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Abstract 28 

 29 

Sorption is one of the key process that affects the fate and mobility of pharmaceuticals in the 30 

soil environment. Several models have been developed for estimating the sorption of organic 31 

chemicals, including ionisable compounds, in soil. However, the applicability of these models 32 

to pharmaceuticals has not been extensively tested. In this study, we generated a high-quality 33 

dataset on the sorption of twenty-one pharmaceuticals in different soil types and used these 34 

data to evaluate existing models and to develop new improved models. Sorption coefficients 35 

(Kd) of the pharmaceuticals ranged from 0.2 to 1249.2 L/kg. Existing models were unable to 36 

adequately estimate the measured sorption data. Using the data, new models were developed, 37 

incorporating molecular and soil descriptors, that outperformed the published models when 38 

evaluated against external data sets. While there is a need for further evaluation of these new 39 

models against broader sorption datasets obtained at environmentally relevant concentration, 40 

in the future they could be highly useful in supporting environmental risk assessment and 41 

prioritization efforts for pharmaceutical ingredients.  42 

 43 
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1. Introduction 59 

 60 

Pharmaceuticals are administered to prevent, diagnose and treat diseases and hence protect 61 

the health of human beings and other animals [1,2]. Following use, a large fraction of these 62 

compounds is excreted in urine and feces, which are then mostly discharged into domestic 63 

wastewater and can subsequently reach agricultural soils through irrigation using reclaimed 64 

wastewater effluent or via the application of processed or unprocessed sewage sludge to land 65 

[3,4]. A range of pharmaceuticals has been detected in agricultural soil with concentrations of 66 

antibiotics, antiepileptics, anti-inflammatory drugs, antimicrobial agents and anticoagulants 67 

being reported up to µg/kg levels [5,6]. 68 

 69 

Several studies have revealed that, following application to soil, pharmaceuticals can be taken 70 

up by soil-dwelling organisms [7-9]. The presence of pharmaceuticals in soil has been shown 71 

to reduce plant biomass and significantly affect the survival and reproduction of invertebrates 72 

[4,8]. Pharmaceutical accumulation in plants could result in exposure of humans to these 73 

compounds when they consume fruit and vegetables [3]. Furthermore, highly mobile and 74 

persistent pharmaceuticals may be transported to surface water through field runoff or leach 75 

to groundwater and subsequently affect aquatic organisms or enter human drinking water 76 

supplies [6,10,11]. Long-term exposure to pharmaceutical residues could pose a risk to 77 

ecological systems and exert adverse effects on top predators via food chain transfer [3,12]. 78 

 79 

Sorption is a key factor in determining the ultimate fate of pharmaceuticals applied to the soil 80 

environment as it influences many important processes such as the rate of leaching or the 81 

fraction of chemical that is bioavailable to organisms [13-15]. It is estimated that around 1912 82 

pharmaceuticals are on the British market and the number is steadily increasing [16]. 83 

However, around 40 studies have been published exploring the sorption behaviour of 84 

pharmaceuticals in soil with data only being available for around 6% of the total number of 85 

pharmaceuticals and for 100 soil types. Results show that sorption coefficients for 86 
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pharmaceuticals in soil can vary by many orders of magnitude (e.g. 0.09 sulfameter < Kd < 87 

1277873 ciprofloxacin L/kg) [17,18] and sorption coefficients for a single pharmaceutical can 88 

vary by up to three orders of magnitude across different soil types (e.g. Kd values for 89 

ciprofloxacin range from 726.8 to 1277873 L/kg) [17]. It is therefore clear that both chemical 90 

properties and soil characteristics are important in controlling the sorption behaviour of 91 

pharmaceuticals in soil [10,19-21]. 92 

 93 

Given the large number of pharmaceuticals in use and the fact that sorption data are only 94 

available for a small proportion of these, to adequately understand risks of these compounds, 95 

there is a need to enhance our understanding of sorption behavior. It would be cost prohibitive 96 

and time-consuming to experimentally determine sorption coefficients of all pharmaceuticals 97 

in the many soil types that exist in the natural environment. Modelling approaches have 98 

therefore been proposed for estimating the sorption affinity of pharmaceuticals in soils. These 99 

include poly-parameter Linear Free Energy Relationships and Artificial Neural Networks using 100 

chemical properties alone [22,23] and models that use both chemical properties and soil 101 

parameters [24-28].  102 

 103 

Examples of models that use both chemical and soil properties include the models by Franco 104 

et al. [26] and Franco and Trapp [27] who used nonlinear regression analysis to explore the 105 

relationship between pharmaceutical properties and sorption behaviour in different soil 106 

systems. Linear regression approaches were also proposed in the study of Kah and Brown 107 

[25] and European Union technical guidance document [24] to estimate the sorption behaviour 108 

of acidic organic compounds based on soil organic carbon content and pH corrected 109 

lipophilicity (Log D) or hydrophobicity (Log Kow). Droge and Goss [28] developed a model that 110 

estimates the sorption of bases in soil by quantifying the impact of soil organic matter, clay 111 

minerals and pharmaceutical molecular structures on the contribution to sorption by both 112 

hydrophobic and electrostatic interactions. Unfortunately, most of these models have been 113 

developed using data published in the literature. The quality of these datasets may be 114 
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questionable and the spread of pharmaceuticals used to train the models may not be reflective 115 

of the property distribution of all pharmaceuticals in use. There is therefore a need to evaluate 116 

these models against high quality datasets on sorption behaviour of pharmaceuticals 117 

representing the range of properties of pharmaceuticals in use more generally.  118 

 119 

The aim of this study was therefore to evaluate the performance of existing models, that 120 

consider the effects of both chemical and soil properties, using a high-quality dataset on 121 

sorption of pharmaceuticals and, where the models are found to fail, explore the development 122 

of improved models for estimating pharmaceutical sorption. The specific objectives were to: 1) 123 

generate sorption data for a wide range of pharmaceuticals and soil types covering the 124 

property space of pharmaceuticals more generally and soil characteristics of European 125 

agricultural systems; 2) evaluate existing models against the data; and 3) use principal 126 

components analysis and multi-regression methods to develop new models for pharmaceutical 127 

sorption and to evaluate these against published data. 128 

 129 

2. Materials and methods 130 

2.1. Study pharmaceuticals and reagents 131 

 132 

Twenty-one study pharmaceuticals covering thirteen therapeutic classes were purchased from 133 

