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ABSTRACT Fog computing is an emerging paradigm that aims to improve the efficiency and QoS of cloud
computing by extending the cloud to the edge of the network. This paper develops a comprehensive energy
efficiency analysis framework based on mathematical modeling and heuristics to study the offloading of
virtual machine (VM) services from the cloud to the fog. The analysis addresses the impact of different
factors including the traffic between the VM and its users, the VMworkload, the workload versus number of
users profile and the proximity of fog nodes to users. Overall, the power consumption can be reduced if the
VM users’ traffic is high and/or the VMs have a linear power profile. In such a linear profile case, the creation
of multiple VM replicas does not increase the computing power consumption significantly (there may be a
slight increase due to idle / baseline power consumption) if the number of users remains constant, however the
VM replicas can be brought closer to the end users, thus reducing the transport network power consumption.
In our scenario, the optimum placement of VMs over a cloud-fog architecture significantly decreased the
total power consumption by 56% and 64% under high user data rates compared to optimized distributed
clouds placement and placement in the existing AT&T network cloud locations, respectively.

INDEX TERMS Fog computing, cloud computing, energy efficiency, virtual machine.

I. INTRODUCTION
Cloud computing has started to transform the information
and communication technology (ICT) industry by providing
efficient resource-sharing solutions in an Internet-based pool
of network, storage, and computational resources available to
simultaneously serve many geographically distributed users.
Cloud computing essentially enables the development of the
emerging Internet of Things (IoT) and Big Data applications.
By 2020, total cloud traffic is expected to grow to 3.7 times its
level in 2015, reaching 1.2 zettabytes per month and account-
ing for 92% of total data center traffic [1]. This mounting
traffic creates a huge burden on data centers and networks,
leading to serious energy efficiency and quality-of-service
(QoS) challenges [2].

Fog computing, introduced by Cisco in 2014 [3], com-
plements central cloud services by offloading some services
to geographical proximity to users at network edges for
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more efficient service access. Research of fog computing has
mainly focused on illustrating its potential advantages over
cloud computing. Fog computing is proposed to provide low
latency [4], conserve network bandwidth [5], and improve
QoS [6] and quality of experience (QoE) [7] for various
computing services. Also in [8], providing network function
virtualization (NFV) in the fog computing layer achieved
low delay and efficient performance in data transmission,
caching, and data integrity.

The energy consumption of cloud and fog computing has
received limited attention in the literature, however. In [9],
the authors found that the number of hops between users
and content has little impact on total energy consumption
compared to the type of application running on servers and
factors such as the number of downloads and updates. In [10],
the authors studied the interplay and cooperation between
the fog and the cloud to achieve a trade-off between power
consumption and delay in a cloud-fog computing system.
A detailed analysis of the essential service metrics regarding
the cost and benefit of offloading services to the fog layer
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is yet to be conducted to identify the services that the fog
can efficiently host, however. Such an analysis is crucial to
sustain the growth of the IoT and Big Data applications,
which are proving to be pivotal to economic growth and
quality of life. In [11], the authors built a theoretical model
of fog computing architecture and compared it to the con-
ventional cloud computing model. In addition to low latency,
they found that offloading applications to the fog layer can
significantly reduce power consumption by 41%. However,
they did not consider a detailed model of the telecom network
architecture.

Mathematical modelling gives a concise and accurate rep-
resentation of a problem to help in understanding the problem
and solving it. Mathematical optimization finds the max-
imum or minimum solution of a function, referred to as
the objective function. Mathematical optimization, where a
problem is formulated as a mixed integer linear program-
ing (MILP) model, has been used intensively in the litera-
ture to solve network design problems. The authors of [12],
[13] used MILP models to study the energy efficiency of
core networks. In [14] MILP models are used to develop
energy-efficient network topologies. Network carbon emis-
sions reduction by introducing renewable energy is formu-
lated as an MILP model in [15]. Network resilience and its
impact on energy efficiency is assessed using MILP models
in [16], [17]. The work in [18]–[21] introducedMILP models
for energy-efficient content distribution. Network optimiza-
tion for energy-efficient Big Data transport is formulated
as MILP models in [22], [23]. In [24], [25] the use of Big
Data analytics to optimize networks is investigated using
MILP models. In [26]–[28] the problem of energy-efficient
VM placement over a core network is formulated as a MILP
model. Finally, [29]–[31] present a MILP model for energy-
efficient network virtualization.

In this paper, we develop a comprehensive framework
based on mathematical modeling and heuristics to study the
offloading of VM services from the cloud to the fog layer to
minimize the total power consumption of service provision.
We optimize the placement of VMs over an end-to-end cloud-
fog architecture that traverses the core network, metropolitan
(metro) network, and access network. VM placement in the
cloud at the core network allows VMs to serve users dis-
tributed across the core nodes, whereas placing VM replicas
closer to the users in the fog nodes in the metro or access
networks limits the traffic between users and VMs to the
metro and access networks, respectively, thus eliminating the
associated core network traffic (and potentially the metro
traffic). This reduces the network power consumption but
increases the processing power consumption due to the cre-
ation of multiple VM replicas, and therefore a trade-off
exists.

The remainder of this paper is organized as follows.
Section II discusses the concept of machine virtualization and
VMs workload profile and introduces the MILP model for
optimizing the VM placement in the cloud-fog architecture.
We present the optimization model results and analyze them

in Section III. A real-time VM placement heuristic is pro-
posed in Section IV. Finally, Section V concludes the paper.

II. ENERGY EFFICIENT PLACEMENT OF VIRTUAL
MACHINES OVER CLOUD-FOG ARCHITECTURE
A. MACHINE VIRTUALIZATION
Cloud and fog processing employ VMs for efficient resource
utilization. Virtualization abstracts the server resources
including the CPU, RAM, hard disk and I/O network to create
an isolated virtual entity that can run its operating system
and applications. The existence of such a virtual environment
allows the scaling up and down of server resources in a
dynamic manner based on the variation in user demands [31].
Further dynamism can be achieved by migrating or replicat-
ing VMs over geo-distributed servers to achieve different fea-
tures such as load balancing [32] and energy efficiency [33].
The problem of migration and replication of VMs is referred
to as VMs placement. VMs placement needs to be optimized
to follow variations in the VMs demands, workload of the
cloud/fog resources or network status [34]. Cloud and fog
processing employVMs for efficient resource utilization. Vir-
tualization abstracts the server resources including the CPU,
RAM, hard disk and I/O network to create an isolated virtual
entity that can run its operating system and applications. The
existence of such a virtual environment allows the scaling up
and down of server resources in a dynamic manner based
on the variation in user demands [31]. Further dynamism
can be achieved by migrating or replicating VMs over geo-
distributed servers to achieve different features such as load
balancing [32] and energy efficiency [33]. The problem of
migration and replication of VMs is referred to as VMs
placement. VMs placement needs to be optimized to follow
variations in the VMs demands, workload of the cloud/fog
resources or network status [34].

Several papers have discussed VM placement considering
various factors. To reduce server load, improveQoS, andmeet
service-level agreements (SLAs), VMs can be migrated or
replicated to another server or servers within the same data
center [35] or in geographically distributed data centers [36].
Virtualized cloud architectures can also provide efficient
disaster resilience in case of physical machine failure by
migrating VMs into different host machines or by replicating
VM content in distributed data centers [37].

