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Abstract: In this paper, an in-situ measurement method is proposed for monitoring three-

dimensional (3D) crystal size distribution (CSD) during a crystallization process, based on a 

binocular micro-vision system. The stereo particle shape is reconstructed from double-view images 

captured by two microscopic cameras fixed at different angles outside the crystallizer. To overcome 

the influence from solution turbulence and uneven illumination background involved with in-situ 

imaging, a microscopic double-view image analysis method is established to identify the key 

corners of each particle shape in the captured images, including corner detection and corner 

matching. Two fast algorithms are therefore given for on-line detection of two typical crystal 

morphologies of prismatic and needle-like shapes, such as α- and β-forms of L-glutamic acid (LGA) 

crystals, respectively. Based on the identified key corners for different particle shapes, a 3D 

geometry model is established to approximately reconstruct the 3D shape for each imaged particle, 

such that 3D sizes of each particle could be quantitatively estimated, along with the particle volume. 

Experiments on the LGA cooling crystallization are performed to demonstrate the effectiveness of 

the proposed method. 

Keywords: Crystal size distribution, three-dimensional (3D) particle size measurement, binocular 

micro-vision system, 3D geometry reconstruction, corner detection, L-glutamic acid crystallization.   
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1. Introduction

The crystallization technology has been widely used for separating different components from 

solution and purifying particle products in chemical and pharmaceutical industries. For control and 

optimization of crystallization processes, on-line process analytical technologies (PATs) have been 

explored for assessing the crystal morphology, growth rate and quality 1-4. With a rapid 

development of the photoelectric technology, on-line image based monitoring methods were 

increasingly studied for measuring the sizes and shape of crystals 5-9. Based on image analysis of 

multi-dimensional crystal sizes and shape feature, a few crystal morphology analysis methods were 

developed for monitoring the crystal quality during crystallization 10, 11. The developed imaging 

systems for monitoring crystallization processes mainly include two types: invasive and non-

invasive. For using an invasive imaging system, e.g., the digital particle vision and measurement 

(PVM) 12 , the imaging probe could be stuck into the crystal slurry to capture the crystal images. A 

novel invasive imaging probe was recently developed based on the existing image analysis methods 

to cope with blurry images with noise 13. In contrast, a non-invasive imaging system is installed 

outside a crystallizer to image the crystallization process by the observation window 14, 15. 

Compared with an invasive imaging system, a non-invasive imaging system could avoid the 

contamination of camera lens from the crystal slurry. However, the lighting source of a non-

invasive imaging system needs to be carefully installed in an opposite position to the cameras 

outside the crystallizer, in order to provide sufficient illumination for real-time imaging.

With crystal images captured by an invasive or non-invasive imaging system, Larsen et al. 16 

developed an efficient image processing algorithm for analyzing the crystal size distribution (CSD) 

of high-aspect-ratio crystals. Zhang et al. 17 proposed a few particle shape descriptors based on the 

principal component analysis (PCA) to classify polymorphic organic crystals during batch 

crystallization. A synthetic image analysis method 11 was recently presented for in-situ crystal size 

measurement and shape identification. Gao et al. 8 proposed an in-situ measurement method based 

on the recently developed deep learning technology to classify α- and β-forms of L-glutamic acid 

(LGA) crystals and measure the two-dimensional (2D) sizes of length and width, along with an 

estimation of the surface area. This approach needs a large amount of samples of α- or β-form 
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crystals for off-line training along with a demanding computation effort. For monitoring the crystal 

growth quality, it was pointed out that 2D image analysis methods could provide relatively less 

information than those of 3D imaging methods 18-20. Bujak and Bottlinger 21 adopted three 

orthogonally installed cameras to measure 3D sizes of particles with irregular shapes, but not for 

imaging crystals in the slurry. An off-line 3D shape measurement method was developed based on 

assembling the 2D surface images of a crystal captured by using a regular reflection of light 22. 

Another off-line 3D size measurement method 23 was proposed for cuboid crystals such as β-form 

LGA, by using a multi-projection imaging system consisting of one camera and two mirrors. This 

approach was subsequently extended for on-line measurement by imaging a flow through cell using 

a sampling loop with two external cameras installed orthogonal to each other 24, which was mainly 

devoted to cuboid crystals. Borchert et al. 25 developed an alternative image analysis method for 

reconstructing the 3D crystal shape from the corresponding 2D crystal projections, where the 

Fourier descriptors were used to detect the crystal shape outline based on a pre-defined database of 

different crystal shapes. Recently, a new dual-camera measurement device was developed for real-

time monitoring of particle shapes rather than 3D size measurement via a circulating pipeline 26, 

based on an image segmentation algorithm for background extraction and a volume intersection 

method for classification of different 3D particle shapes. Ma et al. 27 presented a proof-of-concept 

of 3D shape reconstruction based on using two no-invasive cameras installed with a pre-specified 

angle to synchronously capture images, which was further extended in the references 20, 28 for 

roughly estimating 3D size growth of crystals rather than quantitative measurement. For using a 

binocular micro-vision system to capture stereo images for analysis, a few calibration methods for 

guaranteeing the measurement accuracy were reported in the references 29, 30, but these methods 

could not be used for in-situ installed micro-vision systems subject to uneven illumination 

background, particle motion, and solution turbulence usually involved with crystallization 

processes. Although the recent work 31 developed a microscopic double-view image analysis 

method for in-situ measurement of 2D particle sizes, it remains open to measure the third 

dimensional particle size that could be perpendicular to the 2D imaging plane, and therefore, the 

particle volume could not be estimated therein.
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To tackle the difficulty of measuring 3D sizes and volumes of particles during crystallization, 

an in-situ image-based measurement method is proposed in this paper with application to the 

cooling crystallization processes of α- and β-form LGA crystals, based on a non-invasive binocular 

micro-vision system. Firstly, two fast image analysis algorithms are given for identifying the key 

corners of two typical crystal morphologies, i.e., prismatic α-form and needle-like β-form of LGA 

crystals, respectively. Then, a binocular geometric model is constructed for computing the 3D 

space location of each corner. Based on the computed 3D coordinates of these key corners, a 3D 

geometry model is established to approximately reconstruct the 3D particle shape, which is 

therefore used for measuring the 3D sizes of each particle in the in-situ captured images. A 

measurement test on a micro-scale ruler placed in 3D location is conducted to verify the accuracy 

of the proposed method for 3D size measurement. In addition, another fast algorithm is given for 

computing the volumes of particles with image reconstruction, for the convenience of real-time 

application. Experiments on monitoring the cooling crystallization process of LGA are performed 

to demonstrate the effectiveness of the proposed method for in-situ measurement of particle sizes.

2. Experimental set-up

2.1 Non-invasive binocular micro-vision system for in-situ measurement

The experimental set-up for using a non-invasive binocular vision system to monitor a cooling 

crystallization process is shown in Fig.1, where the crystallizer consists of a 4L jacketed glass 

reactor (ACE-AIO 4000), a 4-paddle agitator (PTFE), a thermostatic circulator (Julabo-CF41), and 

a temperature probe (Pt100). The non-invasive binocular vision system for in-situ imaging during 

crystallization was made by Hainan Six Sigma Intelligent Systems Ltd. (product no. Stereo Vision 

Crystal-G), which consists of two microscopic cameras and two lighting sources commanded by a 

light controller (Gardasoft RT260-20) for snapshot. Each camera has a CCD sensor with the 

maximum pixel resolution of 2448×2048 and a micro lens set at a distance of 40mm from the 

reactor glass wall (the maximum working distance is about 65mm). The maximum frame rate is 

6.5 fps for each camera. For in-situ measurement, two microscopic cameras are situated up and 

down in a line outside the glass vessel so as to alleviate the distortion for capturing images, while 
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there is an intersection angle of 12.5 degree between the optical axes of two cameras. The lighting 

sources are installed in line with the camera lens on the other side of the glass vessel, providing the 

lighting illumination of 350lux. For real-time analysis, a pair of microscopic images is 

synchronously shot via two cameras per two seconds during the crystallization process.

2.2 Crystallization material of LGA

The solute material used in this study is LGA (C5H9NO4). LGA has two typical polymorphic 

forms 5, 32, prismatic α-form and needle-like β-form, as shown in Fig.2. Different linear cooling 

rates 5 were studied to procure these two product forms. In this work, the LGA solution was taken 

as distilled water. 

To perform a cooling crystallization experiment of LGA, the solution is initially heated up to 

70°C and then maintained at the temperature until all the LGA solute is completely dissolved. After 

that, the solution is cooled down to 20°C by a specified cooling rate and maintained at the 

temperature until the end of experiment. The agitator is operated at a constant rate of 200 rpm to 

maintain the uniformity of particle distribution in the suspension during crystallization.

3. Double-view image analysis on the key corners of particle shapes

Since double-view images in-situ captured by a non-invasive binocular vision system shown 

in Fig.1 were blurred by solution turbulence and uneven illumination background, it is necessary 

to identify salient features of particle shapes in these images for analyzing 3D particle morphology 

and sizes. To exclude the noise affect, the well-known median filter 33 may be used to recover the 

denoised grayscale images from the captured images for real-time analysis. Then, a multi-scale 

segmentation with the Canny operator 34 is preferred to detect the particle shape edge from a 

denoised image. Note that any unobvious edge points could be removed by using a specified 

threshold. By filling the gaps between identified edge points with their adjacent edge features, the 

contour edge of each particle image could be determined in an efficient manner.

For reconstructing 3D particle shapes based on the pre-processed images to measure the 

particle 3D sizes, it is proposed to detect the key corners of each particle. LGA crystals have two 

typical polymorphic forms, prismatic α-form and needle-like β-form 8, 35, as shown in Fig.2a. Note 
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that these two shapes could be distinguished from in-situ captured images by using the inner 

distance descriptor introduced in the previous work 11. However, their key corners are distinct from 

each other in the geometric location for shape reconstruction, as shown in Fig.2b. Concerning an 

α-form crystal, the 3D image contour after edge detection includes external and internal edges, and 

correspondingly, there are eight key corners to be detected, including four external and internal key 

corners, respectively. In contrast, a β-form crystal has a needle-like shape where the key corners 

are located at both ends of the image contour. Two different algorithms are therefore proposed to 

detect the key corners of α- and β-form crystals, respectively.