Sigma-Aldrich (Gillingham, UK) (purity ≥98 %). Pharmaceuticals were chosen to represent a 134 

broad range of both hydrophobicity characteristics (-0.08 < Log Kow < 4.79) and ionisation 135 

states at environmentally relevant pH values (-1.6 < pKa < 14.3). Study compounds were also 136 

selected whose half-lives in soil indicated that degradation would not occur over the duration 137 

of the sorption studies. Information on the physico-chemical properties, half-lives and CAS 138 

number of each compound is provided in Table SI 1. HPLC grade methanol (99.9%), 139 

acetonitrile (99.9 %), acetone (≥99.5 %) and water as well as calcium chloride dihydrate, and 140 

potassium dihydrogen orthophosphate were obtained from Fisher Scientific (Loughborough, 141 

UK). Analytical grade phosphoric acid solution (≥85 %) and formic acid (≥95 %) were 142 
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purchased from Sigma-Aldrich (Gillingham, UK). 143 

 144 

2.2. Test soils  145 

 146 

Five soils, covering a broad range of soil characteristics, were obtained from LandLook 147 

(Midlands, UK). On receipt, the soils were air-dried and sieved through a 2-mm mesh and 148 

stored in sterile sampling bags at 4 C̊ before use in the experiments. The test soils were heated 149 

at 105 C̊ for 3 h to minimize biological activity prior to use. The major properties of the five 150 

soils were analyzed by Forest Research Company (Surrey, UK). Detailed information on the 151 

characteristics and measurement procedures of each soil is shown in Table SI 2.  152 

 153 

2.3. Sorption study 154 

 155 

Sorption studies were carried out based on OECD guideline 106 for the testing of sorption of 156 

chemicals following a batch equilibrium method [29]. Preliminary sorption experiments for each 157 

study compound in the test soils were conducted to identify experimental conditions for use in 158 

the definitive study including the optimal soil to solution ratio, the time to reach sorption 159 

equilibrium, the experimental concentration range, the appropriate test vessel, and the filtration 160 

device. The optimal soil to solution ratio as well as specific concentration range of each 161 

compound for each soil type were selected depending on the aqueous concentrations at 162 

equilibrium and analytical method detection limits (Table SI 6). Details of the preliminary 163 

sorption experiment procedures are provided in the SI Section 2. 164 

 165 

In the definitive sorption experiments, depending on the soil and test chemical in question, 166 

either 1, 2.5 or 5 g of soil (dry weight) was mixed with a specific volume of 0.01 M CaCl2 167 

solution (ranging from 10 to 1200 ml ) to create the optimum soil to solution ratio (ranging from 168 

1/1 to 1/1200, Table SI 4) in plastic or glass test vessels (selected based on stability tests for 169 

two vessel types, see Table SI 4). The mixtures were shaken over 12 h in the dark to pre-170 
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equilibrate. The soil solution mixtures were then spiked with stock solutions of the study 171 

compounds in either methanol, acetonitrile or HPLC water to give an initial concentration that 172 

ranged between 0.5 to 60 mg/L and a carrier solvent concentration of <0.1 - 0.67%. The 173 

concentration ranges of study analytes to create sorption isotherms generally differed by a 174 

factor from three to five (Table SI 4). Triplicate samples were prepared for each concentration. 175 

Control samples (containing analyte solution in 0.01 M CaCl2 without soil), and one blank 176 

sample (containing CaCl2 solution without study compound and soil) were prepared for each 177 

soil. All the samples were then agitated at 220 rpm in the dark at 4 C̊ for 24h or 48 h to reach 178 

sorption equilibrium (see Table SI 4). After this time, soil suspensions were centrifuged at 2500 179 

rpm for 10 min and the resulting supernatant filtered, using 0.45 μm syringe filters, into amber 180 

glass vials for analysis.  181 

 182 

2.4. Analytical method 183 

 184 

Filtered samples were analysed by high performance liquid chromatography (HPLC) with  185 

diode array detection (DAD) using either a Perkin Elmer Flexar HPLC or an Agilent 1260 186 

Infinity II HPLC instrument (The Agilent HPLC cannot be used with phosphate buffer). 187 

Separation was performed using an Agilent Zorbax Eclipse XDB C-18 column (4.6 mm × 250 188 

mm, 5 μm pore size) at 30 ̊C. The mobile phase comprised a solvent phase of either methanol 189 

or acetonitrile matched with an aqueous phase of either 0.1 % formic acid (pH= 2.7), 30 mM 190 

potassium dihydrogen orthophosphate (KH2PO4, pH=3.3), 25 mM potassium dihydrogen 191 

orthophosphate (KH2PO4, pH=3), 50 mM potassium dihydrogen orthophosphate (KH2PO4, 192 

pH= 4.5) or HPLC grade water adjusted to pH 2.7 with 85% phosphoric acid. The flow rate of 193 

mobile phase ranged from 0.6 to 1.4 ml min-1. The injection volumes and detection 194 

wavelengths for study compounds ranged from 10 to 40 μl and 200 to 260 nm, respectively. 195 

The retention times fell within the range 2 to 4 min. Concentrations in samples were calculated 196 

based on peak area using calibration curves developed using known standards of each 197 

pharmaceutical. 198 
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 199 

The analytical methods were evaluated in terms of linearity, intra- and inter-day repeatability, 200 

matrix recovery, limit of detection (LOD) and quantitation (LOQ). The Intra-/inter-day 201 

repeatability was measured at two concentrations (2 and 20 mg/L) over 3 days. The matrix 202 

recovery was determined in supernatant samples (centrifuged from the mixture of soil and 0.01 203 

mol/L CaCl2 (1/5 and 1/200 (w/v) soil/ solution ratio)) which was then fortified with the stock 204 

solution of target pharmaceuticals at the spiking level of 5 mg/L. The limit of detection (LODs) 205 

and limits of quantification (LOQs) were calculated as three and ten times the signal-to-noise 206 

ratio, respectively [30]. Satisfactory limits of detection (0.04-0.64 mg/L) and intra-/inter-day 207 

precisions (the relative standard deviation within the range of 0-20%) were obtained for all 208 

twenty-one pharmaceuticals. With the exception of captopril, no apparent matrix interference 209 

was found for the majority of the pharmaceuticals with the average matrix recoveries of target 210 

compounds ranging from 91.25 to 103.79%. The details of the developed analytical methods 211 

and method validation results are summarised in Table SI 5 and Table SI 6.  212 

 213 

2.5. Derivation of sorption coefficients 214 

 215 

Linear, Freundlich and Langmuir isotherms were fitted to the data using GraphPad Prism 216 