Under-utilized servers can significantly increase energy
consumption and consequently increase the carbon emissions
and operating costs of cloud data centers. VM consolidation
by bin packing into fewer servers can significantly improve
energy efficiency. The authors in [38] proposed a VM place-
ment algorithm that uses VM popularity to explore the search
space, achieving up to 40% power savings and reducing the
number of servers used by up to 50% compared to place-
ment based on first fit decreasing (FFD) techniques. In [39],
the authors proposed aVMplacement algorithm that balances
the processing and memory resources of servers resulting in
reducing the total power consumption by 15% compared to
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FFD techniques. In [40], the authors presented an energy-
efficient approach for profile-based VM placement consider-
ing various VM profiles (e.g., central processing unit [CPU]
and random access memory [RAM] requirements). Their
algorithm reduced power consumption by up to 20% com-
pared to FFD techniques. The work in [41] proposed a novel
strategic formulation using an n-person cooperative game
in which users request and pay for VM instances together.
In most cases, however, the VM instances provided for users
exceeded actual need, which led to resource over-provision
and higher VM cost for users. The authors concluded that
users could pay less for requested VMs if they cooperate,
which led to consequent decreases in power consumption by
up to 25% compared to FFD and enhanced FFD techniques.

In the fog layer, most studies of VM placement have been
limited to evaluating the reduction of overall network over-
head [42], optimizing the placement of physical resources in
the edge network [43], and scheduling VMs to share limited
fog resources to minimize SLA violations [44]. Despite the
diverse factors affecting the power consumption of cloud-
fog architectures, the problem of providing energy-efficient
VM placement over end-to-end cloud-fog architecture has
received little scholarly attention. Thus, the objective of this
paper is to develop a novel framework that covers different
networks and computing and optimizes the energy efficiency
of VM placement. This paper compares VM placement in
a cloud-fog architecture over the American Telephone and
Telegraph (AT&T) network where VMs are placed in the
12 data centers built in the AT&T network [45] versus opti-
mized VMs placement over clouds in any core nodes of the
AT&T network.

Despite the diverse factors affecting the power consump-
tion of cloud-fog architectures, the problem of providing
energy-efficient VM placement over end-to-end cloud-fog
architecture considering end-to-end architecture has not
received any attention. Thus, the objective of this paper is
to develop a novel framework that covers different networks
and computing in optimizing the energy efficiency of VMs
placement.

B. VM WORKLOAD PROFILE
VM power consumption is determined by hosting servers.
The authors in [41] found that the CPU utilization and power
consumption of a server are highly correlated. Another work
[42] studied the relationship between the power consumption
and CPU utilization of a server and found a linear relation
between them. This paper follows the same approach but
considers CPU utilization only in modeling the power con-
sumption of VM placement.

From a CPU perspective, various studies have shown that
VM workload versus the number of VM-served users mostly
follows one of two profiles: constant or linear (Fig. 1). In [43],
the authors presented a CPU performance benchmark study
for web-application VMs serving varying numbers of users
with constant CPU workloads (Fig. 1 (a)). Also, various
benchmarking studies have demonstrated linear workload

profiles for database applications [44], web-based video con-
ferencing systems [45], and multiplayer games [46] with dif-
ferent slope coefficients. To maintain SLAs, each VM needs
a minimum workload to run an application regardless of the
number of users it serves, resulting in the workload profile
in Fig. 1 (b). The minimum workload required to serve a
user in a VM varies from as low as 1% to 60% based on the
application [44]–[46].

C. MILP MODEL
The MILP model objective is to minimize the power con-
sumption of the end-to-end cloud-fog network architecture
accounting for different networking and processing layers.
The total power consumption comprises two parts: (i) the
traffic-induced power consumption due to delivering VM ser-
vices from the cloud (over core, metro, and access net-
works) or fog (over metro and access networks or access net-
work) to users, and (ii) processing induced power consump-
tion in clouds and fogs. The MILP model objective is subject
tomany constraints related toVMplacement, communication
network, and processing requirements and capabilities.

We approach VM placement in a cloud-fog architecture,
unlike [33], where certain placement schemes were imposed
on all types of VMs. We allow the MILP model to select the
most energy-efficient VM placement based on VM popular-
ity, minimum VM workload requirement, and data rate. The
model aims to achieve the ideal trade-off between network
power saved by replicating VMs in multiple clouds and/or
fog nodes and the power consumed by those replicas. A VM
replica saves power if the former power exceeds the latter.
Before introducing the model, Fig. 2 defines the parameters
and variables related to the different layers of the cloud-fog
architecture.

1) CLOUD AND FOG NODES
A typical data center, as illustrated in Fig. 2, consists of
servers arranged in multiple racks and a LAN network, made
of routers and switches, to connect racks to each other (inter
rack communication) and to users outside the data center.

The resources at the fog nodes form mini data centers
connected in a similar way to the cloud data centers. Servers,
switches and routers in the cloud and fog nodes are defined
by the following parameters:

Cloud and fog parameters

SW (CB) Cloud switch bit rate.
SW (CP) Cloud switch power consumption.
SW (MFB) Metro fog switch bit rate.
SW (MFP) Metro fog switch power consumption.
SW (AFB) Access fog switch bit rate.
SW (AFP) Access fog switch power consumption.
SW (R) Cloud and fog switch redundancy.
R(CB) Cloud router port bit rate.
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FIGURE 1. Cloud-Fog architecture.

R(CP) Cloud router port power consumption.
R(MFB) Metro fog router port bit rate.
R(MFP) Metro fog router port power consumption.
R(AFB) Access fog router port bit rate.
R(AFP) Access fog router port power consumption.
S(P) Power consumption of a server.
S(maxW ) Maximum workload of a server.
c Cloud power usage effectiveness.
m Metro fog power usage effectiveness.
a Access fog power usage effectiveness.

Cloud and fog variables

Cs Cs = 1 if a cloud is hosted in node s, otherwise
Cs = 0.

δ
(C)
v,s δ

(C)
v,s = 1 if the cloud hosted in node s hosts a
copy of VM v, otherwise δ(C)v,s = 0.

R(C)s Number of router aggregation ports in the cloud
hosted in node s.

SW (C)
s Number of switches in the cloud hosted in node

s.
S(C)s Number of processing servers in the cloud

hosted in node s.
F (MF)
s F (MF)

s = 1 if a fog processing node is hosted
in the metro network connected to core node s,
otherwise F (MF)

s = 0.
δ
(MF)
v,s δ

(MF)
v,s = 1 if the fog processing node hosted in
the metro network connected to node s hosts a
replica of VM v, otherwise δ(MF)v,s = 0.

R(MF)s Number of router ports used in the fog process-
ing node hosted in the metro network connected
to node s.

SW (MF)
s Number of switches used in the fog processing

node hosted in the metro network connected to
node s.

S(MF)s Number of processing servers in the fog pro-
cessing node hosted in the metro network con-
nected to node s.

F (AF)
p,s F (AF)

p,s = 1 if a fog processing node is built
in access network p connected to core node s,
otherwise F (AF)

p,s = 0.
δ
(AF)
v,p,s δ

(AF)
v,p,s = 1if the fog processing node in access
network p connected to core node s, hosts a
replica of VM v, otherwiseδ(AF)v,p,s = 0.

R(AF)p,s Number of router ports used in the fog pro-
cessing node located in the access network p
connected to core node s.

SW (AF)
p,s Number of switches used in the fog processing

node located in access network p connected to
core node s.

S(AF)p,s Number of processing servers in the fog pro-
cessing node located in the access network p
connected to core node s.

TheVMs to be hosted in the cloud and/or fog and the traffic
resulting from them are defined by the following parameters
and variables:
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FIGURE 2. Relationship between VM workload and the number of users;
(a) constant (b) linear relationship between VM workload and number of
users.

VM parameters

N Set of IP over WDM network nodes.
VM Set of VM services.
s and d Indices of source and destination nodes of a traf-

fic flow in the distributed cloud architecture.
V Number of VMs.
Sv Number of VM v users.
rv User download rate of VM v.
L Large enough number.
x Maximum number of users served by a single

VM replica.
Wv Maximum workload of VM v (workload can

be specified in GHz or as a ratio of the CPU
capacity).