For detecting the key corners of an α-form crystal, the coordinates of all the contour points 

are denoted by , where , and therefore, the centroid coordinate denoted by ( , )n nx y 1,2, ,n N K

 is defined by( , )c cx y

(2)

1

0

1

0

1

1

N

c n

n

N

c n

n

x x
N

y y
N









 

 






Correspondingly, the inner distances from the centroid to the boundary points are defined by

(3)2 2( ) ( )n c n c nd x x y y   

The inner distances of all the contour points are plotted in Fig.3, where the peak points are 

defined as the extremum points of the contour. The set of each edge point is composed of the 

boundary points between every two edge extreme points. The fitting lines ,  j jy a x b  1,..., 4j 

along each edge are optimized by a least-squares (LS) algorithm as

(4)1

1
( )( )

K
j j j j

j k kj
k

j j

j j

a x x y y
C

b y a x



   

  



where , and  is the point number. 
2

1

( )
K

j j j

k

k

C x x


  K

The key corners of either external or internal contour edges are determined by computing the 

crossover points of the above fitting lines. Note that the external and internal key corners are 

detected for determining the external and internal contour edges, respectively, as shown in Fig.2b. 

For clarity, the proposed corner detection algorithm for prismatic α-form crystals is 
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summarized below.

Step 1: Find the external or internal contour edges using the Canny edge detector;

Step 2: Define the extremum points of external or internal contour edges in a particle image, by 

computing the centroid coordinates of the external or internal contour edges via Eq.(2) and the 

inner distances of all the contour points via Eq.(3), and then choosing the peak points in the plot of 

the inner distances;

Step 3: Fit the external contour edges in a particle image by optimizing the fitting lines along each 

edge via Eq.(4);

Step 4: Determine the external and internal key corners by computing the crossover points of the 

above fitting lines.

For detecting the key corners of a β-form crystal, the candidate corners are selected based on 

the curvature scale-space method that has good robustness against noise 36, 37. For the particle 

contour described by , where  denotes the length parameter, the  ( ) ( ), ( )u x u y u  u

corresponding multi-scale curve  under a scale  is defined by( , )u  

(5) ( , ) ( , ), ( , )u X u Y u   

where 

(6)
( , ) ( ) ( , )

( , ) ( ) ( , )

X u x u g u

Y u y u g u

 
 

 
  

where  denotes the convolution operator, and  denotes a Gaussian function with the  ( , )g u 

standard deviation .

The curvature of  is computed by( , )u 

(7) 1.5
2 2

( , ) ( , ) ( , ) ( , )
( , )

( , ) ( , )

u uu uu uX u Y u X u Y u
u

X u Y u

    
 






where  and  are the first and second order derivatives of  with ( , )uX u  ( , )uuX u  ( , )X u 

respect to .  and  are the first and second order derivatives of  with u ( , )uY u  ( , )uuY u  ( , )Y u 

respect to .u

According to Eq.(7), the curvature  of an edge point on the scale  can be ( , )ju  j
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computed, and then the curvature product at four different scales is computed as

(8)

4

1

( ) ( , )j

j

u u 


 

Subsequently, a local maximum edge point with a curvature product greater than a specified 

threshold, e.g.,  given in the reference 37 for corner detection, is taken as a candidate 0.03T 

corner. Considering that corner points should be at both ends of the crystal shape as shown in Fig.2b, 

the key corners are determined by specifying a criterion, i.e., the inner distance of a candidate 

corner should be no less than one third of the crystal length. 

Hence, the proposed corner detection algorithm for need-like β-form crystals is summarized 

below.

Step 1: Find the external contour edges using the Canny edge detector;

Step 2: Define the corners of the contour edges in a particle image by the curvature scale-space 

approach using Eqs.(4-7);

Step 3: Exclude those corners not complying with the inner distance criterion.

After the key corner detection, matching the key corners between double-view images is 

conducted by using the BRIEF descriptor 38 owing to its robustness and fast speed for real-time 

application. To determine the descriptor, a square region  of size  (i.e., pixel number) is I S S

chosen around such a key corner. Denote by  and  two different pixel points located in , ip iq I

where  is the pixel index and  is 256. To avoid sensitivity to noise, each region is i N

preprocessed by the Gaussian smoothing approach 38. Then, an -bit vector denoting the BRIEF N

descriptor is defined by 

(9)
1

1

( ) 2 ( ; , )i

N i i

i N

b I g I p q

 

 

where

(10)
1 ( ) ( )

( ; , )
0 otherwise

i i

i i

if I p I q
g I p q


 



where  and  are the intensities of  and  in the region . Note that  ( )iI p ( )iI q ip iq I ( , )i ip q

follow the Gaussian distribution of .
2(0,1/ 25 )S
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The similarity between corner descriptors computed from double-view images is then 

measured by the Hamming distance 38, which determines the matching pairs of key corners in 

double-view images in terms of the maximum similarity degree. 

It should be noted that the quality of particle morphology reconstruction depends on the 

identified key corners, which is affected by 3D location of each particle in the captured images.

4. Stereo shape reconstruction and measurement of 3D particle sizes

Based on the identified key corners in double-view images, a 3D geometry model is proposed 

to approximately reconstruct the stereo shape of each particle appearing in double-view images. 

Correspondingly, the 3D sizes and volume of each particle are measured based on the established 

3D geometry model. An error analysis is given to verify the accuracy of the proposed method, 

along with an experiment on measuring a micro-scale ruler by using the non-invasive binocular 

micro-vision system shown in Fig.1.

4.1 3D geometry model

Fig.4a shows a geometry model case of imaging a space point denoted by  with the non-P

invasive binocular micro-vision system shown in Fig.1, where the left-view and right-view images 

are captured from the installed upper and lower cameras, respectively. The model origin of the 3D 

coordinate system is set to the left-view centroid as shown in Fig.4a, denoted by O. For 3D shape 

reconstruction, the 3D coordinate  of a space point  is a function of the 2D ( , , )X Y Z P

coordinates denoted by  and  in the double-view projections. Denote by  and lP rP ( , )l l lP u v

 the imaging points from the left-view and right-view, respectively, both of which have ( , )r r rP u v

the same size of  (length × height) with . Denote by  the pixel equivalent without L H P 

amplification, by  the amplification coefficient, by  the baseline length, and by ,  b 2

( ) the stereo angle.0 90  o

Without loss of generality, the 3D coordinate  of  is derived as( , , )X Y Z P

(11)

tan( )

( /2)

= cos / (2 sin )

l

l

l r

X Z p

Y v H

Z bf f a a

 


 

 
  
  
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Correspondingly, the key parameters of  and  in Eq.(11) that depend on the locations of la ra

point projection (i.e.  and ) in these images are derived aslu ru

(12)
cos

cos( )

l l
l

l

x
a p

p


 




(13)
cos

cos( )

r r
r

r

x
a q

q


 




with

(14)
1, / 2

1, / 2

l

l

u L
p

u L


  

(15)
1, / 2

1, / 2

r

r

u L
q

u L

 
  

where , , , . tan /l lx f  2l lx u L



  tan /r rx f  2r rx u L



 

For comprehension, a brief derivation of Eq.(11) for the case of  and  as / 2lu L / 2ru L

shown in Fig.4a, is given in the Appendix. Similarly, the computational formulae of the 3D 

coordinate  of a space point  can be derived for the other three cases,  and ( , , )X Y Z P / 2lu L

;  and ;  and , which are omitted for brevity. / 2ru L / 2lu L / 2ru L / 2lu L / 2ru L

Hence, the 3D coordinates of all the key corners in the image contour of each particle can be 

computed, and therefore, are used to approximately reconstruct the 3D geometry model of each 

particle shape, as shown in Fig.2. 

4.2 Measurement error analysis

The derivation in the above section indicates that the 3D coordinates of key corners depend 

on the structural parameters of the non-invasive binocular micro-vision system shown in Fig.1, i.e., 

the pixel equivalent and the location of the image points. The 3D coordinate of such a space point 

can be expressed as a vector function,

(16)( , , ) ( , , , , , )l rX Y Z F f b u u 

It is therefore seen that the measurement error arises from the structural parameter error 

( ), the size calibration error , and the image corner extraction error ( ). In , ,f b     ,l ru u 

fact, the structural parameter error could be negligible or reduced to a very small value if the non-

invasive binocular micro-vision system is properly installed. Therefore, the size calibration error 
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and image corner extraction error should be mainly considered to ensure the 3D measurement 

accuracy. It should be noted that the size calibration error is affected by the imaging object distance. 

Hence, different pixel equivalent values should be taken into account with respect to different 

imaging object distances, especially for a large depth-of-field imaging system. 

Verification of the measurement error is necessary for practical application. However, few 

references addressed feasible verification methods for micro-scale particle size measurement. It 

remains open as yet to verify the accuracy and reliability of measuring 2D or 3D particle sizes by 

using a micro-vision system. To tackle the difficulty, two critical indices including the space size 

and dip angle are therefore introduced for assessing accuracy of the reconstructed stereo shape for 

an imaged particle. Note that the dip angle is a 3D index which is not needed for 2D measurement. 

In this study, a linear micro-scale ruler is used for experimental verification, in consideration of 

that different sizes can be directly exemplified in micro-scale. Meanwhile, a geometric holder is 

used to provide a dip angle of 65o for placing the micro-scale ruler to conduct 3D measurement. 

Fig.5 shows a schematic diagram of the experimental verification. The measurement results for the 

line segments from point B to point C (denoted by B-C), from point A to point C (denoted by A-

C) and from point A to point D (denoted by A-D) are listed in Table 1, where the relative 

measurement error is defined by

(17)| | / 100%E a b b  

where  is the measured value, and  is the true value.a b

It is seen that the averaged relative error for measuring these segments is smaller than 5%, 

while the averaged relative error for measuring the dip angle is only about 5%, well demonstrating 

good accuracy of the proposed 3D measurement method. Note that if the structural parameters of 

the imaging system could be measured more precisely, the relative error will be further reduced. 