(version 7.00). The determination of Linear, Freundlich and Langmuir isotherm constants (𝐾𝑑 , 217 𝐾𝑓 and 𝐾𝐿) as well as organic carbon normalized sorption coefficient (𝐾𝑜𝑐) are described in the 218 

SI section 2.  219 

 220 

2.6. Evaluation of existing predictive models 221 

 222 

Several models, which have been proposed to predict the sorption behaviour of different 223 

classes of acidic, basic and neutral organic compounds in soil (Table 2), were evaluated using 224 

the measured sorption coefficients. The applicability and accuracy of these models were 225 
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assessed according to mathematical evidence by calculating root-mean squared deviation 226 

(RMSD) and Nash−Sutcliffe Efficiency (NSE) using the following equations (Eqs. 1, 2): 227 

                                                          𝑅𝑀𝑆𝐷 = √∑ (𝑌𝑖𝑂𝑏𝑠− 𝑌𝑖𝑃𝑟𝑒𝑑)𝑛𝑖=1 2𝑛                                           (1)                                                           228 

 229 

                                                          𝑁𝑆𝐸 =  1 −  [ ∑ (𝑌𝑖𝑂𝑏𝑠− 𝑌𝑖𝑃𝑟𝑒𝑑)𝑛𝑖=1 2∑ (𝑌𝑖𝑂𝑏𝑠− 𝑌𝑀𝑒𝑎𝑛)𝑛𝑖=1 2]                                    (2) 230 

 231 

where 𝑌𝑖𝑂𝑏𝑠  and  𝑌𝑖𝑃𝑟𝑒𝑑   are the ith observed and predicted value, respectively. 𝑌𝑀𝑒𝑎𝑛  is the 232 

average of observed data and n is the number of observations. RMSD value of 0 indicates a 233 

perfect fit and less than half of the standard deviations of the observed represents a good 234 

prediction performance [31]. NSE values which can range between −∞ and 1 were used to 235 

evaluate how well the predicted values and the observed values fitted a 1:1 line. The closer 236 

that the NSE value is to 1, the better the model performance [32]. 237 

 238 

 2.7. Development of new models and validation based on literature data 239 

 240 

Principal components analysis (PCA) was performed in SPSS (version 25.0) to explore which 241 

physico-chemical properties of chemicals and soil characteristics appear to drive the sorption 242 

of each class of pharmaceuticals and to identify pharmaceutical and soil properties for use in 243 

the development of new models. The first three principal component axes were chosen to 244 

reduce the dimensionality of data according to the broken stick eigenvalue test [33]. 245 

 246 

New sorption models were then developed using 1) all soil and pharmaceuticals properties 247 

identified from the PCA; and 2) using pharmaceutical properties and soil properties, identified 248 

by the PCA, that are commonly reported in literature studies that have measured sorption of 249 

pharmaceuticals. Taking into account the degree of dissociation, multiple-linear regression 250 

analysis in the Minitab software (version 18) was used to develop new models for estimating 251 

sorption of non-ionised (neutrals, Log Kow > 0.85) and fully ionised (bases, pKa > 8.6) 252 

pharmaceuticals based on their molecular descriptors and soil properties. The sorption of weak 253 
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electrolytes is largely dependent on the degree of dissociation as the partitioning behaviours 254 

of dissociated and undissociated species involve different sorption mechanisms comprising 255 

different contributions to the overall sorption potential of the chemicals [26,27]. Nonlinear 256 

models were then proposed for partially ionised pharmaceuticals (weak bases, 8 > pKa > 4.8 257 

and acids, 3.2 < pKa < 6.8) by conducting the nonlinear least squares function in the R software 258 

(R version 3.4.1). The optimum model framework applied in R software is shown in Eq.3: 259 

 260 𝐿𝑜𝑔 𝐾𝑑 = 𝐿𝑜𝑔(Ф𝑛 ∙ 10^(𝑐0 + 𝑐1 ∙ 𝑋1 + 𝑐2 ∙ 𝑋2 + ⋯ 𝑐𝑖 ∙ 𝑋𝑖) + Ф𝑖𝑜𝑛 ∙  10^(𝑐0 + 𝑐1 ∙ 𝑋1 + 𝑐2 ∙ 𝑋2 +261 ⋯ 𝑐𝑖 ∙ 𝑋𝑖))                                                                                                                                              (3) 262 

                                                                                                                                                                 263 

Where 𝑐𝑖  and 𝑋𝑖  represent the regression coefficients and soil and chemical parameters, 264 

respectively.  Ф𝑛 , Ф𝑖𝑜𝑛  are the neutral and ionic fractions and were derived from the 265 

Henderson-Hasselbalch equation [34]. 266 

 267 

Intercorrelated descriptors (e.g., the strong intercorrelation among hydrophobicity descriptors 268 

or the correlation between CEC and each exchangeable cation) were run separately in the 269 

regression analysis, as use of these could lead to double counting of the impact of cross-270 

correlated parameters on the sorption.  271 

 272 

The best performing model for each class was then identified based on 1) the number of 273 

observations used in the analysis (n), the standard error of the estimate (S), the square of the 274 

correlation coefficient (R2), the adjusted determination coefficient (R2 adj), the predicted R2 275 

(R2
pred calculated using the leave one out approach) as well as RMSD and NSE indices; and 276 

2) the results of an evaluation of a models predictive capability using an external evaluation 277 

data set (including 152 Kd values covering 36 pharmaceuticals) resampled from the literature 278 

(details in Table SI 10). The external evaluation dataset was also used to explore how the best 279 

performing models compared to the existing sorption models. 280 
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 281 

