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Abstract

Background: Positron emission tomography (PET) is the non-invasive reference
standard for myocardial blood flow (MBF) quantification. Hybrid PET-MR allows
simultaneous PET and cardiac magnetic resonance (CMR) acquisition under identical
experimental and physiological conditions. This study aimed to determine feasibility
of simultaneous 13N-Ammonia PET and dynamic contrast-enhanced CMR MBF
quantification in phantoms and healthy volunteers.

Methods: Images were acquired using a 3T hybrid PET-MR scanner. Phantom study:
MBF was simulated at different physiological perfusion rates and a protocol for
simultaneous PET-MR perfusion imaging was developed. Volunteer study: five
healthy volunteers underwent adenosine stress. 13N-Ammonia and gadolinium
were administered simultaneously. PET list mode data was reconstructed using
ordered subset expectation maximisation. CMR MBF was quantified using Fermi
function-constrained deconvolution of arterial input function and myocardial
signal. PET MBF was obtained using a one-tissue compartment model and
image-derived input function.

Results: Phantom study: PET and CMR MBF measurements demonstrated high
repeatability with intraclass coefficients 0.98 and 0.99, respectively. There was high
correlation between PET and CMR MBF (r = 0.98, p < 0.001) and good agreement (bias
− 0.85 mL/g/min; 95% limits of agreement 0.29 to − 1.98). Volunteer study: Mean global
stress MBF for CMR and PET were 2.58 ± 0.11 and 2.60 ± 0.47 mL/g/min respectively. On
a per territory basis, there was moderate correlation (r = 0.63, p = 0.03) and agreement
(bias − 0.34 mL/g/min; 95% limits of agreement 0.49 to − 1.18).

Conclusion: Simultaneous MBF quantification using hybrid PET-MR imaging is feasible
with high test repeatability and good to moderate agreement between PET and CMR.
Future studies in coronary artery disease patients may allow cross-validation of
techniques.
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Background
Positron emission tomography (PET) is considered the non-invasive reference standard

for the quantification of absolute myocardial blood flow (MBF) (Bratis et al. 2013).

Quantification with PET has proven diagnostic (Farhad et al. 2013) and prognostic

value in patients with coronary artery disease (CAD) (Herzog et al. 2009). Quantifica-

tion of MBF is also feasible with CMR (Jerosch-Herold 2010), although it often involves

time-consuming and expert post-processing analysis that has hampered widespread up-

take in clinical routine. Fully automated methods for CMR-derived MBF quantification

with free breathing, motion corrected methods are now available and have been tested

in healthy volunteers with good reproducibility (Brown et al. 2018) and agreement with
13N-Ammonia PET (Engblom et al. 2017). In recent observational studies, fully auto-

mated CMR pixel-wise MBF measurements showed good diagnostic accuracy in pa-

tients with suspected CAD (Hsu et al. 2018; Knott et al. 2019; Kotecha et al. 2019).

Previous studies that have compared MBF quantification between CMR and PET

have focussed on separate assessments of PET and CMR performed on common groups

of subjects but separated in time and thus being subject to intrasubject variation (Mor-

ton et al. 2012a; Miller et al. 2014; Fritz-Hansen et al. 2008; Parkka et al. 2006). The lar-

gest comparative study showed good agreement for myocardial perfusion reserve (ratio

of stress MBF:rest MBF) between PET and CMR, but poor agreement for absolute

MBF values (Morton et al. 2012b). Prior to adoption of quantitative CMR MBF in clin-

ical practice, it is important to understand the causes for discrepant findings. The inter-

study variation for stress MBF has been reported to be 19% with PET (Kitkungvan et

al. 2017) and 12–40% with CMR (Brown et al. 2018; Larghat et al. 2013). Hence, it is

unknown how much variation relates to intrinsic differences in modelling, imaging and

tracer kinetics or due to biological variation. Intrasubject biological variation between

PET and MR measurements can be avoided by performing simultaneous PET and CMR

imaging that provides an opportunity to ascertain the intrinsic magnitude of differences

in MBF measurements without physiological variation (Nazir et al. 2018).