M Workload baseline of VM (the minimum CPU
utilization needed in the absence of load).

Tv Traffic resulting from VM replica v serving the
maximum number of users. Tv = xrv

W (R)
v Workload per traffic unit, W (R)

v =
Wv−M
Tv

evalu-
ated for VM replica v.

VM variables

W (CR)
v,s Workload of VM replica v hosted in cloud in

nodes.
W (C)
s Total workload of cloud hosted in node s.

D(C)v,s,d Traffic flow from VM replica vhosted in cloud
of node s to users in node d .

Ls,d Traffic from cloud node s to users in node d .
W (MFR)
v,s Workload of the VM replica v hosted in the fog

processing node located in the metro network
connected to node s.

W (MF)
s Total workload of themetro fog processing node

located in core node s.
D(MF)
v,s Traffic from the VM replica v hosted in the fog

processing node of themetro network connected
to core node s.

W (AFR)
v,p,s Workload of the VM replica v hosted in the fog

processing node located in the access network p
connected to core node s.

W (AF)
p,s Total workload of the fog processing node

located in the access network p connected to
core node s.

D(AF)
v,p,s Traffic flow from the VM replica v hosted in

the fog processing node located in the access
network p connected to core node s.

The clouds power consumption (CLOUD) is composed of:
(i) Power consumption of cloud servers:

c
∑
s∈N

S(C)s S(P)(1) (1)

(ii) Power consumption of cloud routers and switches:

c

(∑
s∈N

((
SW (C)

s SW (R)SW (CP)
)
+ R(C)s R(CP)

))
(2)

The metro fogs (MF) power consumption is composed of:
(i) Power consumption of metro fog servers:

m
∑
s∈N

S(MF)s S(P) (3)

(ii) Power consumption of metro fog switches and routers:

m

(∑
s∈N

((
SW (MF)

s SW (R)SW (MFP)
)
+R(MF)s R(MFP)

))
(4)

The access fogs power consumption (AF) is composed of:
(i) Power consumption of access fog servers:

a
∑
s∈N

∑
p∈P

S(AF)p,s S(P) (5)

(ii) Power consumption of access fog switches and routers:

a

∑
s∈N

∑
p∈P

((
SW (AF)

p,s SW (R)SW (AFP)
)
+ R(AF)p,s R(AFP)

)(6)
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Note that, as the difference between the server idle power
and full load is very small [47], we consider an on-off power
profile for servers, i.e. if a server is activated, it operates at
maximum power consumption.

2) ACCESS NETWORK
Passive optical networks (PONs) [48] are the selected tech-
nology for the access network in the cloud-fog architecture
given in Fig. 1 due to their high bandwidth, reliability, and
high data transmission compared to Ethernet access net-
works. At present, the gigabit PON (GPON) architecture has
become the most popular solution for PON among service
providers [49]. Two main active components are deployed in
GPON; the optical network unit (ONU) and the optical line
terminal (OLT). The ONU is the end-user interface to the
PON network and the OLT serves as a central office (CO)
node to connect multiple ONUs. The Optical distribution
networking [50] provides a passive physical transmission
between OLT and ONU. XGPON is capable of delivering
data rate up to 10 Gbps over a single port. In this work,
we consider 10G-PON as an example of the PON network.

The following parameters and variables are defined to
represent PON networks:

Access network parameters:

P Set of PON networks.
Ap Average broadband data rate in PON p.
8v Ratio of traffic due to VM v to the total PON

traffic.
OLT (B)p,d Capacity of OLT serving PON p connected to

node d .
Uv,p,d Number of users in PON p connected to core

node d requesting VM v.

Uv,p,d =

(
OLT (B)p,d

Ap

)
8v

if typical national/regional values of Ap,8v and
OLT (B)p,d are used, then Uv,p,d determines the
number of users and their VM popularity.

OLT (N )p,d Number of OLTs in PON network p connected
to node d .

OLT (P) OLT power consumption.
Dv,p,d Traffic flow fromVM v to users in PON network

p connected to core node d given as:

Dv,p,d = Uv,p,d rv

ONU (N )
p,d Number of ONUs in PON network p connected

to node d .
ONU (P) Power consumption of an ONU.
n Network power usage effectiveness.

PON networks power consumption (PON ) is composed of:

(i) Total power consumption of OLT:

n

∑
p∈P

∑
d∈N

(
OLT (P)OLT (N )

p,d

) (7)

(ii) Total power consumption of ONUs:

n

∑
p∈P

∑
d∈N

(
ONU (P)ONU (N )

p,d

) (8)

3) METRO NETWORK
A metro network [51] functions as a gateway for the access
networks into the core network. Metro Ethernet is the domi-
nant technology used in enterprise metro network. The basic
components of metro Ethernet are Ethernet switch and edge
routers as shown in Fig. 2. The Ethernet switch interconnects
several access networks together. Also, it connects the access
networks to edge routers. The best practice in ISP metro
network is to use two edge routers in order to provide reli-
ability and redundancy to the network [52]. The following
parameters are defined to represent the metro network.

Metro network parameters:

R(MB) Metro router bit rate.
R(MP) Metro router power consumption.
R(MR) Metro router redundancy.
SW (MB) Metro Ethernet switch bit rate.
SW (MP) Metro Ethernet power consumption.

Metro network variables:

R(M)s Number of router ports in metro network con-
nected to node s.

SW (M)
s Number of Ethernet switches in metro network

connected to node s.

The metro network power consumption (Metro) is com-
posed of:
(i) Total power consumption of edge routers:

n

(∑
s∈N

R(M )
s R(MR)R(MP)

)
(9)

(ii) Total power consumption of edge Ethernet switches:

n

(∑
s∈N

SW (M )
s SW (MP)

)
(10)

4) CORE NETWORK
The IP over WDM network [53] is the most commonly used
architecture in core networks. The components of the IP layer
and physical layer are shown on Fig. 2. In the IP layer,
the core router controls the Internet traffic. It aggregates the
IP traffic packets from the edge router to be sent to their
destination. Optical switches make the connection between
physical layer and IP layer. Optical switches are connected to
fiber links. In each switching node, the transponder provides
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optical-electronic-optical (OEO) conversion for full wave-
length conversion. In addition, for long distance transmission,
erbium-doped fiber amplifiers (EDFAs) are used to amplify
the optical signal in each fiber [53]. Regenerators are used
to re-amplify, re-shape and re-time (3R) the optical signal in
long-haul transmission [54]. The IP over WDM network can
be implemented using either the non-bypass approach or the
lightpath bypass approach. Under the non-bypass approach,
the packets are processed by the IP layer of every intermediate
node during their journey from the source to destination. On
the other hand, under the bypass approach, the intermediate
nodes introduce a shortcut by bypassing the IP layer (of
intermediate nodes) on the way to the destination node.

The following parameters and variables are defined to
represent the IP over WDM core network:

Core network parameters:

m and n Indices of the end nodes of a physical link.
i and j Indices of the end nodes of a virtual link.
Nmm Set of neighbouring nodes of node m.
R(P) Core router port power consumption.
t(P) Transponder power consumption.
e(P) EDFA power consumption.

SW (P)
s Optical switch power consumption in nodes.

G(P) Regenerator power consumption.
W Number of wavelengths per fibre.
W(B) Wavelength data rate.
S Maximum span distance between two EDFAs in

kilometres.

Dm,n Distance in kilometres between node pair
(m, n).

Am,n Number of EDFAs between node pair
(m, n) .Am,n =

⌊
Dm,n
S −1

⌋
where S is the

reach of the EDFA.

Gm,n Number of regenerators between node pair
(m, n) . Typically Gm,n =

⌊
Dm,n
R − 1

⌋
, where

R is the reach of the regenerator.