3. Results and discussion 282 

 283 

3.1. Overview of sorption results 284 

 285 

In the definitive sorption experiments, interfering peaks were observed for captopril in the UV 286 

chromatograms of the soil samples (a matrix recovery of 79.62 % was obtained at the soil/ 287 

solution ratio of 1/5), which might be attributed to the organic and inorganic components 288 

existing in the soil matrix, leading to the apparent signal suppression of the analyte response 289 

[35]. The obtained sorption coefficients of captopril were therefore not used in the evaluation 290 

of existing models and further model development. In the future, additional steps such as the 291 

use of isotopically-labeled internal standards with detection by mass spectrometry, sample 292 

dilution, or preparation of matrix-matched calibration curves are recommended to reduce the 293 

matrix effect prior to the analysis of captopril in solid samples [36].  294 

 295 

Results of the linear, Freundlich and Langmuir isotherms fitting are presented in Table SI 7. 296 

Freundlich and linear (R2 of 0.89 to 1.00) isotherm models better described the sorption of the 297 

pharmaceuticals, across the concentration ranges tested, than the Langmuir model (R2 of 298 

0.0006 to 1.00).  299 

 300 

Sorption coefficients varied greatly within each group. Acidic pharmaceuticals exhibited lower 301 

affinity to test soils as expected, with the sorption coefficients (Kd) ranging from 0.29 L/kg 302 

(ibuprofen) to 80.45 L/kg (naproxen). For the neutral compounds, Kd values ranged from 0.20 303 

L/kg (antipyrine) to 117.4 L/kg (disulfiram). For the bases, Kd values ranged from 0.77 L/kg 304 

(metoprolol) to 393.1 L/kg (amitriptyline). For the weak bases, values ranged from 3.24 L/kg 305 

(lamotrigine) to 1249 L/kg (perphenazine) (Table SI 7). The sorption behaviour of 306 
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pharmaceuticals also displayed large variability within each study soil. In soil 1, Kd values 307 

ranged from 0.57 L/kg (ibuprofen) to 1181 L/kg (perphenazine). In soil 2, Kd values ranged 308 

from 1.91 L/kg (captopril) to 1249 L/kg (perphenazine). In soil 3, Kd values ranged from 0.40 309 

L/kg (antipyrine) to 501 L/kg (bisacodyl). In soil 4, Kd values ranged from 0.29 L/kg (ibuprofen) 310 

to 861.3 L/kg (bisacodyl). Finally, in soil 5, Kd values ranged from 0.20 L/kg (antipyrine) to 311 

267.4 L/kg (perphenazine) (Table SI 7). Sorption affinities of pharmaceuticals in soil 1 and 2 312 

were generally higher than in the other three soils, probably due to the higher organic carbon 313 

content of these soils (Figure 1). Highest variability (covering two orders of magnitudes) was 314 

observed for acids among the five soils, which revealed that the soil properties (such as pH 315 

and organic matter) play an important role in determining sorption behavior of acidic 316 

pharmaceuticals [37]. 317 

 318 

Comparison of our findings with previous findings [10,13,18,19,23,38-43] showed that the 319 

measured linear sorption coefficients of pharmaceuticals from our study for atenolol, 320 

metoprolol, propranolol, amitriptyline, trimethoprim, furosemide, naproxen and carbamazepine 321 

were in a similar range to sorption coefficients previously reported in the literature (Table 1). 322 

For fluoxetine, our Kd values were towards the lower end of the ranges previously reported 323 

and for lamotrigine, ketoprofen, ibuprofen, our Kd values were at the higher end of those 324 

previously reported (Table 1). In these previous studies, a wider range of experimental 325 

concentrations was typically used ranging from 0.01 μg/L to 10 mg/L which includes more 326 

environmentally relevant treatments.  327 

 328 

3.2. Evaluation of literature models against experimental sorption data 329 

 330 

Ten existing models for estimating sorption of organic compounds were evaluated and 331 

prediction statistics are summarized in Table 2. The best performing model overall was the 332 
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model developed by Franco and Trapp [27] for neutral pharmaceuticals which estimates 333 

sorption from the Log Kow, and which gave a RMSD of 0.409 and NSE of 0.800.  Models for 334 

acids and bases performed poorly with RMSD values being greater than the standard deviation 335 

of measured sorption coefficients and negative NSEs being obtained. Moderate performance 336 

was observed for models proposed for estimating sorption of weak bases with RMSDs below 337 

standard deviation of the observations and positive NSEs being obtained. The poorer 338 

performance of models proposed for ionisable compounds is likely explained by the fact that, 339 

with the exception of the Droge and Goss model, these models consider hydrophobicity and 340 

the degree of dissociation and soil organic content and, generally, do not account for other 341 

sorption processes known to be important for ionisable compounds such as hydrogen bonding 342 

as well as electrostatic interactions (ionic exchange, charge transfer, cation bridging, ligand 343 

exchange) [10,44,45]. Therefore, in the next section, we describe work to identify key soil and 344 

pharmaceutical properties driving sorption and then move on to develop improved sorption 345 

models. 346 

 347 

3.3. Potential factors influencing the sorption of four classes of pharmaceuticals in soil 348 

 349 

The main factors including chemical and soil properties associated with the degree of sorption 350 

of pharmaceuticals in each class were explored by using principal components analysis (PCA) 351 

and were then used for further model development. (Details are provided in Figure 2 and Table 352 

SI 8).  353 

 354 

3.3.1. Basic pharmaceuticals (bases, pKa > 4.8 and weak bases, 8 > pKa > 4.8) 355 

 356 

For basic pharmaceuticals, the PCA indicated that hydrophobicity descriptors (Log Kow, Vx, 357 

Log Dow) and soil TOC had a strong positive effect on sorption and that the degree of 358 

ionisation of the pharmaceutical (Fion) and soil CEC, clay and cations (Na, K, Ca) content had 359 

a weak positive effect on sorption (Table SI 8). These results suggest that bonding 360 
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mechanisms such as hydrophobic effects, van der Waals interactions as well as hydrogen 361 

bonding interactions with organic matter, dominate the overall sorption of basic 362 

pharmaceuticals in soil. Similar observations have been made in previous studies [25,46,47]. 363 