The purpose of this study was to demonstrate the feasibility of simultaneous CMR

and PET perfusion quantification with hybrid PET-MR imaging under identical experi-

mental and physiological conditions ex vivo and in vivo.

Methods
All data were acquired on a 3T hybrid PET-MR scanner (Biograph mMR, Siemens

Healthcare, Erlangen, Germany) with integrated PET and MRI systems housed in the

same gantry. CMR data were acquired with a flexible anterior 6-channel body transmis-

sion coil arrayed receiver, and posterior 6-channel spine arrayed receiver mounted in

the scanner table.

Phantom study

We have previously described a physical perfusion phantom that mimics the cardiac

chambers, great thoracic vessels and myocardium, making it possible to simulate first-

pass myocardial perfusion with high reproducibility (Chiribiri et al. 2013). In

this current study, a modified, 3D-printed version of the phantom has been used, which

has the potential to allow widespread validation and calibration across sites and
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different imaging modalities. Furthermore, preclinical evaluation of methodology and

quantification algorithms is possible in a controlled environment devoid of respiratory

or motion artefact. Details of the perfusion phantom are provided in Additional file 1.

Using a fixed cardiac output and heart rate of 60 beats per minute, a range of

myocardial perfusion rates were generated from 1 to 5 mL/g/min in 1 mL/g/min

increments. Radiotracer and gadolinium contrast were administered directly into

the inferior vena cava of the perfusion phantom via a power injector (Spectris

Solaris, Medrad®, Bayer AG) at a rate of 4 mL/s.

After completion of each experimental run, flow rates of the phantom were in-

creased to the maximum level for a minimum of 5 min in order to allow

complete washout of residual 13N-Ammonia and gadolinium contrast from the

entire phantom circuitry. As such, steady and repeatable experimental conditions

were created. Knowledge of the dispersion volume at site of sampling of the tis-

sue compartment allowed MBF values to be derived in units of mL/g/min for

measurements made with both modalities.

Gadobutrol (Gadovist, Bayer, Germany) contrast was administered as a dual

bolus with dose 0.0075 mmol/kg (dilute) + 0.075 mmol/kg (neat) as previously de-

scribed (Ishida et al. 2011; Hussain et al. 2012). The predilute bolus allows the

determination of the arterial input function (AIF), avoiding signal saturation ef-

fects (Jerosch-Herold 2010). A 120-s delay between the dilute and neat bolus of

contrast allowed for complete washout of the predilute gadolinium contrast from

the phantom circuitry before the arrival of the neat bolus of contrast agent.

Then, 200 MBq 13N-Ammonia was administered at the same time as the neat

bolus gadolinium contrast through the same intravenous line after preloading into

a long line to accommodate both PET tracer and gadolinium contrast. The whole

PET-MR perfusion measurement procedure was repeated once in order to deter-

mine its repeatability. The protocol for the phantom study is illustrated in Fig. 1.

CMR perfusion data were acquired using a saturation recovery sequence Fast

Low Angle Shot (FLASH) imaging readout over 240 dynamics. CMR parameters

were FOV 360 × 270 mm, pixel size 2.3 × 1.9 mm, slice thickness 8 mm, TI

100 ms, TR 1.9 ms, TE 0.99 ms, flip angle 10°, GRAPPA acceleration factor 2,

bandwidth 1002 Hz/px. PET data were acquired in 3D list mode for 7 min follow-

ing radiotracer administration. A 3D T1-weighted Dixon sequence was acquired

prior to each PET acquisition and used to generate an attenuation correction (AC)

map required to generate attenuation corrected PET data. PET list mode data were

binned into 60 × 3 s followed by 8 × 15 s consecutive time frames for subsequent

kinetic analysis. All PET frames were reconstructed using the ordered subsets ex-

pectation maximization (OSEM) algorithm with two iterations and 21 subsets using

a 4-mm smoothing filter and matrix size of 344 × 344.