Core network variables:

Ci,j Number of wavelengths in virtual link (i, j).
Wm,n Number of wavelengths in physical link (m, n).
R(AC)s Number of router ports in node s that aggregate the

traffic from/to clouds.
R(AE)d Number of router ports in node d that aggregate

the traffic from/to metro routers.
Fm,n Number of fibres on physical link (m, n).
Ls,di,j Amount of traffic flow between node pair (s, d)

traversing virtual link (i, j) .
Wi,j

m,n Number of wavelengths of virtual link (i, j)
traversing physical link (m, n) .

Under the non-bypass approach, the IP overWDMnetwork
power consumption (Core) is composed of [53]:

(i) The power consumption of router ports:

n

(∑
s∈N

R(P)R(AC)s +

∑
d∈N

R(P)R(AE)d

+

∑
m∈N

∑
n∈Nmm:n6=m

R(P)Wm,n

 (11)

(ii) The power consumption of transponders:

n

∑
m∈N

∑
n∈Nmm:n6=m

t (P)Wm,n

 (12)

(iii) The power consumption of EDFAs:

n

∑
m∈N

∑
n∈Nmm:n6=m

e(P)Fm,nAm,n

 (13)

(iv) The power consumption of optical switches:

n

(∑
s∈N

SW (P)
s

)
(14)

(v) The power consumption of regenerator:

n

∑
m∈N

∑
n∈Nmm:n6=m

G(P)Gm,nWm,n

 (15)

The model is defined as follows:
The objective:Minimize total power consumption given as

the sum of the power consumptions:

Core+Metro+ PON + CLOUD+MF + AF (16)

Expression (16) gives the total power consumption as the sum
of the power consumption of the IP over WDM core network,
the metro network, the PON access network, clouds, metro
fogs and access fogs.
Subject to:
Serving VM demand constraints:∑

p∈P

∑
d∈N

Dv,p,d =
∑
s∈N

∑
d∈N

D(C)
v,s,d +

∑
s∈N

D(MF)
v,s

+

∑
p∈P

∑
s∈N

D(AF)
v,p,s ∀v ∈ VM (17)

Constraint (17) ensures that the users demand for a
VM (

∑
p∈P

∑
d∈N

Dv,p,d ) is satisfied by VMs placed at the clouds

and/or the metro fogs and/or the access fogs.
Placing VM in cloud constraints:

L
∑
d∈N

D(C)
v,s,d ≥ δ

(C)
v,s ∀s ∈ N , v ∈ VM (18)∑

d∈N

D(C)
v,s,d ≤ Lδ(C)v,s ∀s ∈ N , v ∈ VM (19)

Constraints (18) and (19) relate the binary variable that
indicates whether a VM is hosted in a cloud or not (δ(C)v,s ) to the
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traffic between users of this VM and the cloud (
∑
d∈N

D(C)
v,s,d ) by

setting δ(C)v,s = 1 if
∑
d∈N

D(C)
v,s,d > 0 and δ(C)v,s = 0 otherwise.

Placing VM in metro fog constraints:

D(MF)
v,s ≥ δ

(MF)
v,s ∀s ∈ N , v ∈ VM (20)

D(MF)
v,s ≤ Lδ(MF)v,s ∀s ∈ N , v ∈ VM (21)

Constraints (20) and (21) relate the binary variable that
indicates whether a VM is hosted in a fog or not (δ(MF)v,s ) to the
traffic between users of this VM and the metro fog (D(MF)

v,s )
by setting δ(MF)v,s = 1 if D(MF)

v,s > 0 and δ(MF)v,s = 0 otherwise.
Placing VM in access fog constraints:

D(AF)
v,p,s ≥ δ

(AF)
v,p,s ∀s ∈ N , v ∈ VM , p ∈ P (22)

D(AF)
v,p,s ≤ Lδ(AF)v,s ∀s ∈ N , v ∈ VM , p ∈ P (23)

Constraints (22) and (23) relate the binary variable that
indicates whether a VM is hosted in an access fog or not
(AFδvsp) to the traffic between users of this VM and the cloud
(D(AF)

v,p,s), by setting AFδvsp = 1 ifD(AF)
v,p,s > 0 and δ(AF)v,s = 0

otherwise.
Clouds locations constraints:∑

vεVM

δ(C)v,s ≥ Cs ∀s ∈ N (24)∑
vεVM

δ(C)v,s ≤ LCs ∀s ∈ N (25)

Constraints (24) and (25) ensure that a cloud is built in core
nodes selected to host VMs by settingCs = 1 if

∑
vεVM

δ
(C)
v,s > 0

and Cs = 0 otherwise.
Metro fogs location constraints:∑

v∈VM

δ(MF)v,s ≥ F (MF)
s ∀s ∈ N (26)∑

vεVM

δ(MF)v,s ≤ LF (MF)
s ∀s ∈ N (27)

Constraints (26) and (27) ensure that metro fogs are built in
metro nodes selected to host VMs are by setting MFogs = 1
if
∑
vεVM

δ
(MF)
v,s > 0 and MFogs = 0 otherwise.

Access fog location constraints:∑
vεVM

δ(AF)v,p,s ≥ F (AF)
p,s ∀s ∈ N (28)∑

vεVM

δ(AF)v,p,s ≤ LF (AF)
p,s ∀s ∈ N (29)

Constraints (28) and (29) ensure that an access fog is built
in access nodes selected to host VMs by setting F (AF)

p,s = 1 if∑
vεVM

δ
(AF)
v,p,s > 0 andF (AF)

p,s = 0 otherwise.

Cloud and fog workload constraints:

W (CR)
v,s = δ

(C)
v,s Wv ∀v ∈ VM , s ∈ N (30)

W (CR)
v,s =


∑
d∈N

D(C)
v,s,d

rvx
Mδ(C)v,s

+ (W (R)
v

∑
d∈N

D(C)
v,s,d

)

∀v ∈ VM , s ∈ N (31)

W (C)
s =

∑
vεVM

W (CR)
v,s ∀s ∈ N (32)

W (MFR)
v,s = δ(MF)v,s Wv ∀v ∈ VM , s ∈ N (33)

W (MFR)
v,s =

(
D(MF)
v,s

rvx
Mδ(MF)v,s

)
+

(
W (R)
v D(MF)

v,s

)
∀v ∈ VM , s ∈ N (34)

W (MF)
s =

∑
vεVM

W (MFR)
v,s ∀s ∈ N (35)

W (AFR)
v,p,s = δ

(AF)
v,p,sWv ∀v ∈ VM , s ∈ N , p ∈ P (36)

W (AFR)
v,p,s =

(
D(AF)
v,p,s

rvx
Mδ(AF)v,p,s

)
+

(
W (R)
v D(AF)

v,p,s

)
∀v ∈ VM , s ∈ N , p ∈ P (37)

W (AF)
p,s =

∑
vεVM

W (AFR)
v,p,s ∀s ∈ N (38)

Constraints (30), (33), and (36) calculate VM replica work-
load in a cloud, a metro fog, and an access fog, respectively,
under a constant workload profile. Constraints (31), (34), and
(37) calculate the VM replica workload in a cloud, a metro
fog, and an access fog, respectively, as a linear function
of the traffic resulting from serving users of the replicas
plus the workload baseline. Constraints (32), (35), and (38)
calculate the total workload of a cloud, a metro fog, and
an access fog, respectively, by summing the workloads of
VMs hosted in them. Constraints (30)–(38) ensure that the
VM CPU workload v satisfies user requirements to maintain
QoS. For instance, in the constant workload profile, the VM
replica is placed in locations that satisfy the full workload
Wv. Also, in the linear workload profile, the QoS is main-
tained by ensuring that the VM replica workload v satisfies

user demand
(
W (R)
v

∑
d∈N

D(C)v,s,d

)
and the workload baseline ∑

d∈N
D(C)v,s,d

rvx
M

, which is the minimum baseline required to

run the VM.
Number of servers in cloud and fog constraints:

S(C)s ≥
W (C)
s

S(maxW ) ∀s ∈ N (39)

S(MF)s ≥
W (MFR)
v,s

S(maxW ) ∀s ∈ N (40)

S(AF)p,s ≥
W (AF)
p,s

S(maxW ) ∀s ∈ N , p ∈ P (41)

Constraints (39) - (41) calculate the number of servers in
each cloud, metro fog and access fog, respectively based on
the CPU utilization as the CPU draws the largest proportion
of the server power consumption [55].