Moreover, most basic pharmaceuticals are predominantly in the protonated form at soil pH, so 364 

some additional influence through electrostatic attraction to electronegative charged soil 365 

surfaces (clay) is likely [49]. Indeed, a weak positive association of CEC and clay on sorption 366 

was observed across the basic and weak basic groups that supports the existence of cation 367 

exchange processes for cationic species of bases on negatively charged surfaces (clay or 368 

organic matter) occupied by metal cations [10,44,49]. 369 

 370 

3.3.2. Acidic pharmaceuticals (3.2 < pKa < 4.5) 371 

 372 

For acidic pharmaceuticals, the degree of dissociation (Fn) of the molecule, soil TOC and Al3+ 373 

and Fe3+ had a positive effect on sorption while pH and clay content had a negative effect on 374 

sorption (Table SI 8). These findings are consistent with observations from previous studies 375 

where the sorption behaviour of acidic compounds was found to be strongly dependent on the 376 

soil acidity [50-52]. The non-ionised species of acidic pharmaceuticals is prevalent at low pH 377 

(e.g. soil 2) where the hydrophobic partitioning of neutral counterparts with organic matter via 378 

van der Waals and hydrogen bonding interactions dominate the extent of sorption of acids 379 

[17,45,48,51]. In addition, the strong dependence of Kd on trivalent cations suggest that cation 380 

bridging between anionic form of acids and negatively charged sites and surface complexation 381 

of carboxyl group to exchangeable trivalent cations on soil metal oxides and aluminosilicate 382 

edge sites may be important processes for these molecules [44,46,53]. However, an 383 

electrostatic repulsion interaction between the anionic form of acidic pharmaceuticals and 384 

negatively charged soil surface (clay) could substantially attenuate the sorption of acids at 385 

neutral and alkaline pH [10,54]. 386 

 387 

3.3.3. Neutral pharmaceuticals (Log Kow > 0.85) 388 
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 389 

For the neutral molecules, the PCA analysis indicated a strong positive effect of hydrophobicity 390 

and soil organic carbon on sorption (Table SI 8). This supports the hypothesis that sorption of 391 

neutral molecules is due to hydrophobic partitioning into organic matter via van der Waals and 392 

electron donor-acceptor interactions [48, 55]. 393 

 394 

3.4. Regression model development and validation 395 

 396 

A linear regression model containing two explanatory variables (Log Kow and TOC) was 397 

generated with a good predictive capability (R2
pred of 0.872) for estimating sorption coefficients 398 

for neutral pharmaceuticals (Table 3). For bases, a two-parameter model (Log Dow combined 399 

with TOC) explained 75.2% of the variation in the experimental Log Kd values. Incorporation 400 

of an additional soil property (exchangeable Na+) into the model for bases resulted in an 401 

increase in the R2
pred from 0.703 to 0.782 (Table 3). These results suggest that both 402 

hydrophobic interactions and cation exchange processes for cationic species on negatively 403 

charged surfaces occupied by metal cations drive the sorption of the basic pharmaceuticals. 404 

 405 

Two non-linear regression models were developed for weak bases, which provided 406 

satisfactory predictive performance with the explained variance higher than 91.7% (Table 3). 407 

Molecular weight (MW) was applied to describe hydrophobic partitioning of undissociated 408 

species of weak bases, while hydrophilic factor (HF is a hydrophilicity descriptor which is 409 

calculated based on the number of carbon atoms and the number of hydrophilic groups in a 410 

molecule) was superior to other hydrophobicity descriptors in predicting the sorption of the 411 

ionic molecule species. Besides, charged surface area (simplified by the number of hydrogens 412 

bound by the charged nitrogen, Nai) and TOC were selected in explaining the sorption of ionic 413 

species, which revealed that electrostatic sorption of weak bases might be influenced by the 414 

charged surface area of the different amine types and soil organic carbon content. Furthermore, 415 

inclusion of the Ex Na+ as model input (Model 5) yielded an improvement in the predictions of 416 
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Log Kd for weak bases, the R2
pred increased from 0.856 to 0.892 (Table 3). The hydrophilic 417 

factor (HF) combined with TOC that were found to be able to capture the variance in sorption 418 

of non-ionic molecules of acids (Model 6). Molecular weight (MW) combined with soil 419 

properties (CEC and soil organic carbon content) could explain the contributions of ionic 420 

species to the overall sorption of acids.  421 

 422 

The predictive performance of our developed models and existing predictive models from the 423 

literature were evaluated against the literature data, which are summarised in Table 3 and 424 

Table 4. Briefly, four developed models from each group all yielded good predictions (RMSDtest 425 

range from 0.416 to 0.577, NSE > 0). The variability in predicted sorption coefficients by Model 426 

1 agreed satisfactorily with 65 Log Kd values in the external data sets for neutral 427 

pharmaceuticals across the various soil types (RMSDtest of 0.448). In comparison, the model 428 

for neutral organics proposed by Franco and Trapp [27] performed more poorly and showed 429 

an underestimation of Log Kd values for hydrophobic neutrals (Log Kow > 3.36) over one order 430 

of magnitude (RMSDtest of 0.601) (see Table 4 and Figure 3). For the basic group, both the 431 

proposed regression (Model 3) relying on Log Dow and TOC and the published model by 432 

Franco and Trapp [27] derived from Log Kow generated the reasonable predictions and gave 433 

an accuracy of a factor of 10 (N =23, Figure 3). The Model 4 proposed for weak bases 434 

displayed an accurate prediction (RMSDtest of 0.483), which outperformed the models 435 

described by Franco and Trapp [27] (RMSD of 0.903 and 0.811, respectively). This revealed 436 

that amine types (Nai) combined with HF provided a better estimation of the sorption of weak 437 

bases compared to the single hydrophobicity descriptor (Log Kow).  A satisfactory prediction 438 

of sorption was feasible with Model 6 for acidic pharmaceuticals (RMSDtest of 0.577) which 439 

yielded a performance significantly superior to the two existing models proposed by Kah and 440 

Brown [25] and the European Union [24] (RMSDtest of 0.870 and 0.611, respectively), which 441 

suggested that sorbate speciation is an important factor in predicting the sorption of acidic 442 

pharmaceutical in soil. Similar predictions were also observed with the models developed by 443 

