, we took a total of 20 animals

from 10 different colonies. Two gamergates and two workers each

were removed from the respective colonies at the same time and

used for the experiments, meaning that genetic material from 10

different colonies is represented in each experiment. For the social

isolation experiments, an identical sampling strategy was used (2

workers for pre-isolation, 2 workers for post-isolation from 10

different colonies each). Regarding the enzymatic determination

experiments, a similar sampling strategy with lower numbers of

animals was used (equal numbers – usually two each- of

gamergates, workers and callows from a peculiar colony). Only

sampling of males didn’t follow this stringent sampling strategy

due to the temporal restriction in male availability. Thus, usually 2

males were taken from one colony for one type of experiments.

The experimental groups were categorized as follows
Gamergates. Gamergates were initially identified by the

dominance behaviour they showed towards their nestmates. Their

status was checked by a quick dissection prior to homogenisation (in

the case of the enzyme assays) or after death or at the end of the

experiments (in the case of the survival assays). Even though we did

not track the gamergates for more than a few weeks, we can estimate

their minimum age. It takes about two to three month that a colony

becomes socially stable again after the establishment of new

gamergates (JL pers. observ.) In addition, the very young workers

below four weeks of age do not become gamergates in the presence

of slightly older workers. Given that gamergates can live more than

three years [31], it is save to assume that average gamergate age is

much more than six months. Workers. Workers were collected after

they had been monitored for at least 15 min to make sure that they

performed a task inside as well as outside the nest. This procedure

excluded any bias that could occur through an age dependent shift

in behaviour as found in honey bees. Again, their status was checked

by a quick dissection prior to homogenisation (in the case of the

enzyme assays) or after death or at the end of the experiments (in the

case of the survival assays). Since workers rarely exceed one year of

age and the number of older workers is naturally smaller than that of

younger workers, it is unlikely that the average worker age is above

six months. Callows. Callows were identified by the light brown

colour of their cuticule, which contrasts to the dark brown colour of

older adults. Since the ants fully lose this colour about 30 days after

hatching from the pupae, all animals in this group were younger

than one month. Males. Males were collected directly from the

inside of the nest. Older males that had already left the nest area

were excluded from the experiments.

Additionally, a group of socially isolated workers was created as

follows. Workers were collected from the colonies, as described

above, and transferred to plastic tubes (diameter 6 cm, height

12 cm) where each individual was kept isolated. The tubes had a

plaster floor with an embedded 1.5 ml Eppendorf tube (brown

plastic) as a shelter. During isolation, the ants were provided with

fresh crickets every day and kept under the same environmental

conditions as the colonies. In addition, ingestion of food was

monitored regularly to exclude confounding effects caused by

starvation. A control group of workers was kept isolated following

the injection procedure only. A short overview of the different

experimental groups Is given in table 1.

Table 1. Experimental groups of ants – characteristics and treatment

group reproductive status age range treatment

gamergate fully reproductive 1 month–4 years colony-injection-colony

worker not reproductive 1 month–1.5 years colony-injection-colony

callow not reproductive 0–30 days colony-injection-colony

isolated worker not reproductive 1 month–1.5 years colony-injection-isolation

preisolated worker not reproductive 1 month–1.5 years isolation-injection-isolation

Listed are all groups of ants that were used in this study. In addition, their reproductive state, their anticipated age range, as well as the timing of the experimental
treatment are listed. Colony means that the animals were in the colony until they were treated. Isolation means a short period (before treatment 24 h) of single animal
housing was used.
doi:10.1371/journal.pone.0014601.t001
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Workers and gamergates may differ not only in their

reproductive state, but also in their mean age (gamergates may

usually be older than workers). To exclude these potential age

related, confounding variables between workers and gamergates,

we performed another set of experiments, where we randomly

grouped workers into three experimental categories, thus exclud-

ing any age-related bias. In addition, social isolation is known to be

able to induce fertility in workers and the ability to found a new

colony [39]. The individuals in the first group were held separately

in individual cages and fed ad libitum with crickets for 1 day, and

then injected with either bacteria or paraquat and held

individually from that point on. Animals from the first control

group were taken from the same colonies and used for injection of

either bacteria or paraquat as described above, and, thus, never

experienced individual housing. A second group of controls was

also taken from the colonies, injected, and then housed

individually following the experimental manipulation.

Survival assays - Injection procedure
Workers and gamergates were taken directly from the colony

whereas isolated workers were housed individually for 24 h. The

animals were immobilized by keeping them on ice for a few minutes.

The ants were then injected with 40 nl of medium (either containing

the stressor or pure medium as a control) into the gaster and marked

with enamel paint. After allowing them to recover for a few minutes,

the ants were either reinserted into their colonies or into their

isolation tubes. For the social isolation experiment, workers were

kept isolated for 24 h before the induction of experimental stress.