Image analysis and perfusion quantification

CMR dynamic perfusion data were analysed in Osirix (OsiriX 64-bit, version 8.0.2, Pix-

meo SARL, Geneva, Switzerland). A circular region of interest (ROI) with diameter

16 mm was placed around the aortic vessel in order to derive the AIF, and another ROI

was placed around the myocardium compartment of the phantom (diameter 40 mm) in
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the same plane at a specified slice position of the myocardium with known volume of

dispersion.

CMR-derived quantitative MBF values were quantified using Fermi-constrained de-

convolution of the AIF and the myocardial signal intensity as previously described (Jer-

osch-Herold 2010; Jerosch-Herold et al. 1998), using in house software on Matlab

(MathWorks®, Natick, Massachusetts, USA).

Precise co-registration of PET and MR images was achieved by dedicated fusion soft-

ware—PMOD (v3.7, PMOD Technologies, Zurich, Switzerland). ROIs were placed over

the aorta for determination of the arterial input function and the myocardium.

PET-derived quantitative MBF values were calculated using a well-known simple

one-tissue compartment model described by De Grado et al. (1996) that was applied to

both phantom and human studies using PMOD software. In the perfusion phantom,

unlike tissue, there is no trapping of 13N-Ammonia and also no requirement for metab-

olite correction.

Volunteer study

The practical setup, administration of radiotracer and image acquisition utilised in the

phantom study was used to guide the clinical protocol for the volunteer study. In par-

ticular, the phantom study was used to determine the feasibility of administration of

gadolinium contrast using a dual bolus technique with simultaneous administration of

PET tracer.

Study population

Healthy volunteers (n = 5) were prospectively recruited to undergo a single cardiac

PET-MR scan. Exclusion criteria were age of less than 50 years, pregnancy and contra-

indication to gadolinium contrast or MRI. In addition, volunteers were carefully

screened prior to enrolment into the study to ensure absence of symptoms suggestive

of cardiac disease (such as chest pain, breathlessness, syncope) and were excluded if

there was a history of medical conditions, prior myocardial infarction or ischaemic

heart disease, presence of any cardiovascular risk factors (hypertension, hypercholester-

olaemia, diabetes mellitus, smoking history) or family history of premature myocardial

Fig. 1 Protocol for simultaneous PET-MR perfusion imaging. 13N-Ammonia was administered simultaneously
with the neat bolus of gadolinium contrast. Cine imaging or adenosine was not acquired/administered for
the phantom study. AC attenuation correction, CH chamber, SR-FLASH saturation recovery prepared fast low
angle shot
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infarction. All volunteers underwent a rest 12-lead ECG and were specifically asked to

avoid caffeinated beverages for 24 h prior to the scan. The study was approved by the

National Research Ethics Service (16/WA/0271) and the United Kingdom Administra-

tion of Radioactive Substances Advisory Committee (ARSAC) with written informed

consent obtained from all patients for inclusion in the study.

Study protocol

The cardiac PET-MR protocol is shown in Fig. 1. Following acquisition of localiser im-

ages, cine images in two chamber, four chamber and short axis (basal mid, apical) orienta-

tion are acquired using the ‘3 of 5’ rule (Plein et al. 2015). A free breathing, motion

corrected saturation recovery FLASH pulse sequence was used (Kellman et al. 2017). Typ-

ical sequence parameters included FOV 360 × 270 mm, TR 1.5 ms, TE 1.0 ms, TI 115 ms,

flip angle 14°, slice thickness 8 mm, pixel size 2.4 × 1.9 mm, bandwidth 1085 hz/px over

120 dynamics. Gadolinium was administered intravenously using a dual bolus approach,

as in the phantom experiment, with eight baseline dynamics prior to contrast administra-

tion and 25-s interval between predilute and neat gadolinium contrast agent and was

injected at 4 mL/s with a power injector following a 25 mL saline flush, also injected at

4 mL/s. 550 MBq of 13N-Ammonia was injected at precisely the same time as the admin-

istration of the neat gadolinium contrast agent.