4.3 Measurement of 3D sizes and particle volume 

The reconstructed 3D geometry model for each particle is used to measure the 3D sizes 

(namely, length, width and height) and particle volume. In view of that the 3D shapes for α- and β-

form particles are obviously different from each other, as shown in Fig.2, the corresponding 

measurement algorithms are proposed below, respectively. 
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For an α-form particle, it is seen from Fig.2b that there are four external and internal key 

corners, respectively. Denote the external corner points by  and the e e e e{ ( , , ), 1, 2,3, 4}n n n nP x y z n 

internal corner points by . To describe the length of the reconstructed i i i i{ ( , , ), 1, 2,3, 4}n n n nP x y z n 

3D geometry model, the length of α-form particle is computed as

, (18)l lmax( )nS d 1,2,3, 4n 

where ,  denote the line segment lengths ， ，  l

nd 1, 2,3, 4n  1 2

e e( , )D P P 2 3

e e( , )D P P 3 4

e e( , )D P P

and , respectively.
4 1

e e( , )D P P

Correspondingly, the width of α-form particle is computed as

, (19)w wmin( )nS d 1, 2,3,4n 

where ,  denotes the distances between  and the line segment ,  w

nd 1,2,3,4n  1

eP 3 4

e eP P 2

eP

and the line segment ,  and the line segment ,  and the line segment , 
1 4

e eP P 3

eP 1 2

e eP P 4

eP 2 3

e eP P

respectively.

To compute the height of the reconstructed 3D geometry model, two fitting planes of the 

external and internal corner points are constructed, respectively. Suppose a fitting plane expressed 

by , where , ,  are unit normal vectors of the plane, satisfying ax by cz d   a b c

 and . For four space points denoted by , a 2 2 2 1a b c   0d  { ( , , ), 1, 2,3, 4}n n n nP x y z n 

recognized optimization program 39 for determining the fitting plane parameters  can ( , , , )a b c d

be used, 

(20)
,

2
4

, ,
1

(m )in
a

n n n
b c d

n

ax bx cz d


  
To solve the above optimal program, let  and a penalty function with | |n n n ns ax by cz d   

the Lagrange multiplier is defined by

(21)
2 2 2

1

2
4

( 1)n

n

f a b cs 


    

    The derivative of Eq.(21) with respect to  is obtained asd

(22)

4

1

2 ( )n n

n

nax bx cz d
f

d 


  




By letting (22) be zero, it yields

(23)

4 4 4

1 1 1

4 4 4

n n

n

n

n n

d a b c

x y z
    
  
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Similarly, by letting the derivative of Eq. (21) with respect to , ,  be zero, respectively, a b c

there follows 

(24)

4

1

4

1

4

1

( )

( )

( )

0

0

0

n

n

n n n n

n n n n

n n n n

n

a x b x c z x

a x b x c z

a

by

a x b cx c z z













  



 





     

     

      







where , , and .=n n nx x x  =n n ny y y  =n n nz z z 

The eigenvalue equation of Eq.(24) is defined by

(25)Ax x

where

(26)( , , )Ta b cx

(27)

n n n n n n

n n n n n n

n n n n n n

x x x y x z

x y y y y z

x z y z z z

     
     
   

 
  
  

A

    
The eigenvalue value of Eq.(25) can be solved as

(28)

4
2 2

4

1 1

( , )

( , )
( )

n

n n n n

n

a x b x c z s
 

       Ax x

x x

where  denotes the inner product of two vectors.(, )

The minimum of  corresponds to the smallest eigenvalue of , which therefore 

4

1

2

n

n

s

 A

determines the optimal eigenvector . Hence, the optimal fitting planes of the external and ( , , )a b c

internal corner points could be determined, respectively.

Considering that the fitting plane of the external corner points may not be in parallel with that 

of the internal corner points, the height of an α-form particle is computed as

(29)

8

h h

1

1

4

n

n

S d


 
where ,  denotes the distances between the point  and the fitting plane of h

nd 1, 2, ,8n  L
e

nP

, the point  and the fitting plane , respectively. Note that 
1 2 3 4

i i i i( , , , )P P P P i

nP 1 2 3 4

e e e e( , , , )P P P P

owing to the α-form particle is symmetrical with respect to the fitting plane composed of the 

external corner points, the height is computed as double of the averaged distance between these 

two fitting planes.
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For a β-form particle, the identified key corners are used to reconstruct a 3D geometry model 

of the cuboid shape. Owing to that the cuboid shape could be efficiently approximated by the 

minimum-volume bounding box approach 40, 41, 3D sizes of a β-form particle can therefore be 

measured by using this approach for the reconstructed cuboid. 

Based on the above measured 3D sizes, the particle volume can be quantitatively computed, 

such as from a reconstructed cuboid. However, such computation may give rise to undesirable 

estimation error. To improve the computation accuracy, it is proposed to view the reconstructed 

particle shape as a convex hull for computation. By using the Delaunay triangulation principle 42, 

a convex hull can be subdivided into  tetrahedrons. Denote by sN

 four vertex coordinates of the -th tetrahedron, the , , ,{( , , ), 1,..., 4, 1,..., }t n t n t n sx y z t n N  n

volume of the -th tetrahedron can be computed asn

(30)
1, 2, 3, 4,

1, 2, 3, 4,

1, 2, 3, 4,

1 1 1 1

1

6

n n n n

n

n n n n

n n n n

x x x x
V

y y y y

z z z z

 

Accordingly, the particle volume is estimated based on the symmetry as

(31)
1

2
sN

n

n

V V


 

5. Experimental results

Two cooling crystallization experiments on α- and β-form LGA were performed, respectively, 

based on the non-invasive binocular imaging system for 3D morphology measurement, with the 

same experimental conditions introduced in Section 2, except for the cooling rates of 1°C/min for 

α-form LGA and 0.2°C/min for β-form LGA. Note that to transform the image pixel into a physical 

unit for computation, the calibration method 11 with circle scale was used to obtain the pixel 

equivalent before the measurement. For comparison, an off-line electron microscope (Leica DM 

2500, LAS_v4.4) was also used for verifying the sizes and volumes of final crystal products. 

Before 3D reconstruction of particle shapes, image processing was conducted for in-situ 

captured double-view images of α-form LGA crystals during the crystallization process, as shown 
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in Fig.6. For illustration, a pair of the original double-view images including α-form crystals is 

shown in Fig.6a. Fig.6b shows the preprocessed image pair of the outlined α-form crystal in Fig.6a 

by the Canny method. Using the proposed corner detection method for α-form crystals, Fig.6c 

shows the detected results of external and internal contour edges of this α-form crystal. Accordingly, 

the corner detection results are shown in Fig.6d, well demonstrating that the proposed image 

analysis method effectively detected the key corners in real time. The detected key corners were 

then used for 3D reconstruction of this crystal shape. 

A reconstructed stereo shape of α-form crystals is illustrated in Fig.7. The 3D coordinates of 

the eight key corners are computed by the proposed geometry model formulae, as shown in Fig.7a. 

The correspondingly reconstructed 3D geometry model is shown in Fig.7b. Note that the symmetry 

of an α-form crystal should be considered in the final geometry reconstruction, which is omitted.

Similarly, a stereo reconstruction of β-form LGA crystals is illustrated in Fig.8, based on the 

in-situ captured double-view images. Fig.8a shows the in-situ captured images of β-form crystals. 

After image preprocessing, the segmented double-view images for a sampled β-form crystal are 

shown in Fig.8b. Then Fig.8c shows the corner detection results for this β-form crystal. Finally, a 

stereo shape of this β-form crystal is approximately reconstructed based on the corresponding key 

corners, as shown in Fig.8d. 

Note that the total time spent for the proposed method to measure the 3D sizes of an α- form 

LGA crystal was about 1.52 seconds, and about 1.48 seconds for a β-form LGA crystal, based on 

a monitoring computer configured with CPU of Intel 3.40 GHZ and RAM of 8.00G. The time was 

sufficiently small for implementing an on-line control strategy as studied in the recent paper 43, 

where the sampling time for control implementation was taken as tens of second or even a few 

minutes for LGA cooling crystallization.

To demonstrate the effectiveness of the proposed method, an off-line measurement of CSD 

using an electron microscope was also performed on the final crystal products for verification. In 

view of that an electron microscope could only measure the 2D sizes of each crystal, comparison 

between the proposed method and an electron microscope was therefore made for measuring the 

CSDs in length and width for LGA crystal products of α-and β-forms, respectively. Almost 200 
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particles randomly taken from the LGA crystal products were used for measuring CSD of α- and 

β-form crystals, respectively. For illustration, the measured CSDs were fitted by the probability 

density estimation with the normal kernel function 44. The measured CSD results are plotted in 

Fig.9 in comparison with off-line measurement by an electron microscope based on the pre-

processed samples of LGA crystal products, well demonstrating the consistency between each other. 

To further demonstrate the superiority of the proposed method over the recently developed 

2D size measurement method 11 based on the image projection of a particle in a 2D fitting plane, 

Table 2 shows a comparison of relative errors between the proposed method (denoted by 3DM) 

and the 2D size measurement method (denoted by 2DM) with reference to the off-line measurement 

by an electron microscope, where the peak size denotes the peak value of CSD. It is seen that 

evidently improved accuracy on the 2D size measurement is obtained by the proposed method.