Franco et al. [26] and Franco and Trapp [27], with the average errors of 0.558 and 0.573, 444 
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respectively.  445 

 446 

Overall, the model evaluation results based on the independent data set demonstrates that 447 

the sorption affinity of the partially ionised pharmaceuticals could be estimated accurately by 448 

weighting the contributions of neutral and ionic molecule species separately. The multiple-449 

linear regression models to estimate the sorption coefficient of the nonionised and fully ionised 450 

pharmaceuticals yielded appropriate predictions by incorporating molecular and soil properties 451 

(all predicted Log Kd values within a factor of 10). However, the better Models 2 and 5 for basic 452 

and weak basic pharmaceuticals and sorption model developed by Droge and Goss (2013) 453 

[26] containing the soil descriptors (exchangeable Na+ and CEC) could not be evaluated due 454 

to the incomplete record of soil properties being reported in many studies in the literature. The 455 

predictive performance of these models is worthy of further validation through the generation 456 

of additional experimental data on a wider range of pharmaceuticals and soil types and 457 

employing more environmentally-relevant concentrations.   458 

 459 

4. Conclusion 460 

In this study, the sorption behaviour of twenty-one pharmaceuticals across thirteen therapeutic 461 

classes was investigated in five test soils with different properties. Use of the data to evaluate 462 

existing sorption models, relying solely on Log Kow, for estimating sorption of neutral 463 

pharmaceuticals indicated that these models worked well. However, comparison of the 464 

sorption coefficients, obtained in the experiments, with predictions from existing models for 465 

estimating sorption of ionisable compounds showed that the models performed poorly for 466 

pharmaceuticals. Work was therefore done to develop new modelling approaches. An initial 467 

PCA analysis indicated that the sorption of the study pharmaceuticals was driven by 468 

hydrophobic forces as well as electrostatic interactions and a range of soil parameters. Using 469 

this knowledge, new models were developed for estimating sorption coefficients for 470 

pharmaceuticals. Evaluation of these new models against an independent dataset obtained 471 

from the literature showed that the models were on par with (model for bases and acids) or 472 
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superior to (model for neutrals and weak bases) existing models.  473 

 474 

While our study was more extensive than previous investigations of this type in terms of the 475 

range of pharmaceuticals and soil investigated, it still only focused on a subset of the 476 

pharmaceuticals in a small number of soils. The study also employed concentrations greater 477 

than concentrations typically observed in the environment. In the future, we recommend that 478 

further work is done at lower concentrations that are environmentally relevant and using a 479 

wider concentration range to further evaluate the models and, if appropriate, further refine the 480 

relationships. These models would allow us to predict sorption behavior of 481 

pharmaceuticals under realistic environmental conditions and could be invaluable for not only 482 

characterizing the environmental risks of pharmaceuticals in soil environments but also in 483 

sediment-water systems. 484 

 485 

Acknowledgments 486 

We would like to thank Matt Pickering for his valuable comments in HPLC-method 487 

development. We are grateful to one anonymous reviewer for their detailed and constructive 488 

comments on an earlier version of this manuscript. 489 

 490 

Supporting information description 491 

Detailed information on study pharmaceuticals and soils, the preliminary experiment 492 

procedures and analytical methods, sorption isotherms for study pharmaceuticals, results of 493 

principle component analysis, goodness of fit of developed models and existing predictive 494 

models against the external data sets as well as details of external evaluation data sets. 495 

 496 

Author information 497 

Corresponding Author 498 

*E-mail: alistair.boxall@york.ac.uk; Tel: +44 (0)1904 324791; fax: +44 (0)1904 322998. 499 

mailto:alistair.boxall@york.ac.uk


19 

 

Funding 500 

The study was performed as part of the Intelligence Led Assessment of Pharmaceuticals in 501 

the Environment project (iPiE Grant Number: 115735), which was funded by the EU/EFPiA 502 

Innovative Medicines Initiative Joint Undertaking. 503 

 504 

References 505 

 506 

1. Boxall, A. B., Kolpin, D. W., Halling-Sørensen, B., & Tolls, J. Peer reviewed: are veterinary 507 

medicines causing environmental risks? Environmental science & technology, 2003, 37(15), 508 

286A-294A. 509 

 510 

2. Li, W. C. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and 511 

soil. Environmental pollution, 2014, 187, 193-201. 512 

 513 

3. Shenker, M., Harush, D., Ben-Ari, J., & Chefetz, B. Uptake of carbamazepine by cucumber 514 

plants–A case study related to irrigation with reclaimed wastewater. Chemosphere, 515 

2011, 82(6), 905-910. 516 

 517 
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Figure 1. Logarithm of the linear sorption coefficient (Log Kd values) (±SE) for all the investigated pharmaceuticals in the five study soils. 

Compounds within a group ordered from low to high Log Kow. Soil organic carbon content increased in the order of soil 2 > soil 1 > soil  4 > soil 

3 > soil 5.
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Table 1. Comparison of the sorption coefficient (Kd) measured in present study and reported 

Kd values of pharmaceuticals in soil environments.  

Compound 
Measured Literature  
Kd (L/kg)  Kd (L/kg) (Reference) 

Atenolol 0.85-7.81 1.61-7.08 (19); 15 (23); 1.88-4.8 (10) 
Metoprolol 0.77-9.16 25.4-75 (19); 20 (23); 1.36-3.83 (10) 
Propranolol 6.16-108.7 58 (23); 16.3-199 (13) 

Diphenhydramine 19.3-299.2 n.d. 
Fluoxetine 9.38-95.78 146-234.8 (38) 

Amitriptyline 35.29-393.1 138 (23) 

Trimethoprim 6.15-58.16 

4.67-109(19); 26 (23); 1.16 (10); 7.06-9.21 
(18); 7.42 (43) 

Hydralazine 109.70-290.36 n.d. 
Lamotrigine 3.24-41.45 0.73-2.64 (41) 
Bisacodyl 261.1-986.2 n.d. 

Perphenazine 252.9-1249 n.d. 
Chlorothiazide 1.31-13 n.d. 

Sulfameter 0.76-27.65 0.09-0.17 (18) 
Captopril 1.91-20.34 n.d. 