For the stress section of the protocol, adenosine was administered at 140 μg/kg/min

for 4 min prior to acquisition of PET and CMR data and continued for a further 3 min

following radiotracer and contrast administration. Blood pressure, heart rate and symp-

toms were evaluated during administration of adenosine. Following acquisition of stress

perfusion data, short axis cine imaging and late gadolinium enhancement (LGE) images

were acquired.

PET data were acquired in 3D list mode. AC maps were acquired using a Dixon MRI

sequence (Martinez-Moller et al. 2009), and following manual alignment of the AC

map and PET data to ensure no respiratory misalignment of data (Lassen et al. 2017),

AC-corrected PET data was reconstructed using OSEM with two iterations and 21 sub-

sets, with a 4-mm smoothing Gaussian filter and a matrix size of 344 × 344.

Image analysis and perfusion quantification

All PET data were quantified by an experienced PET operator with more than 10 years’

experience with cardiac PET imaging using PMOD software and blinded to the CMR

quantification results. CMR data was quantified and analysed by an operator with more

than 4 years’ experience in CMR and blinded to the PET quantification results. PET

and CMR MBF values were obtained on a global basis, and on a territory basis of the

main epicardial arteries based on 16 standard American Heart Association segmenta-

tion (Cerqueira et al. 2002).

Statistical analysis

All statistical analyses were performed using SPSS Statistics 23 (IBM, Armonk, NY,

USA). Results are expressed as mean ± standard deviation unless otherwise specified.

Correlation between PET and CMR MBF were determined by Pearson’s correlation and
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intraclass coefficients. Agreement was determined using Bland and Altman analysis. All

statistical tests were two-tailed and p values < 0.05 were considered significant.

Results
Phantom study

All phantom experiments were completed successfully and simultaneous administration

of radiotracer and gadolinium contrast and image acquisition was achieved as demon-

strated in Fig. 2.

PET MBF measurements were highly repeatable with intraclass coefficients of 0.98.

CMR MBF measurements were highly repeatable with intraclass coefficients of 0.99.

There was a very high correlation between PET and CMR MBF measurements ac-

quired using the perfusion phantom (r = 0.98, p < 0.001). CMR underestimated PET

MBF with a bias of − 0.85 mL/g/min; 95% limits of agreement 0.29 to − 1.98 (Fig. 3).

Intraclass coefficient between PET and CMR MBF was 0.91.

Volunteer study

Participant characteristics of the volunteer cohort are shown in Table 1. One volunteer

study could not be completed due to technical issues related to the scanner and there-

fore four patients completed the study. The CMR study demonstrated normal biventri-

cular volumes and no evidence of scar on LGE imaging in all volunteers. The mean

administered activity of 13N-Ammonia was 488 ± 43 MBq.

On a per patient basis, global stress MBF for CMR and PET were 2.58 ± 0.11 mL/g/

min and 2.60 ± 0.47 mL/g/min respectively. On a per territory basis, there was a mod-

erate correlation between CMR and PET MBF (r = 0.63, p = 0.03). CMR underestimated

PET with a bias of − 0.34 mL/g/min (95% limits of agreement 0.49 to − 1.18) using

Bland and Altman analysis as shown in Fig. 4.

There was moderate correlation between PET and CMR territorial MBF values with

intraclass correlation coefficients of 0.67. MBF perfusion maps were generated in all

cases for CMR and PET. An example of PET and CMR perfusion maps for one of the

volunteers are shown in Fig. 5.

Discussion
In this study, the feasibility of simultaneous PET and CMR MBF quantification was

demonstrated in a perfusion phantom and in a group of healthy volunteers. There was

moderate correlation and agreement between PET and CMR MBF values. This study

paves the way for a future clinical study to compare PET and CMR MBF values in a co-

hort of patients with suspected CAD.