In view of that the above LGA crystal products are too tiny in volume to be measured by an 

electron microscope for off-line verification, the needle-like monosodium glutamate crystals with 

relatively larger 3D sizes of millimeter-scale were used to verify the proposed volume computation 

method, owing to that their shapes are similar to β-form LGA crystals and these particles can 

be manually deployed for in-situ or off-line measurement. The experiment was carried out by fixing 

thee needle-like monosodium glutamate crystals on the inside wall of the glass crystallizer for in-

situ measurement by the non-invasive binocular imaging system, as shown in Fig.10(a). The 

proposed volume computation method is therefore used based on 3D shape reconstruction. For 

comparison, the off-line measurement was conducted by measuring two side faces (length×width 

and length×height) of each particle with an off-line electron microscope for computing the particle 

volume, as shown in Fig.10(b). The measurement results are listed in Table 3. It is seen that the in-

situ measurement results by the proposed method are in good agreement with the off-line 

measurement by an electron microscope, with averaged relative errors below 10%. These results 

well demonstrates that the proposed method can be effectively used for in-situ assessment of 

particle volumes during the crystallization process, thus facilitating on-line monitoring of crystal 

growth kinetics and quality.
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6. Conclusions

An in-situ measurement method has been proposed for monitoring 3D CSD during a 

crystallization process, based on double-view images simultaneously captured by a non-invasive 

binocular micro-vision system. By detecting the particle edges from the captured double-view 

images with fast image preprocessing algorithms to overcome the influence from solution 

turbulence and uneven illumination background involved with in-situ imaging, two fast algorithms 

for real-time implementation are proposed to locate the key corners in the captured images for two 

typical crystal morphologies of prismatic and needle-like shapes, such as α- and β-forms of LGA, 

respectively. Based on the identified key corners, a 3D geometry model is established to 

approximate the 3D shape of each captured particle. Two fast algorithms are given to compute 3D 

sizes of α- and β-form LGA crystals from the reconstructed 3D shapes, respectively. In addition, a 

tetrahedron based fast algorithm is given to quantitatively measure the volume of each imaged 

particle. Experimental tests on the cooling crystallization processes of α- and β-form LGA crystals 

have well demonstrated the effectiveness of the proposed method for in-situ monitoring 3D crystal 

morphologies, with good accuracy on measuring the length and width of crystals in comparison 

with off-line measurement by an electron microscope or the recent 2D crystal size measurement 

method given in the previous work 11. Moreover, the in-situ measurement accuracy on particle 

volume by the proposed method is validated via needle-like monosodium glutamate crystals, in 

comparison with off-line measurement by an electron microscope. It should be noted that the 

accuracy of such a 3D geometry model for approximation depends on the identified key corners. 

If no sufficient key corners could be detected for a particle image, its 3D morphology may not be 

completely reconstructed, in particular for very small particles that could not be effectively imaged. 

It therefore deserves a further study on multi-directional imaging with more cameras or a 

predefined data set to facilitate 3D shape reconstruction in the future work, along with real-time 

classification methods on different particle shapes. 
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Appendix: Derivation of Eq.(11)

From Fig.4a, the following two equations stand according to the common property of two 

similar triangles,

(A1)
1 1

1

cZ f b a

Z b

 


(A2)
2 2

2

cZ f b a

Z b

 


where  and .coscf f  1 2b b b 

The above equations can be equivalently transformed into

(A3)
1 1 1

c

b a b

Z f Z






(A4)
2 2 2

c

b a b

Z f Z






Since , it can be derived that1 2b b b 

(A5)
1 2

cbf
Z

a a




Fig.4b shows the geometric diagram in the left view of camera. According to the sine law, 

there follows

(A6)
sin(90 ) sin(90 )l l

l lm x

    


where .sinln f 
It can be derived from (A6) that

(A7)
sin(90 )

sin(90 )

l l
l

l

x
m


 



 

It can be seen from Fig.4b that

(A8)1 l la m n 

Since Fig.4c shows the geometric diagram in the right view of camera, it follows from the 

sine law that

(A9)
sin(90 ) sin(90 )r r

r rm x

    


where .sinr rn f m 
It can be derived from (A9) that

(A10)

sin(90 )

sin(90 )

r r
r

r

x
m


 



 
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It can be seen from Fig.4c that

(A11)2 ra n

Therefore, 

(A12)1 2 l l ra a m n n   

By substituting (A12) into (A5), it yields

(A13)
cos

sin(90 ) sin(90 )
2 sin

sin(90 ) sin(90 )
l l r r

l r

bf
Z

x x
f


 

   


  

   

which may be rewritten as

(A14)
cos

cos cos
2 sin

cos( ) cos( )
l l r r

l r

bf
Z

x x
f


 

   


 

 

where , , , and .tan /l lx f  2l lx u L



  tan /r rx f  2r rx u L



 
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List of Table and Figure Captions

Table 1. Measurement errors on a micro-scale rule with a dip angle of 65°. 

Table 2. Comparison of relative measurement errors (%) between the proposed method and a 

2D measurement method with reference to offline measurement by an electron 

microscope.

Table 3. Volume measurement errors on three different monosodium glutamate particles 

Fig.1 Non-invasive binocular micro-vision system for monitoring a crystallization process.

Fig.2 LGA crystal morphologies of α- and β-forms.

Fig.3 Plot of the inner distances of contour points in an α-form crystal image.

Fig.4 The geometry model of a stereo imaging system.

Fig.5 Schematic diagram of the measurement test on a micro-scale ruler.

Fig.6 Image processing results for α-form LGA crystals.

Fig.7 3D morphology reconstruction for an α-form LGA crystal.

Fig.8 Illustration of image processing and 3D reconstruction results for a β-form LGA 

crystal. 

Fig.9 In-situ measured results of LGA CSD compared to offline measurement by an electron   

microscope.

Fig.10 Experimental verification on volume computation via monosodium glutamate 

particles.
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Table 1 Measurement errors on a micro-scale rule with a dip angle of 65°

True length (μm) 500 (B-C) 1000 (A-C) 1500 (A-D)
Averaged relative 

error (%)

Measured length (μm) 481.18 976.32 1427.83 3.65

Measured dip angle (°) 60.35 61.92 63.28 4.85

Table 2 Comparison of relative measurement errors (%) between the proposed method and a 2D 

measurement method with reference to offline measurement by an electron microscope

α-form β-form
Method Size

Length

(μm)

Width

(μm)

Length

(μm)

Width

(μm)

Averaged 

relative 

error (%)

Mean 3.28 2.87 4.16 3.73

3DM

Peak 4.39 3.29 3.08 3.84

3.58

Mean 7.97 7.48 7.92 4.78

2DM

Peak 8.25 6.71 8.74 5.63

7.19

Table 3 Volume measurement errors on three different monosodium glutamate particles 

Item Particle 1 Particle 2 Particle 3

Off-line verification (mm3) 0.462 0.371 0.355

The proposed method (mm3) 0.419 0.338 0.323

Relative error (%) 9.31 8.89 9.01
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(a)                                                   (b)

Fig.1 Non-invasive binocular micro-vision system for monitoring a crystallization process: 

(a) external view; (b) schematic diagram.
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       (a)                 (b)

Fig.2 LGA crystal morphologies of α- and β-forms: (a) crystal images; (b) simplified reconstructions 

(external contour edges are marked in red and internal contour edges are marked in blue for α form). 

   

-180 -90 0 90 180
-4

0

4

8

Fig.3 Plot of the inner distances of contour points in an α-form crystal image 

(The contour image is in the top left corner and the extremum points are marked in red).
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Fig.4 The geometry model of a stereo imaging system: (a) stereo imaging; (b) the left-view model;

 (c) the right-view model.

         

Fig.5 Schematic diagram of the measurement test on a micro-scale ruler.
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(a)

 

 (b) 

 

(c)

  

(d)

Fig.6 Image processing results for α-form LGA crystals: (a) original double-view images;         

(b) segmented double-view images for a sampled crystal; (c) external and internal contours; (d) the 

key corners.
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(b)

Fig.7 3D shape reconstruction for an α-form LGA crystal: (a) 3D locations of the key corners; (b) 3D 

shape reconstruction.
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(d)

Fig.8 Illustration of image processing and 3D reconstruction results for a β-form LGA crystal: 

(a) original double-view images; (b) segmented double-view images for a sampled crystal; (c) 

key corner detection; (d) 3D shape reconstruction.
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(g)                                    (h)

Fig.9 In-situ measured results of LGA CSD compared to off-line measurement by an electron microscope: 

(a) the length distribution of α-form LGA by the proposed method; (b) the length distribution of α-form 

LGA by off-line measurement of microscopy; (c) the width distribution of α-form LGA by the proposed 

method; (d) the width distribution of α-form LGA by off-line measurement of microscopy; (e) the length 

distribution of β-form LGA by the proposed method; (f) the length distribution of β-form LGA by off-line 

measurement of microscopy; (g) the width distribution of β-form LGA by the proposed method; (h) the 

width distribution of β-form LGA by off-line measurement of microscopy.
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      (a)                           (b)

Fig.10 Experimental verification on volume computation via monosodium glutamate particles: (a) the 

proposed method based on in-situ double-view imaging; (b) off-line measurement on three different 

monosodium glutamate crystals by an electron microscope.
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Abstract: In this paper, an in-situ measurement method is proposed for monitoring three-

dimensional (3D) crystal size distribution (CSD) during a crystallization process, based on a 

binocular micro-vision system. The stereo particle shape is reconstructed from double-view images 

captured by two microscopic cameras fixed at different angles outside the crystallizer. To overcome 

the influence from solution turbulence and uneven illumination background involved with in-situ 

imaging, a microscopic double-view image analysis method is established to identify the key 

corners of each particle shape in the captured images, including corner detection and corner 

matching. Two fast algorithms are therefore given for on-line detection of two typical crystal 

morphologies of prismatic and needle-like shapes, such as α- and β-forms of L-glutamic acid (LGA) 

crystals, respectively. Based on the identified key corners for different particle shapes, a 3D 

geometry model is established to approximately reconstruct the 3D shape for each imaged particle, 

such that 3D sizes of each particle could be quantitatively estimated, along with the particle volume. 

Experiments on the LGA cooling crystallization are performed to demonstrate the effectiveness of 

the proposed method.  