Furosemide 4.22-42.3 27 (23) 
Ketoprofen 0.69-25.59 0.09-9.59 (19); 9 (23); 1.26-8.24 (39) 

Naproxen 1.07-80.45 

0.23-17.5 (19); 11(23); 10.1-252.9 (38); 1.24-
16.49 (40); 2.39-4.41 (12) 

Ibuprofen 
0.29-20.32 

0.15-3.01(19); 21 (23); 0.56-3.71(40); 
1.18(42); 1.08-1.14 (43) 

Antipyrine 0.20-4.92 n.d. 

Carbamazepine 1.08-14.88 

0.53-16.7(19); 13 (23); 0.43 (10); 0.49-37 (13); 
4.7-32.8 (38); 0.53-1.25 (41) 

Disulfiram 45.28-117.4 n.d. 
n.d.: no data. 
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Table 2. Evaluation of existing regression models for estimating the sorption behaviour of neutral, basic and acidic organic compounds in soil 
(The predicted organic carbon-normalised sorption coefficients (Log Koc) were converted to Log Kd to allow comparison to experimental data).   
 

Class 
Regression model 

 
N R2 SD RMSD NSE 

Neutrals 
Franco and Trapp 

(2008)  
N=15 0.907 0.947 0.409 0.800 

Bases 

 

 

Droge and Goss 
(2013) 

 N=25 0.091 0.745 1.311 -2.230 

Franco and Trapp 
(2008) base model A 

 N=30 0.709 0.710 0.780 -0.247 

Franco and Trapp 
(2008) base model B  

N=30 0.529 0.710 1.077 -1.376 

Weak 
Bases 

 

Franco and Trapp 
(2008) base model A 

 N=25 0.473 0.816 0.691 0.253 

Franco and Trapp. 
(2008) base model B  

N=25 0.309 0.816 0.686 0.263 

Acids  

Franco and Trapp 
(2008)  

N=30 0.166 0.576 0.640 -0.276 

Franco et al. (2009) 
  

N=30 0.115 0.576 0.694 -0.503 

Kah and Brown (2007) 
  

N=30 0.282 0.576 0.655 -3.359 

European Union 
(2003)  

N=30 0.001 0.576 1.127 -2.961 𝑓𝑜𝑐:  fraction organic carbon in soil;  

Log P: the octanol–water partition coefficient; 
pKa: acid-dissociation coefficient; ɸ𝑛, ɸ𝑖𝑜𝑛: fraction of neutral and ionic species;  𝑓: fraction of compound in the lipophilic phase, 𝑓 = Kow/(Kow+1); 

Log D: lipophilicity corrected to soil pH;  

𝐿𝑜𝑔 𝐾𝑜𝑐 = 0.5 ∗ 𝐿𝑜𝑔 𝑃 + 1.13 𝐾𝑑 = 𝐾𝐶𝐸𝐶,𝐶𝑙𝑎𝑦𝑠(𝐶𝐸𝐶𝑆𝑜𝑖𝑙  - 3.4𝑓𝑜𝑐 )+𝑓𝑜𝑐*𝐷𝑜𝑐,𝐼𝐸  

𝐿𝑜𝑔 𝐾𝑜𝑐 = 𝐿𝑜𝑔 (ɸ𝑛 ∗ 100.21∗𝐿𝑜𝑔 𝑃+2.24+ɸ𝑖𝑜𝑛 ∗ 100.42∗𝐿𝑜𝑔 𝑃+2.19 ) 𝐿𝑜𝑔 𝐾𝑜𝑐 = 𝐿𝑜𝑔 (ɸ𝑛 ∗ 100.37∗𝐿𝑜𝑔 𝑃+1.7+ɸ𝑖𝑜𝑛 ∗ 10𝑝𝐾𝑎0.65∗𝑓0.14
 ) 𝐿𝑜𝑔 𝐾𝑜𝑐 = 𝐿𝑜𝑔 (ɸ𝑛 ∗ 100.21∗𝐿𝑜𝑔 𝑃+2.24+ɸ𝑖𝑜𝑛 ∗ 100.42∗𝐿𝑜𝑔 𝑃+2.19 ) 𝐿𝑜𝑔 𝐾𝑜𝑐 = 𝐿𝑜𝑔 (ɸ𝑛 ∗ 100.37∗𝐿𝑜𝑔 𝑃+1.7+ɸ𝑖𝑜𝑛 ∗ 10𝑝𝐾𝑎0.65∗𝑓0.14
 ) 𝐿𝑜𝑔 𝐾𝑜𝑐 = 𝐿𝑜𝑔 (ɸ𝑛 ∗ 100.54∗𝐿𝑜𝑔 𝑃+1.11+ɸ𝑖𝑜𝑛 ∗ 100.11∗𝐿𝑜𝑔 𝑃+1.54 ) 

𝐿𝑜𝑔 𝐾𝑑 = 0.13 ∗ 𝐿𝑜𝑔 𝐷 + 1.02 𝐿𝑜𝑔 𝑂𝐶 − 1.51 𝐿𝑜𝑔 𝐾𝑜𝑐 = 0.6 ∗ 𝐿𝑜𝑔 𝑃 + 0.32 

𝐾𝑜𝑐 = 100.54∗𝐿𝑜𝑔 𝑃+1.111+ 10(𝑝𝐻−0.6−𝑝𝐾𝑎)+ 100.11∗𝐿𝑜𝑔 𝑃+1.541+ 10(𝑝𝐾𝑎−𝑝𝐻+0.6)  
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KCEC,Clay and DOC,IE are CEC-normalized and soil organic matter-normalized sorption coefficients, respectively. Log KCEC,Clay = 1.22 Vx - 0.22Nai + 1.09; Log Doc,IE 

= 1.53Vx + 0.32Nai – 0.27; 

Vx: molecular volume was determined following the approach described in Abraham and McGowan’s, (1987);  

Nai: number of hydrogens bound by the charged nitrogen; 
N: Number of observations; 

SD: Standard deviation of the observation; 

RMSD: Root mean square deviation; 

NSE: Nash-Sutcliffe Efficiency. 
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Figure 2. Principal component analysis loading plots for Kd, soil and pharmaceutical properties for basic compounds (A,B); weak basic 

compounds (C,D); acidic compounds (E,F); and for neutral compounds (G,H). 

