
This is a repository copy of Predictive functional control for unstable first-order dynamic 
systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/160810/

Version: Accepted Version

Proceedings Paper:
Aftab, M.S., Rossiter, J.A. orcid.org/0000-0002-1336-0633 and Zhang, Z. (2020) Predictive
functional control for unstable first-order dynamic systems. In: Gonçalves, J.A., Braz-
César, M. and Coelho, J.P., (eds.) CONTROLO 2020: Proceedings of the 14th APCA 
International Conference on Automatic Control and Soft Computing. Controlo 2020: 14th 
International Conference on Automatic Control and Soft Computing, 01-03 Jul 2020, 
Bragança, Portugal. Lecture Notes in Electrical Engineering, 695 . Springer , pp. 12-22. 
ISBN 9783030586522 

https://doi.org/10.1007/978-3-030-58653-9_2

This is a post-peer-review, pre-copyedit version of an article published in Gonçalves J.A., 
Braz-César M., Coelho J.P. (eds) CONTROLO 2020. CONTROLO 2020. Lecture Notes in 
Electrical Engineering, vol 695. The final authenticated version is available online at: 
http://dx.doi.org/10.1007/978-3-030-58653-9_2

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Predictive Functional Control for Unstable

First-Order Dynamic Systems

Muhammad Saleheen Aftab1, John Anthony Rossiter1, and Zhiming Zhang2

1 Dept. of Automatic Control and Systems Eng., University of Sheffield, UK
msaftab1@sheffield.ac.uk, j.a.rossiter@sheffield.ac.uk

2 State Key Laboratory of Industrial Control Technology, Zhejiang University, China
zhangzhimingzju@zju.edu.cn

Abstract. Predictive functional control (PFC) has emerged as a popu-
lar industrial choice owing to its simplicity and cost-effectiveness. Nev-
ertheless, its efficacy diminishes when dealing with challenging dynamics
because of prediction mismatch in such scenarios. This paper presents
a proposal for reducing prediction mismatch and thus improving be-
haviour for simple unstable processes; a two-stage design methodology
pre-stabilises predictions via proportional compensation before introduc-
ing the PFC component. It is demonstrated that pre-stabilisation reduces
the dependency of the closed-loop pole on the coincidence point and
also improves robustness to uncertainty. Simulation results verify the
improved performance as compared to conventional PFC.

Keywords: PFC, coincidence horizon, pre-stabilisation, proportional
compensation

1 Introduction

Predictive functional control (PFC) offers numerous beneficial attributes such as
trivial coding, easy implementation and simple handling without needing sophis-
ticated knowledge, software or specialised personnel. These qualities, along with
systematic handling of constraints and dead-times compared to other conven-
tional methods, say proportional-integral-derivative (PID) control, make PFC a
popular alternative in industry, with numerous successful applications [1].

Conventional PFC [1–3] matches the plant output prediction to a desired
first-order target trajectory at only one future point, the so-called coincidence
point, by keeping the predicted input constant. One may ask if there exists a re-
liable criterion for selecting the desired target dynamics and coincidence point?
Researchers have established generic guidelines for systems with relatively be-
nign dynamics. For example, it is recommended [2] to use a one-step ahead model
prediction for first-order plant as this guarantees target behaviour for first-order
systems [4]. Alternatively, one recommendation for higher-order systems is to
choose the point of inflection (where the gradient is maximum) on the step re-
sponse curve as the coincidence point although it is arguable whether this would
work well for systems with challenging dynamics. Moreover, for monotonically
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convergent higher-order systems, a coincidence point where the open-loop step
response has risen to approximately 40-80% of the steady-state is often a bet-
ter choice [4]. Nevertheless, matching underdamped, unstable and non-minimum
phase dynamics with target first-order behaviour does not make sense and co-
incidence point selection for such systems is not straight-forward. Challenging
dynamics demand a different parametrisation of the degrees-of-freedom [5], as
the typical constant input assumption within the prediction horizon may be
inappropriate. One recent attempt [6] parametrised the input with first-order
Laguerre polynomial, which improves prediction consistency and convergence
rate as compared to the original PFC for systems with simple dynamics; how-
ever, this approach is not really tailored to systems with difficult dynamics.