Keywords: Crystal size distribution, three-dimensional (3D) particle size measurement, binocular 

micro-vision system, 3D geometry reconstruction, corner detection, L-glutamic acid crystallization.   
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1. Introduction 

The crystallization technology has been widely used for separating different components from 

solution and purifying particle products in chemical and pharmaceutical industries. For control and 

optimization of crystallization processes, on-line process analytical technologies (PATs) have been 

explored for assessing the crystal morphology, growth rate and quality 1-4. With a rapid 

development of the photoelectric technology, on-line image based monitoring methods were 

increasingly studied for measuring the sizes and shape of crystals 5-9. Based on image analysis of 

multi-dimensional crystal sizes and shape feature, a few crystal morphology analysis methods were 

developed for monitoring the crystal quality during crystallization 10, 11. The developed imaging 

systems for monitoring crystallization processes mainly include two types: invasive and non-

invasive. For using an invasive imaging system, e.g., the digital particle vision and measurement 

(PVM) 12 , the imaging probe could be stuck into the crystal slurry to capture the crystal images. A 

novel invasive imaging probe was recently developed based on the existing image analysis methods 

to cope with blurry images with noise 13. In contrast, a non-invasive imaging system is installed 

outside a crystallizer to image the crystallization process by the observation window 14, 15. 

Compared with an invasive imaging system, a non-invasive imaging system could avoid the 

contamination of camera lens from the crystal slurry. However, the lighting source of a non-

invasive imaging system needs to be carefully installed in an opposite position to the cameras 

outside the crystallizer, in order to provide sufficient illumination for real-time imaging. 

With crystal images captured by an invasive or non-invasive imaging system, Larsen et al. 16 

developed an efficient image processing algorithm for analyzing the crystal size distribution (CSD) 

of high-aspect-ratio crystals. Zhang et al. 17 proposed a few particle shape descriptors based on the 

principal component analysis (PCA) to classify polymorphic organic crystals during batch 

crystallization. A synthetic image analysis method 11 was recently presented for in-situ crystal size 

measurement and shape identification. Gao et al. 8 proposed an in-situ measurement method based 

on the recently developed deep learning technology to classify α- and β-forms of L-glutamic acid 

(LGA) crystals and measure the two-dimensional (2D) sizes of length and width, along with an 

estimation of the surface area. This approach needs a large amount of samples of α- or β-form 
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crystals for off-line training along with a demanding computation effort. For monitoring the crystal 

growth quality, it was pointed out that 2D image analysis methods could provide relatively less 

information than those of 3D imaging methods 18-20. Bujak and Bottlinger 21 adopted three 

orthogonally installed cameras to measure 3D sizes of particles with irregular shapes, but not for 

imaging crystals in the slurry. An off-line 3D shape measurement method was developed based on 

assembling the 2D surface images of a crystal captured by using a regular reflection of light 22. 

Another off-line 3D size measurement method 23 was proposed for cuboid crystals such as β-form 

LGA, by using a multi-projection imaging system consisting of one camera and two mirrors. This 

approach was subsequently extended for on-line measurement by imaging a flow through cell using 

a sampling loop with two external cameras installed orthogonal to each other 24, which was mainly 

devoted to cuboid crystals. Borchert et al. 25 developed an alternative image analysis method for 

reconstructing the 3D crystal shape from the corresponding 2D crystal projections, where the 

Fourier descriptors were used to detect the crystal shape outline based on a pre-defined database of 

different crystal shapes. Recently, a new dual-camera measurement device was developed for real-

time monitoring of particle shapes rather than 3D size measurement via a circulating pipeline 26, 

based on an image segmentation algorithm for background extraction and a volume intersection 

method for classification of different 3D particle shapes. Ma et al. 27 presented a proof-of-concept 

of 3D shape reconstruction based on using two no-invasive cameras installed with a pre-specified 

angle to synchronously capture images, which was further extended in the references 20, 28 for 

roughly estimating 3D size growth of crystals rather than quantitative measurement. For using a 

binocular micro-vision system to capture stereo images for analysis, a few calibration methods for 

guaranteeing the measurement accuracy were reported in the references 29, 30, but these methods 

could not be used for in-situ installed micro-vision systems subject to uneven illumination 

background, particle motion, and solution turbulence usually involved with crystallization 

processes. Although the recent work 31 developed a microscopic double-view image analysis 

method for in-situ measurement of 2D particle sizes, it remains open to measure the third 

dimensional particle size that could be perpendicular to the 2D imaging plane, and therefore, the 

particle volume could not be estimated therein. 
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To tackle the difficulty of measuring 3D sizes and volumes of particles during crystallization, 

an in-situ image-based measurement method is proposed in this paper with application to the 

cooling crystallization processes of α- and β-form LGA crystals, based on a non-invasive binocular 

micro-vision system. Firstly, two fast image analysis algorithms are given for identifying the key 

corners of two typical crystal morphologies, i.e., prismatic α-form and needle-like β-form of LGA 

crystals, respectively. Then, a binocular geometric model is constructed for computing the 3D 

space location of each corner. Based on the computed 3D coordinates of these key corners, a 3D 

geometry model is established to approximately reconstruct the 3D particle shape, which is 

therefore used for measuring the 3D sizes of each particle in the in-situ captured images. A 

measurement test on a micro-scale ruler placed in 3D location is conducted to verify the accuracy 

of the proposed method for 3D size measurement. In addition, another fast algorithm is given for 

computing the volumes of particles with image reconstruction, for the convenience of real-time 

application. Experiments on monitoring the cooling crystallization process of LGA are performed 

to demonstrate the effectiveness of the proposed method for in-situ measurement of particle sizes. 

 

2. Experimental set-up 

2.1 Non-invasive binocular micro-vision system for in-situ measurement 

The experimental set-up for using a non-invasive binocular vision system to monitor a cooling 

crystallization process is shown in Fig.1, where the crystallizer consists of a 4L jacketed glass 

reactor (ACE-AIO 4000), a 4-paddle agitator (PTFE), a thermostatic circulator (Julabo-CF41), and 

a temperature probe (Pt100). The non-invasive binocular vision system for in-situ imaging during 

crystallization was made by Hainan Six Sigma Intelligent Systems Ltd. (product no. Stereo Vision 

Crystal-G), which consists of two microscopic cameras and two lighting sources commanded by a 

light controller (Gardasoft RT260-20) for snapshot. Each camera has a CCD sensor with the 

maximum pixel resolution of 2448×2048 and a micro lens set at a distance of 40mm from the 

reactor glass wall (the maximum working distance is about 65mm). The maximum frame rate is 

6.5 fps for each camera. For in-situ measurement, two microscopic cameras are situated up and 

down in a line outside the glass vessel so as to alleviate the distortion for capturing images, while 
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there is an intersection angle of 12.5 degree between the optical axes of two cameras. The lighting 

sources are installed in line with the camera lens on the other side of the glass vessel, providing the 

lighting illumination of 350lux. For real-time analysis, a pair of microscopic images is 

synchronously shot via two cameras per two seconds during the crystallization process. 

2.2 Crystallization material of LGA 

The solute material used in this study is LGA (C5H9NO4). LGA has two typical polymorphic 

forms 5, 32, prismatic α-form and needle-like β-form, as shown in Fig.2. Different linear cooling 

rates 5 were studied to procure these two product forms. In this work, the LGA solution was taken 

as distilled water.  

To perform a cooling crystallization experiment of LGA, the solution is initially heated up to 

70°C and then maintained at the temperature until all the LGA solute is completely dissolved. After 

that, the solution is cooled down to 20°C by a specified cooling rate and maintained at the 

temperature until the end of experiment. The agitator is operated at a constant rate of 200 rpm to 

maintain the uniformity of particle distribution in the suspension during crystallization. 

 

3. Double-view image analysis on the key corners of particle shapes 

Since double-view images in-situ captured by a non-invasive binocular vision system shown 

in Fig.1 were blurred by solution turbulence and uneven illumination background, it is necessary 

to identify salient features of particle shapes in these images for analyzing 3D particle morphology 

and sizes. To exclude the noise affect, the well-known median filter 33 may be used to recover the 

denoised grayscale images from the captured images for real-time analysis. Then, a multi-scale 

segmentation with the Canny operator 34 is preferred to detect the particle shape edge from a 

denoised image. Note that any unobvious edge points could be removed by using a specified 

threshold. By filling the gaps between identified edge points with their adjacent edge features, the 

contour edge of each particle image could be determined in an efficient manner. 

For reconstructing 3D particle shapes based on the pre-processed images to measure the 

particle 3D sizes, it is proposed to detect the key corners of each particle. LGA crystals have two 

typical polymorphic forms, prismatic α-form and needle-like β-form 8, 35, as shown in Fig.2a. Note 
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that these two shapes could be distinguished from in-situ captured images by using the inner 

distance descriptor introduced in the previous work 11. However, their key corners are distinct from 

each other in the geometric location for shape reconstruction, as shown in Fig.2b. Concerning an 

α-form crystal, the 3D image contour after edge detection includes external and internal edges, and 

correspondingly, there are eight key corners to be detected, including four external and internal key 

corners, respectively. In contrast, a β-form crystal has a needle-like shape where the key corners 

are located at both ends of the image contour. Two different algorithms are therefore proposed to 

detect the key corners of α- and β-form crystals, respectively. 

For detecting the key corners of an α-form crystal, the coordinates of all the contour points 

are denoted by ( , )n nx y , where 1, 2, ,n N=  , and therefore, the centroid coordinate denoted by 

( , )c cx y  is defined by 

 

1

0

1

0

1

1

N

c n

n

N

c n

n

x x
N

y y
N

−

=

−

=


=


 =





 (1) 

Correspondingly, the inner distances from the centroid to the boundary points are defined by 

 2 2( ) ( )n c n c nd x x y y= − + −  (2) 

The inner distances of all the contour points are plotted in Fig.3, where the peak points are 

defined as the extremum points of the contour. The set of each edge point is composed of the 

boundary points between every two edge extreme points. The fitting lines j jy a x b= + , 1,..., 4j =  

along each edge are optimized by a least-squares (LS) algorithm as 

 1

1
( )( )

K
j j j j

j k kj
k

j j

j j

a x x y y
C

b y a x

=


= − −


 = −


 (3) 

where 
2

1

( )
K

j j j

k

k

C x x
=

= − , and K  is the point number.  