Number of router ports and switches in cloud and fog:

R(C)s ≥

∑
v∈VM

∑
d∈N D

(C)
v,s,d

R(CB)
∀s ∈ N (42)
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SW (C)
s ≥

∑
v∈VM

∑
d∈N D

(C)
v,s,d

SW (CB) ∀s ∈ N (43)

R(MF)s ≥

∑
v∈VM D(MF)

v,s

R(MFB)
∀s ∈ N (44)

SW (MF)
s ≥

∑
v∈VM D(MF)

v,s

SW (MFB) ∀s ∈ N (45)

R(AF)p,s ≥

∑
v∈VM D(AF)

v,p,s

R(AFB)
∀s ∈ N , p ∈ P (46)

SW (AF)
p,s ≥

∑
v∈VM D(AF)

v,p,s

SW (AFB) ∀s ∈ N , p ∈ P (47)

Constraints (42) - (47) calculate the number of routers
ports and switches in each cloud, metro fog and access fog,
respectively.

Number of metro router ports and ethernet switches in
metro network constraints:

R(M )
s ≥

∑
v∈VM

∑
s∈N D

(C)
v,s,d +

∑
v∈VM D(MF)

v,s

R(MB)
∀s ∈ N

(48)

SW (M )
s ≥

∑
v∈VM

∑
s∈N D

(C)
v,s,d +

∑
v∈VM D(MF)

v,s

SW (MB) ∀s ∈ N

(49)

Constraints (48) and (49) calculate the number of routers
ports and switches, respectively, in each metro network.

Traffic demand on IP over WDM core network constraint:

Ls,d =
∑
v∈VM

D(C)
v,s,d ∀s, d ∈ N (50)

Constraint (50) calculates the demand between the IP over
WDM nodes by summing the demand due to VMs placed in
the clouds.

Flow conservation constraint in the IP layer:

∑
j∈N :i6=j

Ls,di,j −
∑

j∈N :i6=j

Ls,di,j =


Ls,d i = s
−Ls,d i = d
0 otherwise
∀s, d, i ∈ N : s 6= d (51)

Constraint (51) represents the flow conservation for IP
layer on the IP over WDM network. It ensures that the total
incoming traffic equal the total outgoing traffic in all nodes;
excluding the source and destination nodes.

Virtual link capacity constraint:∑
s∈N

∑
d∈N :s6=d

Ls,di,j ≤ Ci,jW (B)
∀i, j ∈ N : s 6= d (52)

Constraint (52) ensures that the traffic transmitted through
a virtual link does not exceed its maximum capacity.

Flow conservation constraint in the optical layer:

∑
n∈Nmm

ẃi,j
m,n −

∑
n∈Nmm

W i,j
m,n =


Ci,j m = i
−Ci,j m = j
0 otherwise
∀i, j,m ∈ N : i 6= j (53)

FIGURE 3. AT&T core network topology.

Constraint (53) represents the flow conservation for the
optical layer. It ensures that the total number of incoming
wavelengths in a virtual link is equal to the total number of
outgoing wavelengths in all nodes excluding the source and
destination nodes of the virtual link.

Physical link capacity:∑
i∈N

∑
j∈N :i6=j

ẃi,j
m,n ≤ ẃFm,n ∀m, n ∈ N (54)

ẃmn =
∑
i∈N

∑
j∈N :i6=j

ẃi,j
m,n ∀m, n ∈ N (55)

Constraints (54) and (55) represent the physical link capac-
ity limit. Constraint (54) ensures that the number of wave-
lengths in virtual links traversing a physical link does not
exceed the maximum capacity of fibers in the physical link.
Constraint (55) calculates the number of wavelengths in a
physical link as the sum of wavelength channels in virtual
links traversing the physical link.

Total number of router ports in a core node:

R(AC)s =
1

W (B)

∑
d∈N

Ls,d ∀s ∈ N (56)

R(AE)s = R(MR)
(

1
W (B)

∑
s∈N

Ls,d

)
∀d ∈ N (57)

Constraint (56) calculates the total number of router ports
in each core node that aggregate the traffic from/to the clouds.
Constraint (57) calculates the total number of router ports in
each core node that aggregate the traffic from/to edge routers.

III. CLOUD-FOG ARCHITECTURE MILP MODEL RESULTS
This section investigates optimal VM placement over a dis-
tributed AT&T cloud architecture. Fig. 3 illustrates the core
AT&T network topology [56], which consists of 25 nodes
and 54 bidirectional links [56]. We consider an architecture
in which each core node is connected to two PON networks
through ametro network consisting of a single ethernet switch
and two metro routers (Fig. 3.1). The PON access network
connects 512 locations. The total capacity of each OLT is
1,280 Gbps [57].
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We start by considering the optimization of a single
VM placement as the simplest representative problem.
We then consider optimization in a realistic scenario with
multiple VMs.

A. SIMPLE REPRESENTATIVE SCENARIO
We investigate how the energy-efficient placement of a single
VM over cloud-fog architecture varies based on three fac-
tors: CPU requirements, download traffic, and power usage
effectiveness (PUE) values. The impact of the VM work-
load profile on VM placement is examined by consider-
ing constant and linear workload profiles. For the linear
workload profile, a simple linear profile with no baseline is
considered. The workload of a VM with a constant work-
load profile and the workload of a VM with a linear work-
load profile that serves the maximum number of users are
both considered. Three workloads—10%, 50%, and 100%
of the server CPU capacity—are considered. The users are
assumed to access VMs with one of following download
rates: 0.1 Mbps, 1 Mbps, 10 Mbps, 20 Mbps, 50 Mbps,
100 Mbps, or 200 Mbps. Each VM is assumed to have 800
users. The PUE is a metric used to determine the total energy
consumption of the facility hosting the clouds, fog nodes,
or network nodes, which includes the power consumption of
computing and communication hardware, IT cooling, light-
ing, etc. PUE is the ratio of this total power consumption to
the IT (computing and communication) infrastructure power
consumption. Based on United States (US) data center energy
usage [58], PUE varies based on data center size, as larger
data centers tend to use more efficient cooling technologies.
For best-practice data centers, the PUE of clouds, metro fogs,
and access fogs take values of 1.3, 1.4, and 1.5, respectively
[58]. For data centers from 2014, the PUE values are 1.7,
1.9, and 2.5, respectively [58]. In network infrastructures,
a typical telecom office PUE value is 1.5 [35].

The Cisco Carrier Routing System 1 (CRS-1) [59] is
considered as a core IP router. CRS-1 provides 160 Gbps
routing capacity in 4 ports while consuming 2551W. There-
fore, the power consumption of each 40 Gbps router port is
638W. Also, the Cisco NCS 5502 router [60] is considered
as the cloud and metro networks router which consumes
30W per 40 Gbps port. In the metro and fog datacentre,
Cisco NCS 5501 [60] is considered with a power con-
sumption of 13W per 40 Gbps port. Furthermore, the Cisco
Nexus 93180YC-EX [61] switch is considered as metro,
cloud and metro fog LAN Ethernet switch with upload
capacity of 600 Gbps and power rating at 470W. In access
fog, the Cisco Nexus 93180YC-EX [61] switch is consid-
ered with capacity of 240 Gbps while consuming 210W.
Tables 1-3 show the IP overWDM,metro and access network
parameters and Table 4 shows the Clouds and fogs parame-
ters. The MILP model is solved using the CPLEX solver over
the University of Leeds high-performance computer (Polaris)
using 16 nodes (256 cores) with 16 GByte of RAM per core.
Each node comprises two eight-core Intel 2.6 GHz Sandy
Bridge E5-2670 processors [62].