The perfusion phantom served as a precursor to devise and guide a complex

protocol prior to clinical hybrid imaging in a cohort of volunteers. This protocol

required precise timing and delivery of perfusion radiotracers and gadolinium con-

trast in a safe and controlled manner, as a prerequisite to a human study. The per-

fusion phantom has previously been used in various studies and imaging modalities

that included the investigation of different quantification algorithms for CMR-de-

rived MBF values (Zarinabad et al. 2012), computed tomography (CT)-derived

MBF values (Otton et al. 2013) and PET-MR-derived values to determine the effect
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of high counts rates of radiotracer (O’Doherty et al. 2017). This current study ex-

tends the utility of the perfusion phantom to demonstrate the feasibility and proto-

col development of fully quantitative PET and CMR-derived MBF simultaneously.

This is the first reported study in which simultaneous stress PET and CMR perfusion

acquisition was undertaken in a group of healthy volunteers using hybrid PET-MR im-

aging. MBF values were generated within the normal ranges reported in the literature for

healthy subjects, both for CMR (Brown et al. 2018) and for PET (Kitkungvan et al. 2017;

Chang et al. 2018). A previous study utilized PET-MR perfusion in patients with coronary

Fig. 2 Axial images of a PET only, b CMR only and c hybrid PET-MR images during passage of 13N-
Ammonia and gadolinium contrast in the perfusion phantom. R right myocardial compartment, L left
myocardial compartment
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artery disease, although used a dual sequence rather than a dual bolus approach and did

not have any preceding phantom studies (Kunze et al. 2018).

In this current study, CMR-derived MBF values underestimated PET values in both the

phantom and volunteer studies, and these findings are in keeping with previous clinical

studies that compared PET and CMR-derived MBF (Fritz-Hansen et al. 2008; Parkka et al.

2006). There are several plausible reasons to explain the underestimation of CMR-derived

MBF values observed in the phantom studies and the volunteer study.

A non-linear relationship exists between MRI signal intensity and gadolinium concen-

tration (Jerosch-Herold 2010). Mathematical derivation of MBF for CMR using Fermi de-

convolution requires the arterial input and myocardial output signals to behave in the

same linear relationship to that of the gadolinium concentration (Lee and Johnson 2009).

In the phantom study, signal saturation effects were alleviated by indirectly normalizing

the estimated impulse response functions, as native T1 values were not precisely known

(Hsu et al. 2018; Zierler 1962). Specifically, the AIF was scaled so that its time-inte-

gral matched that of the mean myocardial curve. In the volunteer study, the signal

intensity was converted to gadolinium concentration using a look-up table calcu-

lated by a Bloch simulation of the specific acquisition protocol used, as previously

described (Kellman et al. 2017). The quantification of MBF with PET does not suf-

fer from this non-linear relationship as the activity measured directly correlates

with tracer concentration.

CMR-derived MBF can underestimate MBF without a proper correction for the

non-linearity of the AIF from the blood pool (Jerosch-Herold 2010). This non-

linear effect is minimized by the use of a dual bolus (Christian et al. 2004) or

dual sequence (Gatehouse et al. 2004) method. In this study, we used dual bolus

to correct for the non-linear AIF relationship, although undertaking such a proto-

col is technically challenging. A dual sequence approach (Kellman et al. 2017;

Fig. 3 Bland and Altman plot of phantom MBF. CMR MBF underestimated PET MBF with a bias of −
0.85 mL/g/min (95% limits of agreement + 0.29 to − 1.98). Dashed lines indicate 95% limits of agreement
and bias
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Gatehouse et al. 2004), where the AIF is extracted from a low resolution FLASH

readout, can be used to correct for non-linearity and may be an alternative and

more practical approach that may facilitate clinical implementation.