The key corners of either external or internal contour edges are determined by computing the 

crossover points of the above fitting lines. Note that the external and internal key corners are 

detected for determining the external and internal contour edges, respectively, as shown in Fig.2b.  

For clarity, the proposed corner detection algorithm for prismatic α-form crystals is 
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summarized below. 

Step 1: Find the external or internal contour edges using the Canny edge detector; 

Step 2: Define the extremum points of external or internal contour edges in a particle image, by 

computing the centroid coordinates of the external or internal contour edges via Eq.(1) and the 

inner distances of all the contour points via Eq.(2), and then choosing the peak points in the plot of 

the inner distances; 

Step 3: Fit the external contour edges in a particle image by optimizing the fitting lines along each 

edge via Eq.(3); 

Step 4: Determine the external and internal key corners by computing the crossover points of the 

above fitting lines. 

 

For detecting the key corners of a β-form crystal, the candidate corners are selected based on 

the curvature scale-space method that has good robustness against noise 36, 37. For the particle 

contour described by ( )( ) ( ), ( )u x u y uψ = , where u  denotes the length parameter, the 

corresponding multi-scale curve ( , )uψ σ  under a scale σ  is defined by 

 ( )( , ) ( , ), ( , )u X u Y uψ σ σ σ=  (4) 

where  

 
( , ) ( ) ( , )

( , ) ( ) ( , )

X u x u g u

Y u y u g u

σ σ

σ σ

= ∗


= ∗
 (5) 

where ∗ denotes the convolution operator, and ( , )g u σ  denotes a Gaussian function with the 

standard deviation σ . 

The curvature of ( , )uψ σ  is computed by 

 ( )
1.5

2 2

( , ) ( , ) ( , ) ( , )
( , )

( , ) ( , )

u uu uu uX u Y u X u Y u
u

X u Y u

σ σ σ σ
ψ σ

σ σ

−
=

+
 (6) 

where ( , )uX u σ  and ( , )uuX u σ  are the first and second order derivatives of ( , )X u σ  with 

respect to u. ( , )uY u σ  and ( , )uuY u σ  are the first and second order derivatives of ( , )Y u σ  with 

respect to u. 

According to Eq.(6), the curvature ( , )juψ σ  of an edge point on the scale j  can be 
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computed, and then the curvature product at four different scales is computed as 

 

4

1

( ) ( , )j

j

u uψ σ
=

Γ = ∏  (7) 

Subsequently, a local maximum edge point with a curvature product greater than a specified 

threshold, e.g., 0.03T =  given in the reference 37 for corner detection, is taken as a candidate 

corner. Considering that corner points should be at both ends of the crystal shape as shown in Fig.2b, 

the key corners are determined by specifying a criterion, i.e., the inner distance of a candidate 

corner should be no less than one third of the crystal length.  

Hence, the proposed corner detection algorithm for need-like β-form crystals is summarized 

below. 

Step 1: Find the external contour edges using the Canny edge detector; 

Step 2: Define the corners of the contour edges in a particle image by the curvature scale-space 

approach using Eqs.(4-7); 

Step 3: Exclude those corners not complying with the inner distance criterion. 

 

After the key corner detection, matching the key corners between double-view images is 

conducted by using the BRIEF descriptor 38 owing to its robustness and fast speed for real-time 

application. To determine the descriptor, a square region I  of size S S×  (i.e., pixel number) is 

chosen around such a key corner. Denote by ip  and iq  two different pixel points located in I , 

where i  is the pixel index and N  is 256. To avoid sensitivity to noise, each region is 

preprocessed by the Gaussian smoothing approach 38. Then, an N -bit vector denoting the BRIEF 

descriptor is defined by  

 
1

1

( ) 2 ( ; , )i

N i i

i N

b I g I p q−

≤ ≤

=   (8) 

where 

 
1 ( ) ( )

( ; , )
0 otherwise

i i

i i

if I p I q
g I p q

<
= 


 (9) 

where ( )iI p  and ( )iI q  are the intensities of ip  and iq  in the region I . Note that ( , )i ip q  

follow the Gaussian distribution of 
2(0,1/ 25 )S . 
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The similarity between corner descriptors computed from double-view images is then 

measured by the Hamming distance 38, which determines the matching pairs of key corners in 

double-view images in terms of the maximum similarity degree.  

It should be noted that the quality of particle morphology reconstruction depends on the 

identified key corners, which is affected by 3D location of each particle in the captured images. 

 

4. Stereo shape reconstruction and measurement of 3D particle sizes 

Based on the identified key corners in double-view images, a 3D geometry model is proposed 

to approximately reconstruct the stereo shape of each particle appearing in double-view images. 

Correspondingly, the 3D sizes and volume of each particle are measured based on the established 

3D geometry model. An error analysis is given to verify the accuracy of the proposed method, 

along with an experiment on measuring a micro-scale ruler by using the non-invasive binocular 

micro-vision system shown in Fig.1. 

4.1 3D geometry model 

Fig.4a shows a geometry model case of imaging a space point denoted by P  with the non-

invasive binocular micro-vision system shown in Fig.1, where the left-view and right-view images 

are captured from the installed upper and lower cameras, respectively. The model origin of the 3D 

coordinate system is set to the left-view centroid as shown in Fig.4a, denoted by O. For 3D shape 

reconstruction, the 3D coordinate ( , , )X Y Z  of a space point P  is a function of the 2D 

coordinates denoted by lP  and rP  in the double-view projections. Denote by ( , )l l lP u v  and 

( , )r r rP u v  the imaging points from the left-view and right-view, respectively, both of which have 

the same size of L H×  (length × height) with P . Denote by γ  the pixel equivalent without 

amplification, by κ  the amplification coefficient, by b  the baseline length, and by 2θ , 

( 0 90θ< <  ) the stereo angle. 

Without loss of generality, the 3D coordinate ( , , )X Y Z  of P  is derived as 

 

tan( )

( /2)

= cos / (2 sin )

l

l

l r

X Z p

Y v H

Z bf f a a

θ τ

γ

θ θ

= +


= −
 + +

 (10) 
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Correspondingly, the key parameters of la  and ra  in Eq.(10) that depend on the locations of 

point projection (i.e. lu  and ru ) in these images are derived as 

 
cos

cos( )

l l
l

l

x
a p

p

τ

τ θ
=

+
 (11) 

 
cos

cos( )

r r
r

r

x
a q

q

τ

τ θ
=

+
 (12) 

with 

 
1, / 2

1, / 2

l

l

u L
p

u L

≥
= 

− <
 (13) 

 
1, / 2

1, / 2

r

r

u L
q

u L

− ≥
= 

<
 (14) 

where tan /l lx fτ = , 2l lx u L
γ

κ
= − , tan /r rx fτ = , 2r rx u L

γ

κ
= − .  

For comprehension, a brief derivation of Eq.(10) for the case of / 2lu L≥  and / 2ru L≥  as 

shown in Fig.4a, is given in the Appendix. Similarly, the computational formulae of the 3D 

coordinate ( , , )X Y Z  of a space point P  can be derived for the other three cases, / 2lu L≥  and 

/ 2ru L< ; / 2lu L<  and / 2ru L≥ ; / 2lu L<  and / 2ru L< , which are omitted for brevity.  

Hence, the 3D coordinates of all the key corners in the image contour of each particle can be 

computed, and therefore, are used to approximately reconstruct the 3D geometry model of each 

particle shape, as shown in Fig.2.  

4.2 Measurement error analysis 

The derivation in the above section indicates that the 3D coordinates of key corners depend 

on the structural parameters of the non-invasive binocular micro-vision system shown in Fig.1, i.e., 

the pixel equivalent and the location of the image points. The 3D coordinate of such a space point 

can be expressed as a vector function, 

 ( , , ) ( , , , , , )l rX Y Z F f b u uθ γ=  (15) 

It is therefore seen that the measurement error arises from the structural parameter error 

( , ,f b θΔ Δ Δ ), the size calibration error γΔ , and the image corner extraction error ( ,l ru uΔ Δ ). In 

fact, the structural parameter error could be negligible or reduced to a very small value if the non-

invasive binocular micro-vision system is properly installed. Therefore, the size calibration error 
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and image corner extraction error should be mainly considered to ensure the 3D measurement 

accuracy. It should be noted that the size calibration error is affected by the imaging object distance. 

Hence, different pixel equivalent values should be taken into account with respect to different 

imaging object distances, especially for a large depth-of-field imaging system.  

Verification of the measurement error is necessary for practical application. However, few 

references addressed feasible verification methods for micro-scale particle size measurement. It 

remains open as yet to verify the accuracy and reliability of measuring 2D or 3D particle sizes by 

using a micro-vision system. To tackle the difficulty, two critical indices including the space size 

and dip angle are therefore introduced for assessing accuracy of the reconstructed stereo shape for 

an imaged particle. Note that the dip angle is a 3D index which is not needed for 2D measurement. 

In this study, a linear micro-scale ruler is used for experimental verification, in consideration of 

that different sizes can be directly exemplified in micro-scale. Meanwhile, a geometric holder is 

used to provide a dip angle of 65o for placing the micro-scale ruler to conduct 3D measurement. 

Fig.5 shows a schematic diagram of the experimental verification. The measurement results for the 

line segments from point B to point C (denoted by B-C), from point A to point C (denoted by A-C) 

and from point A to point D (denoted by A-D) are listed in Table 1, where the relative measurement 

error is defined by 

 | | / 100%E a b b= − ×  (16) 

where a is the measured value, and b is the true value. 

It is seen that the averaged relative error for measuring these segments is smaller than 5%, 

while the averaged relative error for measuring the dip angle is only about 5%, well demonstrating 

good accuracy of the proposed 3D measurement method. Note that if the structural parameters of 

the imaging system could be measured more precisely, the relative error will be further reduced.  