TABLE 1. IP Over WDM core network input parameters of the model.

TABLE 2. Metro network input parameters of the model.

TABLE 3. Access network input parameters of the model.

Fig. 4 (a), (b), and (c) show the optimal placement of VMs
with 10%, 50%, and 100% CPU requirements, respectively,
considering the best-practice PUE values. In each figure,
the x-axis is the VM workload profile, the y-axis is the data
rate, which ranges from 0.1Mbps to 200Mbps, and the z-axis
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TABLE 4. Cloud and fog input parameters of the model.

is the percentage of VM replicas in each location over the
cloud-fog architecture.

The placement of VMs with linear workload profiles is
not affected by VM workload, as serving users consumes the
same power whether centralized in a single VM or distributed
among multiple replicas with smaller workloads. However,
the higher PUE of fog nodes compared to the cloud entails
that distributing replicas into fog processing nodes incurs
additional power consumption, as the PUE values of fog
nodes are higher than that of clouds. Hence, a trade-off exists
between the network power saved by replicating VMs into
fog nodes and the additional power consumed by these repli-
cas. The creation of a VM replica results in power savings if
the former power exceeds the latter. At data rates of 1 Mbps
and higher, VMs with 10%, 50%, and 100% workloads are
offloaded to access fog processing nodes considering linear
workload profiles.

For constant workload profiles, replicas are less energy-
efficient, so offloading VMs to fog nodes decreases as VM
workload increases. While VMs with 10% workload and
20 Mbps are fully offloaded to metro fogs, 50% and 100%
workload VMs are replicated only to clouds. Also, users of
VMs with 50% workload at 100 Mbps as well as VMs of
100% workload at 200 Mbps data rate are served by clouds
and metro fog nodes. A single VM replica is offloaded to

FIGURE 4. Optimal VM placement of (a) constant profile at 10% of CPU
and linear profile with peak utilization at 10%, (b) 50% case, (c) 100%
case at different data rates considering best practice PUE value (c = 1.3,
m = 1.4, a = 1.5).
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14 metro fog nodes (in core nodes 1, 2, 4, 6, 7, 8, 13, 16,
19, 20, 21, 22, 23, and 25) while users from other nodes are
served by the replica placed in the cloud in core node 11,
which they can access by traversing a single hop in the core
network. These 14 metro fog nodes are selected to host VM
replicas because the traffic flows traverse more than a single
hop in the Internet protocol (IP) over a wavelength-division
multiplexing (WDM) network to access the VM placed in the
cloud in node 11, which increases the need for IP router ports
(the most power-consuming devices in the IP over WDM
network).

The results also show that VMs with higher data rates
justify the creation of more replicas closer to user premises in
the fog layer. Thus, the power consumption of the network,
which is the greatest contributor to the power consumption
of the cloud-fog architecture, is reduced. For example, VMs
with 10%workload under the linear workload profile are fully
replicated to clouds and offloaded to access fog nodes for
VMs of 0.1 Mbps and ≥1 Mbps user data rates, respectively.
Placing VMs in a cloud architecture with higher PUE

(2014 PUE), as in Fig. 5, increases replica power consump-
tion and therefore limits offloading VMs to fog process-
ing nodes, such as a VM with a constant workload profile
of 100% and a 200 Mbps data rate. They are thus fully
offloaded to metro fogs considering clouds of best-practice
PUE and are limited to clouds with 2014 PUE.

B. REALISTIC SCENARIO
In this scenario, a realistic number of users and VM pop-
ularity is studied. According to the Cisco Visual Network
Index (VNI) [70], in 2016, the average US broadband data
rate was 36 Mbps. Therefore, each OLT is assumed to be
able to serve ∼35,000 connections (or users). The Cisco
VNI also reported that 76% of all Internet traffic crossed
clouds in 2016. SimilarWeb [71], an online tool that provides
Internet traffic statistics and analytics, shows that the top
300 applications or websites have a 50% share of all traffic.
Accordingly, 13,000 users are assumed in each PON (∼50%
of cloud traffic, i.e., 38% of total traffic) to access the VMs
(placed either in the cloud or fog) hosting the top 300 appli-
cations or websites. The popularity of these VMs is assumed
to follow a Zipf distribution [72]. To simplify the analysis,
VM popularity is divided into six groups: 16%, 5%, 2%, 1%,
0.5%, and 0.05% of total users. The number of VMs in each
popularity group are 1, 3, 5, 16, 65, and 210, respectively.

Each VM is assumed to require 50% of the CPU’s server
capacity to serve 800 users. Based on the literature [44]–[46],
[73], [74], in such a case, a VM can serve 800 users at a low
error rate. VMs with linear workloads are assumed to have
workload baselines of 1%, 5%, or 40% of total server CPU
capacity based on the CPU requirements of state-of-the-art
applications [44], [46], [73] (i.e., a 1% workload baseline
for database applications, 5% for website applications, and
40% for video games and web conference applications). The
users are assumed to access the VMs at one of the following

FIGURE 5. Optimal VM placement of (a) constant profile at 10% of CPU
and linear profile with peak utilization at 10%, (b) 50% case, (c) 100%
case at different data rates considering 2014 PUE value (c = 1.7, m = 1.9,
a = 2.5).
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TABLE 5. Input parameters used in the model.

FIGURE 6. The power consumption of different VMs placement
approaches considering VMs of 1% minimum CPU workload.

data rates: 1 Mbps (low), 10 Mbps (medium), or 25 Mbps
(high), which represent the recommended download speeds
to access the content of state-of-the-art applications (i.e.,
1 Mbps for light web browsing [75] (emails, Google Docs
[76], and websites with lower definition video content [77]),
10 Mbps for applications processing high-definition video
quality [78] and online multiplayer games [79], and 25 Mbps
for applications processing ultra-high video quality [80]).

Optimized VM placement over a cloud-fog architecture,
referred to as the optimized cloud and fog placements
(OC&F) approach, is compared to the optimized cloud (OC)
approach, in which VMs are optimally placed in clouds dis-
tributed over the core network, and the AT&T cloud (ATT),
in which the VMs are placed in nodes 1, 3, 5, 6, 8, 11, 13, 17,
19, 20, 22, and 25 according to AT&T data center map [56].

In addition to the parameters in Table 1 to Table 4, Table 5
shows the additional/modified parameters considered for the
following results.

1) LINEAR WORKLOAD PROFILE (1% WORKLOAD
BASELINE)
Fig. 6 shows the power consumption resulting from plac-
ing VMs with 1% minimum CPU workload considering the
various placement approaches at 1, 10, and 25 Mbps user
data rates. The efficiency of VMs with 1% minimum CPU
workload allows the creation of more efficient VM replicas,
as the workload is proportional to the number of users served
by the VMwith a trivial minimumworkload required by each
VM. At a 1 Mbps data rate, the OC&F approach achieves
a 6% reduction of total power consumption compared to

FIGURE 7. Optimal placement of different VMs popularity groups of 1%
workload baseline under the OC approach with (a) 1 Mbps data rate per
user, (b) 10 Mbps data rate per user and (c) 25 Mbps data rate per user.

the ATT approach. The total reductions amount to 40% at a
10 Mbps data rate and 64% at a 25 Mbps data rate. Compared
to the OC approach, the savings achieved by the OC&F
approach are 4%, 31%, and 48% at the low, medium and
high data rates, respectively; compared to the ATT approach,
the savings achieved by the OC approach are 2%, 9%, and
16% at the low, medium and high data rates, respectively.