The main objective of this paper is to build on the ideas in [5, 7] and indeed
conventional wisdom in PFC [2] which is to modify unstable dynamics before ap-
plying the PFC design. Accepted practice in the mainstream MPC community
uses pre-stabilisation [8, 9], so this paper proposes a a two-stage PFC design
methodology by integrating pre-stabilised dynamics with PFC decision mak-
ing. Initially we restrict our study to first-order unstable plants focusing on the
effects of a pre-stabilising structure on closed-loop performance, sensitivity and
constraint handling. Specifically this paper analyses the relationship between the
target pole, pre-stabilising gain and coincidence horizon and establishes guide-
lines for systematic and effective tuning. Generally a trade-off between closed-
loop performance and sensitivity is observed, which signifies the importance of
offline sensitivity analysis for proper selection of tuning parameters; something
not in the conventional PFC literature. With pre-stabilisation, numerical simula-
tions show improved closed-loop performance as compared to conventional PFC.
Extensions for systems with higher-order dynamics constitutes future work.

The remainder of this paper is organised as follows: Section 2 succinctly
formulates the control problem. Section 3 proposes the two-stage PFC and dis-
cusses sensitivity analysis, tuning procedures and constraint handling. Section 4
presents the numerical illustrations. Finally the paper concludes in Section 5.

2 Problem Statement

Consider an unstable first-order plant given by:

Gp(z) =
bpz

−1−w

1 + apz−1
(1)

where ap and bp are the plant parameters, w is the system delay and |ap| ≥ 1
represents the open-loop unstable pole. The system eqn. (1) is subject to input,
input rate and output constraints i.e.

umin ≤ u(k) ≤ umax ∆umin ≤ ∆u(k) ≤ ∆umax ymin ≤ y(k) ≤ ymax (2)

where ∆ = 1−z−1 is the difference operator. The objective is to design a PFC by
first stabilising the prediction dynamics. Furthermore the controller is expected
to show some degree of robustness against measurement noise, disturbances and
multiplicative uncertainty.



PFC for Unstable First Order Systems 3

Gm(z)

K

+-
vk uk ym,k

Gm(z)+-
vk uk ym,k

K

(a) (b)

Fig. 1. Pre-stabilisation with proportional compensation

3 Two-Stage Predictive Functional Control

This section proposes a two-stage design approach to controlling the unstable
system with PFC. In stage one, the prediction model is stabilised offline through
proportional compensation before employing PFC. It should be noted that al-
though open-loop PFC may stabilise unstable systems in an unconstrained envi-
ronment, pre-stabilisation is necessary for accurate constraint handling. Denote
the system model representing (1) as Gm(z), (am = ap and bm = bp if Gm = Gp):

Gm(z) =
bmz−1

1 + amz−1
(3)

The dead-time w is excluded from the prediction model and is added separately
in the PFC control law. Next we discuss two alternatives to stabilise system
eqn. (3).

3.1 Stage-1: Model Pre-stabilisation

The delay-free model (3) can be stabilised with proportional compensation either
in the feedback path (Fig. 1(a)) or in the forward path (Fig. 1(b)). The closed-
loop transfer function for both cases has the form:

Tm(z) =
ym(z)

v(z)
=

βz−1

1 + αz−1
(4)

where β = bm and β = Kbm for compensation in feedback and forward paths
respectively and α = am + Kbm. Evidently Tm(z) is stable if 0 ≤ |α| < 1.
Moreover, the input uk for feedback path compensation is parameterised as:

uk = vk −Kym,k (5)

and for forward path compensation as:

uk = K(vk − ym,k) (6)