4.3 Measurement of 3D sizes and particle volume  

The reconstructed 3D geometry model for each particle is used to measure the 3D sizes 

(namely, length, width and height) and particle volume. In view of that the 3D shapes for α- and β-

form particles are obviously different from each other, as shown in Fig.2, the corresponding 

measurement algorithms are proposed below, respectively.  
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For an α-form particle, it is seen from Fig.2b that there are four external and internal key 

corners, respectively. Denote the external corner points by e e e e{ ( , , ), 1,2,3,4}n n n nP x y z n =  and the 

internal corner points by i i i i{ ( , , ), 1,2,3,4}n n n nP x y z n = . To describe the length of the reconstructed 

3D geometry model, the length of α-form particle is computed as 

 l lmax( )nS d= , 1, 2,3, 4n =  (17) 

where l

nd , 1, 2,3, 4n =  denote the line segment lengths 
1 2

e e( , )D P P ，
2 3

e e( , )D P P ，
3 4

e e( , )D P P  

and 
4 1

e e( , )D P P , respectively. 

Correspondingly, the width of α-form particle is computed as 

 w wmin( )nS d= , 1, 2,3, 4n =  (18) 

where w

nd , 1, 2,3, 4n =  denotes the distances between 
1

eP  and the line segment 
3 4

e eP P , 
2

eP  

and the line segment 
1 4

e eP P , 
3

eP  and the line segment 
1 2

e eP P , 
4

eP  and the line segment 
2 3

e eP P , 

respectively. 

To compute the height of the reconstructed 3D geometry model, two fitting planes of the 

external and internal corner points are constructed, respectively. Suppose a fitting plane expressed 

by ax by cz d+ + = , where a , b , c  are unit normal vectors of the plane, satisfying 

2 2 2 1a b c+ + =  and 0d ≥ . For four space points denoted by { ( , , ), 1,2,3,4}n n n nP x y z n = , a 

recognized optimization program 39 for determining the fitting plane parameters ( , , , )a b c d  can 

be used, 
 

 
,

2
4

, ,
1

(m )in
a

n n n
b c d

n

ax bx cz d
=

+ + −  (19) 

To solve the above optimal program, let | |n n n ns ax by cz d= + + −  and a penalty function with 

the Lagrange multiplier is defined by 

 
2 2 2

1

2
4

( 1)n

n

f a b cs λ
=

= − + + −  (20) 

    The derivative of Eq.(20) with respect to d  is obtained as 

 
4

1

2 ( )n n

n

nax bx cz d
f

d =

∂
= + −−

∂
+  (21) 

By letting (21) be zero, it yields 

 

4 4 4

1 1 1

4 4 4

n n

n

n

n n

d a b c

x y z
= = == + +
    (22) 
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Similarly, by letting the derivative of Eq. (20) with respect to a, b, c  be zero, respectively, 

there follows  

 

4

1

4

1

4

1

( )

( )

( )

0

0

0

n

n

n n n n

n n n n

n n n n

n

a x b x c z x

a x b x c z

a

by

a x b cx c z z

λ

λ

λ

=

=

=


− =




− =



−

Δ + Δ + Δ Δ

Δ + Δ + Δ Δ

Δ + Δ + Δ Δ =








 (23) 

where =n n nx x xΔ − , =n n ny y yΔ − , and =n n nz z zΔ − . 

The eigenvalue equation of Eq.(23) is defined by 

 λ=Ax x  (24) 

where
 

 ( , , )Ta b c=x  (25) 

 

n n n n n n

n n n n n n

n n n n n n

x x x y x z

x y y y y z

x z y z z z

Δ Δ Δ Δ Δ Δ

Δ Δ Δ Δ Δ Δ

Δ Δ Δ Δ

 
 = 
 Δ Δ

A  (26) 

    
The eigenvalue value of Eq.(24) can be solved as 

 
4

2 2
4

1 1

( , )

( , )
( )

n

n n n n

n

a x b x c z sλ
= =

Δ + Δ + Δ= = = Ax x

x x
 (27) 

where (, )  denotes the inner product of two vectors. 

The minimum of 
4

1

2

n

n

s
=
  corresponds to the smallest eigenvalue of A , which therefore 

determines the optimal eigenvector ( , , )a b c . Hence, the optimal fitting planes of the external and 

internal corner points could be determined, respectively. 

Considering that the fitting plane of the external corner points may not be in parallel with that 

of the internal corner points, the height of an α-form particle is computed as 

 

8

h h

1

1

4

n

n

S d
=

=   (28) 

where h

nd , 1, 2, ,8n =   denotes the distances between the point e

nP  and the fitting plane of 

1 2 3 4

i i i i( , , , )P P P P , the point i

nP  and the fitting plane 
1 2 3 4

e e e e( , , , )P P P P , respectively. Note that 

owing to the α-form particle is symmetrical with respect to the fitting plane composed of the 

external corner points, the height is computed as double of the averaged distance between these 

two fitting planes. 
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For a β-form particle, the identified key corners are used to reconstruct a 3D geometry model 

of the cuboid shape. Owing to that the cuboid shape could be efficiently approximated by the 

minimum-volume bounding box approach 40, 41, 3D sizes of a β-form particle can therefore be 

measured by using this approach for the reconstructed cuboid.  

Based on the above measured 3D sizes, the particle volume can be quantitatively computed, 

such as from a reconstructed cuboid. However, such computation may give rise to undesirable 

estimation error. To improve the computation accuracy, it is proposed to view the reconstructed 

particle shape as a convex hull for computation. By using the Delaunay triangulation principle 42, 

a convex hull can be subdivided into sN  tetrahedrons. Denote by 

, , ,{( , , ), 1,..., 4, 1,..., }t n t n t n sx y z t n N= =  four vertex coordinates of the n -th tetrahedron, the 

volume of the n-th tetrahedron can be computed as 

 
1, 2, 3, 4,

1, 2, 3, 4,

1, 2, 3, 4,

1 1 1 1

1

6

n n n n

n

n n n n

n n n n

x x x x
V

y y y y

z z z z

= ×  (29) 

Accordingly, the particle volume is estimated based on the symmetry as 

 
1

2
sN

n

n

V V
=

=   (30) 

 

5. Experimental results 

Two cooling crystallization experiments on α- and β-form LGA were performed, respectively, 

based on the non-invasive binocular imaging system for 3D morphology measurement, with the 

same experimental conditions introduced in Section 2, except for the cooling rates of 1°C/min for 

α-form LGA and 0.2°C/min for β-form LGA. Note that to transform the image pixel into a physical 

unit for computation, the calibration method 11 with circle scale was used to obtain the pixel 

equivalent before the measurement. For comparison, an off-line electron microscope (Leica DM 

2500, LAS_v4.4) was also used for verifying the sizes and volumes of final crystal products.  

Before 3D reconstruction of particle shapes, image processing was conducted for in-situ 

captured double-view images of α-form LGA crystals during the crystallization process, as shown 

in Fig.6. For illustration, a pair of the original double-view images including α-form crystals is 
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shown in Fig.6a. Fig.6b shows the preprocessed image pair of the outlined α-form crystal in Fig.6a 

by the Canny method. Using the proposed corner detection method for α-form crystals, Fig.6c 

shows the detected results of external and internal contour edges of this α-form crystal. Accordingly, 

the corner detection results are shown in Fig.6d, well demonstrating that the proposed image 

analysis method effectively detected the key corners in real time. The detected key corners were 

then used for 3D reconstruction of this crystal shape.  

A reconstructed stereo shape of α-form crystals is illustrated in Fig.7. The 3D coordinates of 

the eight key corners are computed by the proposed geometry model formulae, as shown in Fig.7a. 

The correspondingly reconstructed 3D geometry model is shown in Fig.7b. Note that the symmetry 

of an α-form crystal should be considered in the final geometry reconstruction, which is omitted. 

Similarly, a stereo reconstruction of β-form LGA crystals is illustrated in Fig.8, based on the 

in-situ captured double-view images. Fig.8a shows the in-situ captured images of β-form crystals. 

After image preprocessing, the segmented double-view images for a sampled β-form crystal are 

shown in Fig.8b. Then Fig.8c shows the corner detection results for this β-form crystal. Finally, a 

stereo shape of this β-form crystal is approximately reconstructed based on the corresponding key 

corners, as shown in Fig.8d.  

Note that the total time spent for the proposed method to measure the 3D sizes of an α- form 

LGA crystal was about 1.52 seconds, and about 1.48 seconds for a β-form LGA crystal, based on 

a monitoring computer configured with CPU of Intel 3.40 GHZ and RAM of 8.00G. The time was 

sufficiently small for implementing an on-line control strategy as studied in the recent paper 43, 

where the sampling time for control implementation was taken as tens of second or even a few 

minutes for LGA cooling crystallization. 

To demonstrate the effectiveness of the proposed method, an off-line measurement of CSD 

using an electron microscope was also performed on the final crystal products for verification. In 

view of that an electron microscope could only measure the 2D sizes of each crystal, comparison 

between the proposed method and an electron microscope was therefore made for measuring the 

CSDs in length and width for LGA crystal products of α-and β-forms, respectively. Almost 200 

particles randomly taken from the LGA crystal products were used for measuring CSD of α- and 
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β-form crystals, respectively. For illustration, the measured CSDs were fitted by the probability 

density estimation with the normal kernel function 44. The measured CSD results are plotted in 

Fig.9 in comparison with off-line measurement by an electron microscope based on the pre-

processed samples of LGA crystal products, well demonstrating the consistency between each other.  

To further demonstrate the superiority of the proposed method over the recently developed 2D 

size measurement method 11 based on the image projection of a particle in a 2D fitting plane, Table 

2 shows a comparison of relative errors between the proposed method (denoted by 3DM) and the 

2D size measurement method (denoted by 2DM) with reference to the off-line measurement by an 

electron microscope, where the peak size denotes the peak value of CSD. It is seen that evidently 

improved accuracy on the 2D size measurement is obtained by the proposed method. 