In Fig. 7 and Fig. 8, we further investigate the OC and
OC&F placement approaches by examining the placement
of VMs at different data rates and in different popularity
groups. Fig. 7 shows the optimal VM placement with the OC
approach. Note that the different colors indicate the creation
of VM replicas in the cloud, not the number of replicas.
VM efficiency has allowed the creation of multiple repli-
cas, as the workload is proportional to the number of users
served by a VM with a limited workload baseline. Efficient
VM workload profiles justify the replication of VMs with
popularity greater than 0.5% into 10 clouds at a 1 Mbps data
rate and into 25 clouds (full replication) at a 10 Mbps data
rate. VMs of 0.05% popularity are only replicated into two
clouds. The high traffic of VMs at a 25 Mbps data rate allows
full replication for the different popularity groups across all
clouds.

Fig. 8 (a) shows that VMs at a low user data rate of 1 Mbps
only justify creating three metro fogs in nodes 6, 8, and 19, as
the traffic flows from these nodes traverse more than a single
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FIGURE 8. Optimal placement of different VMs popularity groups of 1%
workload baseline under the OC&F approach with (a) 1 Mbps data rate
per user, (b) 10 Mbps data rate per user and (c) 25 Mbps data rate per
user.

FIGURE 9. The power consumption considering OC&F1 and OC&F2
placement approaches. OC&F1 represents the optimal placement
considering clouds and metro fogs only and OC&F2 represents the
optimal placement considering clouds, metro and access fogs.

hop in the IP over the WDM network to access the replicas
optimally placed in the distributed clouds in nodes 3, 11, 20,
and 24. These fog nodes are thus built to serve user demand
locally and consequently eliminate the need for IP router
ports. However, VMswith the lowest popularity (0.05%) only
justify the creation of two replicas in nodes 11 and 20.

VMs at a 10 Mbps data rate are fully offloaded to every
metro fog, as shown in Fig. 8 (b). VM users are uniformly dis-
tributed across the metro and access networks, so VM place-
ment is consistent across all the metro fog nodes. In Fig. 8 (c),
VMs at a high data rate of 25 Mbps show full replication
in metro fog nodes, and VMs with 16% popularity justify
creating VM replicas in some access fog nodes. Although
we can reduce the traffic traversing the metro network and
consequently reduce the total power consumption, VMs with
16% popularity are not fully replicated to access fog nodes.
A number of replicas are offloaded to metro fog nodes
because of the on-off power consumption profiles of fog and
network resources. Thus, before creating a new fog node in
the access network, VMs are consolidated into the available
resources that remain from the placement of other VMs that
share the same architecture.

Fig. 9 introduces the OC&F1 and OC&F2 placement
approaches. The former represents the optimal placement
considering clouds and metro fog nodes only, and the latter
represents the optimal placement considering all three com-
puting layers: cloud, metro fog, and access fog. These two
approaches show how introducing fog nodes in the access net-
work (OC&F2) in addition to the metro fog can reduce total
power consumption compared to an approach that considers
only fog nodes connected to a metro network (OC&F1). At a
25 Mbps user data rate, the OC&F2 approach saves 6% more
power than the OC&F1 approach.

Fig. 10 and Fig. 11 show the number of servers required
to host VM replicas under the OC and OC&F approaches,
respectively. The number of servers is a function of the num-
ber of VM replicas hosted and their workloads. For instance,
the OC&F approach at a 25 Mbps user data rate (Fig. 9 (c))
requires 18 servers in each metro fog and two servers in
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FIGURE 10. Number of servers in OC approach required to host VMs
of 1% workload baseline with (a) 1 Mbps data rate per user (b) 10 Mbps
data rate per user (c) 25 Mbps data rate per user.

access fogs to host VM replicas. Such a number of servers
can be practically attached to the metro edge routers to create
the metro fog layer and to the OLT in the access network to
create the access fog layer.

2) LINEAR WORKLOAD PROFILE (5% WORKLOAD
BASELINE)
Fig. 12 shows the power savings achieved by VMs with
linear workload profiles and 5% minimum CPU utilization.
Increasing the minimumCPU utilization of the VMworkload
profile to the current value of 5% reduces the efficiency
of creating more VM replicas. The total savings achieved
by the OC&F approach compared to the ATT approach are
12%, 35%, and 55% at the low, medium, and high data rates,
respectively. Compared to the OC approach, no extra power
saving is achieved at the low data rate, as the total traffic does
not justify replicating any VMs into fogs. At the medium and
high user data rates, the power savings are 28% and 47%,
respectively.

Fig. 12 (a) and (b) illustrate the placement of VMs with 5%
minimum CPU utilization considering the OC&F placement
approach at low and high user data rates, respectively. VMs

FIGURE 11. Number of servers in OC&F approach required to host VMs
of 1% workload baseline with (a) 1 Mbps data rate per user (b) 10 Mbps
data rate per user (c) 25 Mbps data rate per user.

FIGURE 12. The power consumption of different VMs placement
approaches considering VMs of 5% workload baseline.

with low user data rates are dispersed among distributed
clouds. The low user data rates do not justify offloading
VMs to any fog nodes. VMs of ≥1% popularity justify the
creation of five cloud locations. VMs with 0.5% and 0.05%
popularity only justify the creation of three and two replicas,
respectively. At the high user data rates, VMs with ≥0.5%
and ≤5% popularity are fully offloaded to the metro fogs.
In addition, VMs with 16% popularity justify the creation
of replicas in some access fogs, whereas VMs with 0.05%
popularity only justify the creation of two replicas in nodes
3 and 14.
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FIGURE 13. The optimal placement of different VMs popularity groups of
5% minimum CPU workload under the OC&F approach with (a) 1 Mbps
and (b) 25 Mbps data rate per user.

3) LINEAR WORKLOAD PROFILE (40% WORKLOAD
BASELINE)
Fig. 14 shows the power savings achieved by VMs with 40%
minimum CPU utilization. The total savings achieved by the
OC&F approach compared to the ATT approach are 53%,
44%, and 48% at the low, medium, and high user data rates,
respectively. Compared to the OC, no extra power saving is
achieved at the low user data rates, as the total traffic does
not justify replication of any VM into any fog node. At the

FIGURE 14. The power consumption of different VMs placement
approaches considering VMs of 40% minimum CPU workload.

medium and high user data rates, the power savings achieved
are 12% and 31%, respectively.

Fig. 15 (a), (b), and (c) illustrate optimal VM placements at
low, medium, and high user data rates, respectively, with the
OC&F approach. Increasing the minimum CPU utilization
of VM workload to 40% reduces the efficiency of creating
more replicas of VMs with low popularity across distributed
cloud and fog nodes compared to VMs with 1% or 5%
minimum CPU utilization. VMs with a data rate of 1 Mbps
are replicated among distributed clouds. The low user data
rate does not justify offloading VMs to any fog nodes. VMs
with ≥ 1% popularity justify the creation of five cloud loca-
tions. However, VMs with 0.5% and 0.05% popularity only

FIGURE 15. Optimal placement of different VMs popularity groups of
40% workload baseline under the OC&F approach with (a) 1 Mbps data
rate per user, (b) 10 Mbps data rate per user and (c) 25 Mbps data rate
per user.
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FIGURE 15. (Continued.) Optimal placement of different VMs popularity
groups of 40% workload baseline under the OC&F approach with
(a) 1 Mbps data rate per user, (b) 10 Mbps data rate per user and
(c) 25 Mbps data rate per user.

justify the creation of three and one replicas, respectively.
At medium user data rates, VMs with ≥ 1% popularity are
offloaded to metro fogs, whereas other popularity groups are
optimally placed in clouds. At high user data rates, despite the
high workload baseline, VMs with high popularity of 16%
justify the creation of VM replicas in some access fog nodes.
VMs with ≥ 0.5% and ≤5% popularity are fully offloaded
to metro fogs, whereas VMs with 0.05% popularity do not
justify the creation of multiple replicas. Only a single replica
is optimally placed in node 11 to serve its distributed users.