An additional explanation for the underestimation observed with MRI is that differ-

ent analysis models are used in PET and MR. Quantification of absolute MBF with

CMR was achieved using a model independent approach, using a Fermi deconvolution

of the AIF and myocardial signal intensity. This is based on the central volume

principle (Zierler 1962), which allows calculation of flow based on the concentration of

a tracer that enters and exits a particular system. However, this model does not con-

sider the behaviour of gadolinium contrast in vivo. As such, tracer kinetic modelling

methods for quantification have been described (Bassingthwaighte et al. 1989) and may

provide a more accurate estimation of absolute MBF. Such an approach could not be

applied to the single compartmental model phantom and thus was not used for calcula-

tion of MBF in this study, but will be the focus of future work with multicompartmen-

tal perfusion models.

Fig. 4 Bland and Altman plot of territorial MBF. CMR MBF underestimated PET MBF with a bias of −
0.34 mL/g/min (95% limits of agreement 0.49 to − 1.18). Dashed lines indicate 95% limits of agreement
and bias

Table 1 Volunteer characteristics

Age 54 ± 3.5

Gender M (100%)

BMI (kg/m2) 25.5 ± 3.3

Stress HR (bpm) 93 ± 15

Rest HR (bpm) 66 ± 11

Stress systolic BP (mmHg) 140 ± 2.5

Rest systolic BP (mmHg) 132 ± 12

LVEDVi (mL/m2) 82.5 ± 27.6

LVEF (%) 61.8 ± 4.1

LGE scar (n) 0

BMI body mass index, HR heart rate, BP blood pressure, BPM beats per minute, LVEDVi Indexed left ventricular end
diastolic volume, LVEF left ventricular ejection fraction, LGE late gadolinium enhancement
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PET is considered the non-invasive reference standard for MBF quantification

(Bratis et al. 2013), and there are various perfusion models and radiotracers avail-

able for research and clinical application (Maddahi and Packard 2014). 13N-Ammo-

nia was employed as the radiotracer of choice, as it has an intermediate half-life

(9.96 min) which facilitates its practical use and has very good image quality

given its short positron range and retention in myocardial tissue (Maddahi and

Packard 2014). However, 13N-Ammonia does not have linear tracer uptake-myo-

cardial blood flow kinetics, particularly at high flow rates, and exhibits 85% myo-

cardial extraction fraction in vivo (Maddahi and Packard 2014). The ideal PET

perfusion radiotracer is 15O-Water as it is metabolically inert, freely diffusible,

with 100% extraction fraction and has linear tracer kinetics with near perfect cor-

relation between tracer uptake and MBF (Maddahi and Packard 2014). Neverthe-

less, 13N-Ammonia MBF quantification has been validated against the gold

standard PET perfusion tracer 15O-Water (Bol et al. 1993; Nitzsche et al. 1996).

In addition, whilst the quantification of absolute MBF with 13N-Ammonia has

good diagnostic accuracy (Gould et al. 1986), different published models and soft-

ware packages for the quantification of absolute MBF with 13N-Ammonia exist

(DeGrado et al. 1996; Hutchins et al. 1990; Nesterov et al. 2009; Adachi et al.

2007; PMOD 2018). De Grado et al. propose a one-tissue compartment model

with the use of the first 4 min after injection of tracer to avoid the effects of me-

tabolite build up and washout (DeGrado et al. 1996). Hutchins et al. propose a

two-tissue compartment model in which a second compartment accounts for the

build-up of metabolically trapped 13N-glutamine (metabolite of 13N-Ammonia)

with rate constants between each compartment (Hutchins et al. 1990). This

current study utilized a one tissue compartment model for the perfusion phantom

which does not have a second compartment or production of secondary metabo-

lites. As such, we also investigated absolute MBF values in the volunteer study

using the one-compartment De Grado model. Using this approach simplified the

quantification process and allowed a direct comparison of a one-tissue compart-

ment model comparable between CMR and PET MBF in phantoms and

volunteers.