Matching controls were treated directly after separation from the

colony. After treatment with the stressor, the animals were kept in

their housing tubes for 8 days and the survivors were counted every

24 h. Ants were dissected and checked for the developmental status

of their ovaries either after death or at the end of the survival assay.

We did not observe aversive behaviours towards injected animals

until they were dead, thus premature death caused by aversive

behaviours of nestmates can be excluded.

Ants were infected by injecting them with 40 nl of LB medium

containing Erwinia carotovora at an OD of 3.6 or with 40 nl of sterile

LB medium. Colonies and isolation tubes were checked for dead

animals every 24 h for 8 days. Because the ant mortality assay

contained censored data (i.e., some ants were still alive at the end

of the experiment), we applied a Cox regression analysis (SAS

version 9.0: Proc PHREG) to test for the effect of ‘life-history

stage’ on survival of the ants.

Ants were injected with 40 nl of Schneider’s Drosophila medium

containing 500 mM paraquat as the experimental treatment or

40 nl of sterile Schneider’s only. The paraquat solution was

prepared immediately prior to the injection procedure and used

within 15 min. Observation procedures and statistical analysis

were the same as those described above for the infection

experiments.

Quantification of enzyme activities
To elucidate whether enzymatic antioxidants are responsible for

the differing stress resistances and life expectancies observed in the

Harpegnathos saltator groups, we quantified the activities of systems

involved in ROS detoxification. Two groups of enzymes are

central to ROS detoxification: 1) catalase and superoxide-

dismutase (SOD), and 2) enzymes involved in glutathione

metabolism, namely glutathione-S-transferases (GST) and gluta-

thione peroxidases (GPx). Levels of reduced (GSH) and oxidized

glutathione (GSSG) were measured as well. Workers and

gamergates were the major experimental groups used in these

assays, but very young workers, callows, as well as males and

experimentally manipulated workers and gamergates were exam-

ined also.

The ants were collected as described above. The ants that were

exposed to paraquat were collected from the colonies 24 h after

the injection procedure and the isolated ants were housed

individually for 24 h prior to these procedures. Individual ants

were used as single samples. Ants were killed by freezing at

280uC. Subsequently, each ant was homogenized in liquid

nitrogen, resuspended in 110 ml of cold 1x PBS and vortexed.

To remove debris, samples were centrifuged at maximum speed in

a tabletop centrifuge at 4uC for 5 min. The samples were then

frozen at 280uC in aliquots of 50 ml until further use.

Determination of enzymatic activity was usually performed with

10 samples handled independently. For some determinations

slightly lower numbers were used (glutathione in males, n = 4; in

callows, n = 7; catalase following induction of oxidative stress,

n = 9; SOD following oxidative stress, n = 7).

The enzyme assays were carried out as follows. Superoxide-

Dismutase. SOD Activity was determined according to the

methods of Marklund and Marklund [49], which is based on the

inhibition of autoxidation of pyrogallol by SOD. Catalase. The

method of Johansson and Borg [50], which measures the

production of formaldehyde from a hydrogen donor (methanol)

with the chromogen purpald, was used to measure catalase.

Glutathione-S-Transferase. The GST activity measurements were

conducted as described previously [51]. In this assay, the rate of

glutathione conjugation to the substrate CDNB (1-chloro-2,4-

dinitrobenzene) is measured. Glutathione-peroxidase activity. GPx

activity was measured according to the method of Lawrence and

Burk [28], which utilizes a coupled enzymatic assay, beginning

with the reduction of cumene hydroperoxide. Glutathione-

content. The total glutathione content, as well as the oxidized

and reduced glutathione, were quantified according to well

established methods [52,53].

Statistical analyses
The statistical evaluation of the survival assay data (infection

with Erwinia carotovora and injection of paraquat solution) was

carried out by using the Cox regression analysis (SAS version 9.0:

Proc PHREG). The number of animals per experimental group

was n = 30. The data concerning the level of glutathione and the

activities of the various enzymes were treated as following: The

arithmetical means and the standard errors of each group were

calculated. Further statistical evaluation was carried out using

SPSS Version 13.0. To test whether a statistical difference to the

control group exists, a one-way ANOVA (analysis of variance) and

a Levene-test for homoscedasticity was used. If homoscedasticity

was found, the Dunnett-test was applied. If homoscedasticity was

not on hand, the test after Games-Howell was carried out.

Gaussian distribution was check with Kolmogrorw-Smirnow and

Shapiro-Wilk. In case of non-Gaussian distribution, the data were

ln-transformed and the non-parametric Mann-Whitney-U-Test

was applied. Numbers of independent samples are listed in the

figure legends.
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