The implementation of PFC with Fig. 1(a) for integral systems only was reported
verbally in [7]. The current study generalises this concept for unstable dynamics
and analyses the potential merits and demerits against the structure of Fig. 1(b).
The expectation is to gain useful insights for generalising pre-conditioning with
more advanced compensation for more complex plants.
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Fig. 2. PPFC structure—PFC on pre-stabilised model with proportional gain in (a)
feedback path, and (b) forward path

3.2 Stage-2: PFC design

The pre-stabilised PFC (PPFC) structure employing a PFC loop on the sta-
bilised model is shown in Fig. 2. In PFC, the output prediction, yp,k is required
to follow target first-order dynamics such that:

yp,k+i = R− (R− yp,k)ρ
i (7)

where R is the steady-state set-point value and ρ is the target closed-loop pole.
The PFC control law matches the output prediction yp,k+i and target output
R − (R − yp,k)ρ

i at a single point in future, known as the coincidence point h,
while assuming a constant predicted input, i.e. vk = vk+i|k, ∀i > 0. Hence, after
recursion on model (4), an i-step ahead model prediction is obtained [1, 3]:

ym,k+i = (−α)iym,k + [(−α)i−1β + (−α)i−2β + · · ·+ β]vk (8)

The prediction equation (8), requires correction from bias due to uncertainties
with the offset term dk where dk = yp,k − ym,k. Thus PFC is defined from:

yp,k+i = ym,k+i + dk = R− (R− yp,k)ρ
i (9)

Substituting from (8), the solution to (9), or PPFC law, is given as:

vk =
R− (R− yp,k)ρ

h − (−α)hym,k − dk
∑h

j=1(−α)h−jβ
(10)

Theorem 1. For a given ρ and h either pre-stabilisation technique results in
the same control law provided equal proportional gain is used.

Proof. First using eqn. (10) in eqn. (5) with β = bm, gives:

ufback
k =

R− (R− yp,k)ρ
h − (−α)hym,k − dk

∑h
j=1(−α)h−jbm

−Kym,k (11)
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Now using eqn. (10) in eqn. (6) with β = Kbm:

uforward
k = K

[

R− (R− yp,k)ρ
h − (−α)hym,k − dk

K
∑h

j=1(−α)h−jbm
− ym,k

]

= ufback
k

Thus same control law results irrespective of the pre-stabilisation technique. ⊓⊔

Remark 1. Theorem 1 shows there is no obvious advantage of either pre-
stabilisation method. Thus for complex systems, pre-conditioning in the feed-
back path is expected to give same performance as in the forward path.

Remark 2. System delays can be easily incorporated into PFC control law [3]
by noting that E(yp,k+w) = yp,k + ym,k − ym,k−w. Therefore eqn. (10) becomes:

vk =
R− [R− E(yp,k+w)]ρ

h − (−α)hym,k − dk
∑h

j=1(−α)h−jβ
(12)

where dk = yp,k−ym,k−w. When w = 0, eqn. (10) and eqn. (12) are no different.

3.3 Sensitivity Analysis

The ability of a feedback loop to reject unwanted perturbations in the form of
noise, disturbance and multiplicative uncertainty can be assessed with frequency
domain sensitivity analysis [10]. Control law (11) can be re-arranged as:

uk = F (z)R−M(z)yp,k −N(z)ym,k (13)

where F (z), M(z) and N(z) are appropriate polynomials. Note further:

{ym,k = Gm(z)uk, (13)} ⇒ D(z)uk = F (z)R−M(z)yp,k (14)

with D(z) = 1 + N(z)Gm(z). Eqn. (14) is represented in the block diagram
of Fig. 3 where disturbance dy,k and measurement noise nk are also shown;
the effective control law is C(z) = M(z)D−1(z). Consequently, PC(z) = 1 +
C(z)Gp(z) = D(z)A(z) + M(z)B(z) is the closed-loop pole polynomial. From
Fig. 3, sensitivity of the plant input to noise is found to be:

Sun(z) = C(z)[1 + C(z)Gp(z)]
−1 = M(z)P−1

C (z)A(z) (15)

whereas sensitivity of the plant output to disturbance is:

Syd(z) = [1 + C(z)Gp(z)]
−1 = A(z)P−1

C (z)D(z) (16)

Sensitivity Sδ(z) of the closed-loop pole to multiplicative uncertainty uses:

PC(z) = 1 + C(z)[Gp(z) + δGp(z)]

= [1 + C(z)Gp(z)]
(

1 + δC(z)Gp(z)[1 + C(z)Gp(z)]
−1

)

where δ is possibly a frequency dependent scalar. Thus:

Sδ(z) = C(z)Gp(z)[1 + C(z)Gp(z)]
−1 = M(z)P−1

C (z)B(z) (17)
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Fig. 3. PPFC block diagram for sensitivity analysis

3.4 Tuning

There are two tuning parameters for a given target pole ρ: the pre-stabilising
gain K and the coincidence point h. K determines the position of the pole |α| in
z-plane which logically should be restricted between ρ and 1. Therefore K can
be tuned within a range where KU and KL are upper and lower limits:

KL = −

(

1 + am
bm

)

< K ≤ −

(

ρ+ am
bm

)

= KU (18)

Theorem 2. Closed-loop pole zCL = ρ is guaranteed if either
(i) proportional gain K = KU irrespective of h, or
(ii) coincidence point h = 1 irrespective of K.

Proof. We know from [4] that:

zCL = −α+
ρh − (−α)h

∑h
j=1(−α)h−j

(i) selecting K = −(ρ+ am)/bm implies:

α = am −

(

ρ+ am
bm

)

bm = −ρ

Consequently zCL = ρ is guaranteed irrespective of h.
(ii) selecting h = 1 implies:

zCL = −α+
ρ1 − (−α)1

1
= ρ

Hence zCL = ρ is guaranteed irrespective of K. ⊓⊔

Corollary 1. If K = KU then Sun and Sδ are independent of h.

Proof. A(z) = 1 + apz
−1 and B(z) = bpz

−1 do not involve h, plus Theorem 2
proves PC(z) does not depend on h either. This leaves only M(z) to check. First
note that for K = −(ρ+ am)/bm,

h
∑

j=1

(−α)h−jbm =
bm[1− (−α)h]

1 + α
=

bm(1− ρh)

1− ρ
⇒ M(z) =

1− ρh

bm(1−ρh)
1−ρ

=
1− ρ

bm
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which makes M(z) free from h. Thus both Sun and Sδ are independent of h. ⊓⊔

Algorithm 1. Select K mid way in its range i.e. K = (KU+KL)/2. This implies
ρ ≤ zCL < (1 + ρ)/2 for 1 ≤ h < ∞ and also keeps h relevant for tuning offline
sensitivity functions.

3.5 Constraint Handling

Another important aspect is the proper handling of constraints. Since pre-
stabilisation changes the PFC control variable to vk, this implies a transfer of
constraints from uk to vk is necessary, for example via a process of back calcu-
lation [2]. For pre-stabilisation with proportional gain in the feedback path:

umin +Kym,k ≤vk ≤ umax +Kym,k

∆umin +K∆ym,k ≤ ∆vk ≤ ∆umax +K∆ym,k (19)

and if proportional gain is placed in the forward path:

umin

K
+ ym,k ≤vk ≤

umax

K
+ ym,k

∆umin

K
+∆ym,k ≤ ∆vk ≤

∆umax

K
+∆ym,k (20)

Output constraints on the other hand are incorporated through predictions (8).
At each time sample k, output constraints have to be satisfied throughout and
beyond the coincidence horizon, that is until the predictions have settled [9].
From eqns. (8)-(9), the predictions for constraint horizon nc are:

yp,k+j = Pjym,k +Hjvk + Lj ; j = 1, 2, . . . , nc, nc ≫ h (21)

Therefore the output constraints ymin ≤ yp,k ≤ ymax are transferred to:

ymin ≤ Pjym,k +Hjvk + Lj ≤ ymax; j = 1, 2, . . . , nc (22)

One can utilise a simple loop to test each constraint in turn and select the vk
closest to the nominal value from (10) which satisfies all the constraints [6].