In view of that the above LGA crystal products are too tiny in volume to be measured by an 

electron microscope for off-line verification, the needle-like monosodium glutamate crystals with 

relatively larger 3D sizes of millimeter-scale were used to verify the proposed volume computation 

method, owing to that their shapes are similar to β-form LGA crystals and these particles can 

be manually deployed for in-situ or off-line measurement. The experiment was carried out by fixing 

thee needle-like monosodium glutamate crystals on the inside wall of the glass crystallizer for in-

situ measurement by the non-invasive binocular imaging system, as shown in Fig.10(a). The 

proposed volume computation method is therefore used based on 3D shape reconstruction. For 

comparison, the off-line measurement was conducted by measuring two side faces (length×width 

and length×height) of each particle with an off-line electron microscope for computing the particle 

volume, as shown in Fig.10(b). The measurement results are listed in Table 3. It is seen that the in-

situ measurement results by the proposed method are in good agreement with the off-line 

measurement by an electron microscope, with averaged relative errors below 10%. These results 

well demonstrates that the proposed method can be effectively used for in-situ assessment of 

particle volumes during the crystallization process, thus facilitating on-line monitoring of crystal 

growth kinetics and quality. 
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6. Conclusions 

An in-situ measurement method has been proposed for monitoring 3D CSD during a 

crystallization process, based on double-view images simultaneously captured by a non-invasive 

binocular micro-vision system. By detecting the particle edges from the captured double-view 

images with fast image preprocessing algorithms to overcome the influence from solution 

turbulence and uneven illumination background involved with in-situ imaging, two fast algorithms 

for real-time implementation are proposed to locate the key corners in the captured images for two 

typical crystal morphologies of prismatic and needle-like shapes, such as α- and β-forms of LGA, 

respectively. Based on the identified key corners, a 3D geometry model is established to 

approximate the 3D shape of each captured particle. Two fast algorithms are given to compute 3D 

sizes of α- and β-form LGA crystals from the reconstructed 3D shapes, respectively. In addition, a 

tetrahedron based fast algorithm is given to quantitatively measure the volume of each imaged 

particle. Experimental tests on the cooling crystallization processes of α- and β-form LGA crystals 

have well demonstrated the effectiveness of the proposed method for in-situ monitoring 3D crystal 

morphologies, with good accuracy on measuring the length and width of crystals in comparison 

with off-line measurement by an electron microscope or the recent 2D crystal size measurement 

method given in the previous work 11. Moreover, the in-situ measurement accuracy on particle 

volume by the proposed method is validated via needle-like monosodium glutamate crystals, in 

comparison with off-line measurement by an electron microscope. It should be noted that the 

accuracy of such a 3D geometry model for approximation depends on the identified key corners. 

If no sufficient key corners could be detected for a particle image, its 3D morphology may not be 

completely reconstructed, in particular for very small particles that could not be effectively imaged. 

It therefore deserves a further study on multi-directional imaging with more cameras or a 

predefined data set to facilitate 3D shape reconstruction in the future work, along with real-time 

classification methods on different particle shapes.  
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Appendix: Derivation of Eq.(10) 

From Fig.4a, the following two equations stand according to the common property of two 

similar triangles, 

 
1 1

1

cZ f b a

Z b

− −
=  (A1) 

 
2 2

2

cZ f b a

Z b

− −
=  (A2) 

where coscf f θ=  and 1 2b b b+ = . 

The above equations can be equivalently transformed into 

 
1 1 1

c

b a b

Z f Z

−
=

−
 (A3) 

 
2 2 2

c

b a b

Z f Z

−
=

−
 (A4) 

Since 1 2b b b+ = , it can be derived that 

 
1 2

cbf
Z

a a
=

+
 

(A5)
 

Fig.4b shows the geometric diagram in the left view of camera. According to the sine law, 

there follows 

 
sin(90 ) sin(90 )l l

l lm x

τ θ τ+ − −
=  

(A6)
 

where sinln f θ= . 

It can be derived from (A6) that 

 
sin(90 )

sin(90 )

l l
l

l

x
m

τ

θ τ

+
=

− −
 

(A7)
 

It can be seen from Fig.4b that 

 1 l la m n= +  (A8) 

Since Fig.4c shows the geometric diagram in the right view of camera, it follows from the 

sine law that 

 
sin(90 ) sin(90 )r r

r rm x

τ θ τ− − +
=  

(A9) 

where sinr rn f mθ= − . 

It can be derived from (A9) that 

 
sin(90 )

sin(90 )

r r
r

r

x
m

τ

θ τ

−
=

− −
 

(A10)
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It can be seen from Fig.4c that 

 2 ra n=  
(A11)

 

Therefore,  

 1 2 l l ra a m n n+ = + +  
(A12)

 

By substituting (A12) into (A5), it yields 

cos

sin(90 ) sin(90 )
2 sin

sin(90 ) sin(90 )
l l r r

l r

bf
Z

x x
f

θ
τ τ

θ
θ τ θ τ

=
+ −

+ +
− − − +

 (A13) 

which may be rewritten as 

 

cos

cos cos
2 sin

cos( ) cos( )
l l r r

l r

bf
Z

x x
f

θ
τ τ

θ
θ τ θ τ

=
+ −

+ −
 

(A14)
 

where tan /l lx fτ = , 2l lx u L
γ

κ
= − , tan /r rx fτ = , and 2r rx u L

γ

κ
= − . 
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List of Table and Figure Captions 

 

Table 1. Measurement errors on a micro-scale rule with a dip angle of 65°.  

Table 2. Comparison of relative measurement errors (%) between the proposed method and a 

2D measurement method with reference to offline measurement by an electron 

microscope. 

Table 3. Volume measurement errors on three different monosodium glutamate particles  

 

Fig.1 Non-invasive binocular micro-vision system for monitoring a crystallization process. 

Fig.2 LGA crystal morphologies of α- and β-forms. 

Fig.3 Plot of the inner distances of contour points in an α-form crystal image. 

Fig.4 The geometry model of a stereo imaging system. 

Fig.5 Schematic diagram of the measurement test on a micro-scale ruler. 

Fig.6 Image processing results for α-form LGA crystals. 

Fig.7 3D morphology reconstruction for an α-form LGA crystal. 

Fig.8 Illustration of image processing and 3D reconstruction results for a β-form LGA 

crystal.  

Fig.9 In-situ measured results of LGA CSD compared to offline measurement by an electron   

microscope. 

Fig.10 Experimental verification on volume computation via monosodium glutamate 

particles. 
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Table 1 Measurement errors on a micro-scale rule with a dip angle of 65° 

True length (μm) 500 (B-C) 1000 (A-C) 1500 (A-D) 
Averaged relative 

error (%) 

Measured length (μm) 481.18 976.32 1427.83 3.65 

Measured dip angle (°) 60.35 61.92 63.28 4.85 

 

 

 

 

 

Table 2 Comparison of relative measurement errors (%) between the proposed method and a 2D 

measurement method with reference to offline measurement by an electron microscope 

Method Size 

α-form β-form Averaged 

relative 

error (%) 
Length 

(μm) 

Width 

(μm) 

Length 

(μm) 

Width 

(μm) 

3DM 

Mean  3.28 2.87 4.16 3.73 

3.58 

Peak  4.39 3.29 3.08 3.84 

2DM 

Mean  7.97 7.48 7.92 4.78 

7.19 

Peak  8.25 6.71 8.74 5.63 

 

 

 

 

Table 3 Volume measurement errors on three different monosodium glutamate particles  

Item Particle 1 Particle 2 Particle 3 

Off-line verification (mm3) 0.462 0.371 0.355 

The proposed method (mm3) 0.419 0.338 0.323 

Relative error (%) 9.31 8.89 9.01 
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(a)                                                   (b) 

Fig.1 Non-invasive binocular micro-vision system for monitoring a crystallization process:  

(a) external view; (b) schematic diagram. 
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Fig.2 LGA crystal morphologies of α- and β-forms: (a) crystal images; (b) simplified reconstructions 

(external contour edges are marked in red and internal contour edges are marked in blue for α form).  

 

 

    

Fig.3 Plot of the inner distances of contour points in an α-form crystal image  

(The contour image is in the top left corner and the extremum points are marked in red). 
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Fig.4 The geometry model of a stereo imaging system: (a) stereo imaging; (b) the left-view model; 

 (c) the right-view model. 

 

          

Fig.5 Schematic diagram of the measurement test on a micro-scale ruler. 
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(a) 

 

  
 

 (b)  

 

  
 

(c) 

 

   

 

(d) 

 
Fig.6 Image processing results for α-form LGA crystals: (a) original double-view images;         

(b) segmented double-view images for a sampled crystal; (c) external and internal contours; (d) the 

key corners. 
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(a) 

 

  
(b) 

 
Fig.7 3D shape reconstruction for an α-form LGA crystal: (a) 3D locations of the key corners; (b) 3D 

shape reconstruction. 
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(a) 

 

  
(b) 

 

   
(c) 

  

(d) 

Fig.8 Illustration of image processing and 3D reconstruction results for a β-form LGA crystal: 

(a) original double-view images; (b) segmented double-view images for a sampled crystal; (c) 

key corner detection; (d) 3D shape reconstruction. 
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(a)                                   (b) 

    
(c)                                    (d) 

 
(e)                                    (f) 

 
(g)                                    (h) 

Fig.9 In-situ measured results of LGA CSD compared to off-line measurement by an electron microscope: 

(a) the length distribution of α-form LGA by the proposed method; (b) the length distribution of α-form 

LGA by off-line measurement of microscopy; (c) the width distribution of α-form LGA by the proposed 

method; (d) the width distribution of α-form LGA by off-line measurement of microscopy; (e) the length 

distribution of β-form LGA by the proposed method; (f) the length distribution of β-form LGA by off-line 

measurement of microscopy; (g) the width distribution of β-form LGA by the proposed method; (h) the 

width distribution of β-form LGA by off-line measurement of microscopy. 
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      (a)                           (b) 

 

Fig.10 Experimental verification on volume computation via monosodium glutamate particles: (a) the 

proposed method based on in-situ double-view imaging; (b) off-line measurement on three different 

monosodium glutamate crystals by an electron microscope. 
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