Fig. 16 shows the number of servers required to host
VM replicas with the OC&F approach at a 25 Mbps data rate

FIGURE 16. Number of servers required to host VMs of 40% minimum
CPU workload under the OC&F approach with 25 Mbps data rate per user.

per user. The number of servers is a function of the number
of VM replicas hosted and their workloads.

IV. ENERGY EFFICIENT VIRTUAL MACHINES PLACEMENT
HEURISTIC FOR CLOUD AND FOG ARCHITECTURE
The VM placement problem over cloud-fog architecture
is a nondeterministic polynomial (NP)-hard problem. For

FIGURE 17. Flowchart of (a) the offline phase and (b) the online phase of
EEVM-CF heuristic.
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FIGURE 17. (Continued.) Flowchart of (a) the offline phase and (b) the
online phase of EEVM-CF heuristic.

example, if v is the number of VMs and s is the number
of servers, then the number of possible VM placements in
different servers is vs. In the case of replicating VMs into
multiple data centers (N ), an exhaustive search of distributed
data center locations requires the evaluation of placement
combinations to find the optimal number and locations of
VM copies.

In general, MILP solutions of allocation problems is
known to be NP-hard (non-deterministic polynomial-time)
i.e. no algorithm can be identified that can find a solution
in polynomial time [29]. For our MILP model, the place-
ment of VMs in a cloud-fog architecture over the AT&T
network withN = 100 placement locations, (25 cloud
locations, 25 metro fog locations, and 50 access fog loca-
tions), requires examining a number of solutions given as(

N∑
i=1

N !
(N−i)!

)
. Therefore, it is not practical to apply the

MILP model in a real time large implementation. Heuris-
tics can provide simple and fast operation in real time with
performance that may approach that of the optimal MILP

solution. The optimal solutions obtained from the MILP
model (potentially in a small network) can thus offer a
benchmark for determining the performance of the heuristics
developed.

Therefore, it is not practical to apply the MILP model in a
large real-time implementation. Heuristics can provide fast,
simple operations in real time that may approach that of the
optimal MILP solution. The optimal solutions obtained from
the MILP model can thus offer a benchmark for determining
the performance of the developed heuristics. A supervised
learning algorithm—a branch of machine learning in which
an input is matched to an output based on a sample of input-
output pairs—is adopted here to develop a heuristic solution.
VMs are classified into different types based on user down-
load rates, VM workloads, and VM popularity. The optimum
placement of different VM types is found in an offline phase.
VMs are matched to their types in real time (an online phase)
and placed according to the placement obtained in the offline
phase. In this section, we develop a real-time implementation
of the MILP model called an energy-efficient VM placement
heuristic for the cloud-fog architecture (EEVM-CF) to mimic
the MILP model. The EEVM-CF heuristic consists of two
phases: offline and online.

Fig. 17 (a) shows the flowchart of the offline phase of the
heuristic. The offline phase starts by classifying VMs into
multiple types based on their popularity, CPU usage, and
user data rates (i.e., type 1 has 16% popularity, 1% CPU
baseline usage, and a 1 Mbps user data rate; type 2 has
16% popularity, 1% CPU baseline usage, and 10 Mbps, etc.).
The offline heuristic then checks all the candidate nodes
hosting VMs in the cloud-fog architecture. The most energy-
efficient placement for each possible number of replicas is
found through an exhaustive search over all the possible
placements for this number of replicas, i.e. the most energy-
efficient placement for one replica, two replicas, etc., up to
N replicas (N being the number of cloud and fog nodes in
the network). For the cloud nodes, VMs can be placed in
any number and combination of clouds. For fog nodes, there
are two placement scenarios. In the first, VMs are replicated
to the metro fog and in all nodes. In the second, VMs are
replicated to the two access fog nodes in all nodes. The most
energy efficient placements considering all possible number
of replicas are thus created form the search space P to find
the optimumplacements for different VM types. For eachVM
type, each placement inP is examined, and the total cloud-fog
power consumption is calculated. The traffic resulting from
replicating the VMs in clouds and fogs and the workloads
of VMs with linear workload profiles is calculated based on
the number of users each VM serves. After checking all the
candidate nodes, the optimum placement of a VM type is the
placement that results in the minimum network, cloud, and
fog power consumptions.

In the online phase (real-time placement of VMs), VMs
are then matched to their types (the online phase) (Fig. 17 (b))
and placed according to the placements obtained in the offline
phase. The traffic resulting from replicating VMs in the cloud
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FIGURE 18. Total power consumption of the MILP model compared with
EEVM-CF heuristics considering VMs with 1%, 5% and 40% CPU workload
baseline.

is then routed over the core network based on minimum hop
routing [30], and the workload of the cloud-fog where the
VM replicas are placed is updated. After placing all VMs,
the total power consumption of the cloud-fog architecture is
calculated.

The heuristics are examined by considering the AT&T
network as an example. The EEVM-CF heuristic took 55 sec-
onds to evaluate the offline phase and 2 seconds to evaluate
the online phase running on an Intel i-7 core machine with
16 GB of RAM. Fig. 18 compares the total power con-
sumption of the EEVM-CF to the that of the MILP model
considering the network, cloud, and fog parameters discussed
in Section III. The heuristic is evaluated at 1%, 5%, and 40%
workload baselines at 1 Mbps, 10 Mbps, and 25 Mbps user
data rates. Clearly, the power consumption of the MILP and
the EEVM-CF are comparable. The gap between them ranges
from 1% to 2% of the total power consumption due to almost
identical VM placements obtained by the MILP model and
the heuristic.

V. CONCLUSIONS
In this paper, the placement of VMs over a cloud-fog archi-
tecture is investigated with the aim of minimizing the total
power consumption. The optimization is performed using a
Mixed Integer Linear Programming (MILP) model consid-
ering AT&T and BT networks as use case scenarios. The
MILP model is used to analyze the impact of different factors
including VM popularity, the traffic between the VM and its
users, the VM workload, the profile of the workload versus
number of users, the proximity of fog nodes and the PUE.

The decision to serve users from fog nodes is driven by
the trade-off between the network power saved by placing
VMs in fog nodes close to end users, and the increase in
processing power that results from replicatingVMs to the fog.
Our results demonstrate that VM placement in fog computing
might lead to power saving depending on many factors which
include workload and network bandwidth requirements of
VMs, VMs popularity among users and the energy efficiency
of distributed clouds.

The results evaluate a range of boundary and typical sce-
narios. For example, the processing power consumption of
VMs of a linear workload profile with high data rate and
minimum CPU utilization of 1% allows offloading VMs with
16% popularity to the access fog nodes. Other VMs are opti-
mally replicated to metro fog nodes. Significant power sav-
ings of 48% compared to optimized placement in distributed
clouds and 64% compared to a placement considering tra-
ditional cloud locations, have resulted from this offloading.
VMs with linear workload and a minimum CPU utilization
of 40% tend to offload fewer replicas into fog nodes as
the high workload baseline means that VM consolidation in
fewer locations is the most efficient approach.

Furthermore, we have developed a heuristic based on
an offline exhaustive search, referred to as energy effi-
cient VM placement heuristic for the cloud-fog architecture
(EEVM-CF) to place VMs over the cloud-fog architectures
in real-time. The heuristic results closely approach those of
the MILP model.
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