Theorem 3. Given that vk−1 is feasible by assumption and one is able to select
vk = vk−1, constraints can always be satisfied in the nominal case as long as nc

is large enough. Proof equivalent to that in [6].

4 Simulation Results & Discussion

This section examines the performance of the proposed PPFC controller and
compares it with conventional PFC. The unstable plant and constraints are:

G1 =
0.2361z−6

1− 1.118z−1
; −0.4 ≤ u(k) ≤ 0.3, −0.1 ≤ ∆u(k) ≤ 0.1; 0 ≤ y(k) ≤ 0.9
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Fig. 4. Comparison of sensitivity plots for G1 as function of h between PPFC with
K = 1.03 and conventional PFC (vertical scales for bottom two figures are not equal)

A disturbance dy,k = 0.5 is introduced at the 35th sample and white sensor noise
nkǫ[−0.1, 0.1] after the 55th sample; the multiplicative uncertainty is δ = 0.5.
The target dynamics are governed by ρ = 0.75 and R = 1 resulting in 0.4998 <
K ≤ 1.5587. We choose the middle value of gain according to Algorithm 1, thus
K = 1.03 guarantees 0.75 ≤ zCL < 0.875. Note that the output upper limit
is intentionally kept below set point to analyse the efficacy of PPFC constraint
handling.

4.1 Sensitivity Analysis

A sensitivity analysis is used to select the coincidence horizon h. Fig. 4 shows a
comparison of sensitivity functions between PPFC and conventional PFC for dif-
ferent h. An worsening trend in sensitivities can be observed for PFC with higher
h whereas for PPFC this trend is reversed apart from disturbance rejection that
deteriorates slightly. This is expected because with PFC a larger h means the
control law is being based on an increasingly large/divergent open-loop predic-
tion and thus is unreliable. The core point is that PPFC clearly outperforms
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Fig. 5. Comparison of unconstrained input and output for G1 as function of h between
PPFC with K = 1.03 and conventional PFC

PFC in terms of sensitivity and one can choose h to get some trade off between
the different sensitivity functions.

4.2 Closed-loop Behaviour

The unconstrained time-domain performance shown in Fig. 5 agrees with the
results of sensitivity analysis, although nominal performance is affected some-
what by the parameter uncertainty. Again PPFC clearly outperforms PFC and
has much more consistent behaviour as h changes. It is particularly notable that
PFC begins to fail for large h which is the opposite observation one gets with
stable open-loop processes.
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Fig. 6. Comparison of constrained input and output for G1 between PPFC with K =
1.03, h = 15 and conventional PFC with h = 1
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When constraints are introduced the advantages of PPFC are even more
pronounced as seen in Fig. 6. Notably PPFC performs well notwithstanding
the unstable pole and retains feasibility, whereas PFC fails and has an unstable
closed-loop.

5 Conclusions

This paper proposes a two-stage design approach to controlling unstable first-
order plants with PFC. It has been shown that pre-stabilisation with a simple
proportional gain improves performance, both with and without constraints. The
paper establishes systematic guidelines for selection of both the proportional gain
and other tuning parameters and proposes some offline analysis to consider their
impact on overall performance. The theoretical aspects of this study have been
validated through numerical simulations which demonstrate superior closed-loop
control with the proposed scheme.

In future the authors plan to extend this study to more challenging unstable
and/or higher-order dynamics. We expect a similar approach to pre-condition
oscillatory and non-minimum phase behaviour with PD loops could be exploited
which otherwise are difficult to control with conventional PFC alone. It is noted
that complex pre-conditioning loops within the PFC framework might involve
a slightly more demanding constraint handling procedure, but given modern
computing capacity this is not likely to be a problem.
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