Fig. 5 Perfusion PET-MR data from volunteer one. Side by side polar maps of MBF values with the same
look up table on a 16 American Heart Association (AHA) segments
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Another important factor that may explain the differences observed of MBF on a per

territory basis relates to quantification of MBF of a full 3D volumetric dataset with

PET, whereas in CMR, three distinct anatomical 8 mm slices of the heart at the base,

mid and apex are acquired.

During routine CMR image acquisition, patients are instructed to breath hold for

intermittent periods during the course of the scan. However, during routine PET im-

aging, patients are instructed to breathe normally. Thus, instructing patients to breath

hold during simultaneous PET-MR acquisition may interrupt the rhythmic respiratory

pattern, and it is unknown what the effect of this is on the PET data. In order to

minimize this as a possible confounder on the PET data, we used a free breathing

CMR perfusion sequence in this study, as opposed to isolated breath holds during PET

acquisition.

Limitations

The human circulatory system is a highly complex system composed of the large ves-

sels, pulsatile blood flow, the microcirculation, cardiac myocytes, plasma, and different

compartments such as the intra and extracellular space, which are all tightly regulated

by autoregulatory systems to maintain homeostatic conditions. In its current form, the

perfusion phantom cannot replicate the intricacies of the physiological processes of the

human body.

In addition, the exponential decrease of radiotracer in the perfusion phantom may

have a different profile for washout phase for the tracer kinetic system when tracer is

continuously washed out of the system in the perfusion phantom compared to the hu-

man circulatory system. However, a fixed cardiac output and heart rate similar to nor-

mal human physiology was employed for the phantom.

Furthermore, the fluid used in the phantom was normal saline, which has different

T1 values than blood in the human circulatory system. Nevertheless, the perfusion

phantom is free from respiratory artefact, ECG mis-triggering and allows preclinical de-

velopment in a highly controlled environment that mimics the uptake of tracer into a

compartment akin to that formed between the blood in the left ventricular cavity and

the myocardial tissue. Future developments of the perfusion phantom into a multicom-

partmental model may provide incremental steps to simulation of physiological condi-

tions that more closely align with the complexities of the human circulatory system,

that may also allow the modelling of multi-compartment tracer kinetics.

Finally, the number of repetitions of the study was limited, and this is in part due to

the build-up of radioactivity in the waste water tank, with a finite volume. The sample

size is relatively small, although this study serves as proof of principle of simultaneous

hybrid PET-MR perfusion prior to further clinical evaluation.

Future work

Having demonstrated the feasibility of simultaneous hybrid PET-MR perfusion imaging

in phantom and volunteers, the next step is to undertake a clinical study in a cohort of

patients with suspected CAD.

Several studies have compared the diagnostic accuracy of quantitative CMR for the

detection of significant CAD defined by invasive coronary angiography. A clinical
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validation study of CMR perfusion against 15O-Water PET that determines absolute

MBF, rather than fractional flow reserve measurements (which determine the haemo-

dynamic significance of epicardial coronary stenosis) is a more appropriate comparator.
15O-Water is the gold standard perfusion tracer, and despite its practical challenges

due to short half-life, is the ideal perfusion tracer to compare against novel methods

for CMR perfusion which allow real-time, at point of care, fully automated in line

quantification and shows promise towards implementation into clinical routine (Kell-

man et al. 2017). Such a study may facilitate clinical and scientific acceptance for CMR

perfusion as a feasible alternative for MBF measurements which may allow widespread

use without the need for ionizing radiation and expensive radiochemistry facilities.

Conclusion
Hybrid PET-MR perfusion imaging with 13N-Ammonia and gadolinium contrast is

feasible. The correlation and agreement of PET and CMR-derived MBF values was high

in the perfusion phantom and moderate in healthy volunteers. Undertaking hybrid

PET-MR perfusion imaging with a dual bolus set up is complex and challenging, and a

single bolus dual sequence approach may be more practical and preferable. Future

evaluation in a cohort of patients with CAD is warranted.

Additional file

Additional file 1: Details of the perfusion phantom. (DOCX 513 kb)
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