 

Table 3. Multiple linear and non-linear regression equations for predicting sorption coefficients of pharmaceuticals in soils 

Class Model Equation 
Training Test 

N SE R2 R2adj R2pred RMSDtrain N SD R2test RMSDtest NSE 

Neutrals 

(Log Kow > 0.85) 1  15 0.265 0.933 0.921 0.872 0.237 65 0.637 0.543 0.448 0.497 

Bases 

(pKa > 8) 

2 

 

30 0.306 0.834 0.815 0.782 0.284 n.d. 

3 
 30 0.367 0.752 0.733 0.703 0.348 23 0.447 0.721 0.416 0.094 

Weak bases 

(pKa < 8) 

4 
𝐿𝑜𝑔 𝐾𝑑 = 𝐿𝑜𝑔 (ɸ𝑛 ∗ 100.021∗𝑀𝑊 −4.7+ɸ𝑖𝑜𝑛 ∗10−0.535∗𝐻𝐹 +0.345∗𝑁𝑎𝑖+0.145∗𝑇𝑂𝐶+1.559) 

25 0.264 0.917 0.895 0.856 0.230 20 1.082 0.816 0.483 0.790 

5 
𝐿𝑜𝑔 𝐾𝑑 = 𝐿𝑜𝑔 (ɸ𝑛 ∗ 100.021∗𝑀𝑊−4.979+ɸ𝑖𝑜𝑛 ∗10−0.54∗𝐻𝐹+0.331∗𝑁𝑎𝑖+3.208∗𝐸𝑥 𝑁𝑎+0.139∗𝑇𝑂𝐶+1.389) 

25 0.228 0.942 0.922 0.892 0.193 n.d. 

Acids 

(6.8 > pKa > 3.2) 6 
 

30 0.198 0.906 0.886 0.842 0.174 44 0.733 0.456 0.577 0.366 

All the regression descriptors were statistically significant at the 0.05 level. 
Log Kow, pKa, MW, Log Dow are the partition coefficient of the neutral molecule, dissociation constant, molecular weight, pH-dependent octanol-water 

distribution coefficient , respectively, which were calculated by the software ACD/Labs(http://ilab.cds.rsc.org/). HF (hydrophilic factor) was obtained from 

alvaDesc (v1.0.8).  ɸ𝑛, ɸ𝑖𝑜𝑛 are the fraction of neutral and ionic species, respectively. 

Nai: number of hydrogens bound by the charged nitrogen; 

Ex Na+ and CEC are exchangeable sodium and cation exchange capacity (cmol+/kg), respectively. Clay and TOC are clay content and total organic carbon 

content (%) in soil, respectively. 

𝐿𝑜𝑔 𝐾𝑑 = 𝐿𝑜𝑔 (ɸ𝑛 ∗ 10−0.313∗𝐻𝐹 +0.191∗𝑇𝑂𝐶+0.417+ɸ𝑖𝑜𝑛 ∗100.0083∗𝑀𝑊 −0.038∗𝐶𝐸𝐶+0.301∗𝑇𝑂𝐶−2.36) 

𝐿𝑜𝑔 𝐾𝑑 = 0.779 ∗ 𝐿𝑜𝑔 𝐾𝑜𝑤 + 0.211 ∗ 𝑇𝑂𝐶 − 1.729 

𝐿𝑜𝑔 𝐾𝑑 = 0.315 ∗ 𝐿𝑜𝑔 𝐷𝑜𝑤 + 0.188 ∗ 𝑇𝑂𝐶 + 0.585 

𝐿𝑜𝑔 𝐾𝑑 = 0.312 ∗ 𝐿𝑜𝑔 𝐷𝑜𝑤 + 0.171 ∗ 𝑇𝑂𝐶 +4.164 ∗ 𝐸𝑥𝑁𝑎 + 0.336 

http://ilab.cds.rsc.org/
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Ntrain, Ntest are the number of the experimental sorption coefficients and published sorption coefficients, respectively.  

SE, SDtest are the standard error of the fitted model and standard deviation of published sorption coefficients.  

R2adj, R2pred is the adjusted R2, predicted R2 of developed models.  

RMSDtrain, RMSDtest are root mean square deviation of experimental data against predicted data and test data against predicted data, respectively.  
NSE is the Nash−Sutcliffe Efficiency value. 

 n.d.: no data. 
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Table 4. Predictive performance of existing models against literature data. 
Evaluation 

data set 
N SD Existing model R2test RMSDtest NSE 

Neutral 65 0.637 

Franco and Trapp (2008) 
 

 

0.521 0.601 0.096 

Bases 23 0.447 

Franco and Trapp (2008) 

base model A 
0.789 0.417 0.088 

Franco and Trapp (2008) 

base model B 
0.628 0.647 -1.194 

Weak 

bases 
20 1.082 

Franco and Trapp (2008) 

base model A 
0.512 0.903 0.267 

Franco and Trapp (2008) 

base model B 
0.504 0.811 0.409 

Acids 44 0.733 

Franco and Trapp (2008) 
 

 

0.547 0.573 0.375 

Franco et al. (2009) 

 

 

0.513 0.558 0.406 

Kah and Brown (2007) 

 

 

0.499 0.870 -0.441 

European Union (2003). 

 

 

0.348 0.611 0.288 

N is the number of the observations.  

SD is the standard deviation of the observations.  

RMSDtest is the root mean square deviation. 

NSE is the Nash−Sutcliffe Efficiency value.   
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(B)      
Figure 3. Comparison of predictive performance between the developed models in the current study and existing models in the literature. The 

selected models for the comparison were the model showing the best performance in each class (The model performance results are presented 
in Table 3 and 4). A) Validation of models 1, 3, 4, 6 developed in present study for neutrals (Log Kow > 0.85), bases (pKa > 8), weak bases (8 > 

pKa > 4.8), acids (6.8 > pKa > 3.2), respectively; B) Validation of the existing models for bases, weak bases and neutrals proposed by Franco 

and Trapp [27] and the model for acids proposed by Franco et al. [26]. The black dashed line represents perfect model fit (1:1 line) and the green 

and blue dashed lines represent a difference of 1 order of magnitude. 
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