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Four-Way Classification of EEG Responses To Virtual Robot Navigation

Christopher Wirth∗, Jake Toth, and Mahnaz Arvaneh

Abstract— Studies have shown the possibility of using brain
signals that are automatically generated while observing a
navigation task as feedback for semi-autonomous control of
a robot. This allows the robot to learn quasi-optimal routes to
intended targets. We have combined the subclassification of two
different types of navigational errors, with the subclassification
of two different types of correct navigational actions, to create
a 4-way classification strategy, providing detailed information
about the type of action the robot performed. We used a 2-stage
stepwise linear discriminant analysis approach, and tested this
using brain signals from 8 and 14 participants observing two
robot navigation tasks. Classification results were significantly
above the chance level, with mean overall accuracy of 44.3%
and 36.0% for the two datasets. As a proof of concept, we
have shown that it is possible to perform fine-grained, 4-
way classification of robot navigational actions, based on the
electroencephalogram responses of participants who only had
to observe the task. This study provides the next step towards
comprehensive implicit brain-machine communication, and to-
wards an efficient semi-autonomous brain-computer interface.

I. INTRODUCTION

When humans observe tasks being performed, the brain

produces signals in response to what the human has seen,

without the need for any conscious effort [1]. For example,

when we perceive errors, error-related potentials (ErrP) are

automatically produced [2]. ErrPs are typically characterised

by two key features: the error-related negativity (ERN), and

the error positivity (Pe). The ERN is a negative deflection,

peaking fronto-centrally approximately 100ms after an error

is committed [2], [3]. Following this, the Pe is a broader

positive deflection, usually peaking centro-parietally around

200–500ms after the error occurs [3], [4].

ErrPs can be detected using electroencephalography

(EEG) and classified against responses to correct actions on a

single-trial basis [3]. It has been shown that the classification

of ErrPs can be used as feedback for reinforcement learning

(RL) and applied in brain-computer interfaces (BCI) to allow

machines to find quasi-optimal routes to target locations [5],

[6]. Theoretically, these RL-based systems work as long as

classification accuracy is greater than chance level [3], [5].

However, if we can gather more detailed information than

just whether an action is correct or erroneous, we could

provide more efficient and comprehensive BCI control. For

example, existing systems are able to navigate towards a

target, but do not have sufficient information to know they
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should stop when they reach it. Acquiring this extra infor-

mation would allow for a more autonomous system, driven

by implicit communication between human and machine.

A small number of studies have shown that it is possible to

use single trial EEG to differentiate ErrPs evoked by different

error conditions, such as errors of different directions or

severities [7]. Further to this, we recently compared two

different types of errors committed in a robot navigation task:

moves that started from a target location and stepped off it

(rather than selecting the target), and moves that began in an

off-target location but erroneously moved further away [8].

We were able to show that Pe amplitude was significantly

greater in the case of moves that stepped off a target location

[8]. Moreover, we showed that it is possible to distinguish

these error types from each other using single-trial EEG [8].

Another signal that is produced as an automatic response

to certain stimuli is the P300: a positive peak occurring ap-

proximately 300ms after the presentation of a given stimulus

[9]. In particular, the P300 has been shown to be produced

when subjects recognise a target stimulus amongst non-

target stimuli [10]. P300 amplitude has been shown to vary

based on target-to-target interval [11], and based on reward

magnitude [12].

In a recent study, we compared two types of correct

navigational actions: moves that got closer to the target but

did not reach it, and moves that did reach the target [13]. We

were able to show that both of these actions elicited a P300,

and that the amplitude of the P300 was significantly greater

in cases where the target was reached [13]. Furthermore, we

showed that it is possible to differentiate between the two

types of correct movement on a single-trial basis [13].

In the present study, we combine these recent advances

into a single system. We implemented a multi-stage stepwise

linear discriminant analysis strategy, first performing error

detection, followed by subclassifying trials into specific types

of error or correct action. As such, we aimed to show

that detailed, 4-way classification of navigational actions is

possible using single-trial EEG. To test our approach, we

used data from two similar navigation tasks, and performed

classification on EEG data collected from 8 and 14 partici-

pants, respectively.

II. METHODS

A. Experimental Paradigms

Two slightly different virtual robot navigation tasks were

used in this study. As shown in Fig. 1, participants of both

tasks observed a virtual robot on a computer screen as it

attempted to navigate towards a target, and identify when it

had reached the target.



Fig. 1. Experimental paradigms. (a) shows the Cursor Task. In this example, we see a move further away from the target (FA condition), followed by a
move towards the target (TT condition), and a move in which the target is reached (TR condition), before the correct target is identified. (b) shows the
Claw Task. In this example, we see a move towards the target (TT condition), followed by a move in which the target is reached (TR condition), a move
that steps off the target (SO condition), before the an incorrect target is falsely identified.

In the first task, hereafter referred to as the Cursor Task

(Fig. 1a), the screen showed 9 squares, arranged horizontally.

1 square was coloured blue to denote the cursor, representing

the virtual robot. 1 contained a red bullseye symbol to denote

the target. All other squares were white.

In the second task, hereafter referred to as the Claw Task

(Fig. 1b), the screen showed 8 circles, arranged horizontally.

1 circle was coloured blue to denote it as the target, and

all others were coloured red. Above one of the circles was

a depiction of a robotic claw, showing the robot’s current

location.

At the beginning of each run in both tasks, one location

was selected at random as the target. The virtual robot was

positioned either 2 or 3 steps away. Every 1.5s, the robot

would either step to an adjacent position, or identify its

current location as the target. In the Cursor Task, target

identification was performed by drawing a yellow box around

the cursor’s current location. In the Claw Task, to identify

that the robot was positioned above the target circle, the claw

would extend straight down to grab the circle. After each run,

the screen would be blank for 5s, and then a new run would

begin.

Actions occurred with pre-programmed probabilities. If

the robot was not positioned on the target, it would move

towards the target 70% of the time, move away from the

target 20% of the time, and falsely identify its current

location as the target 10% of the time. If the robot was

positioned on the target, it would correctly identify it 67%

of the time, and step off it 33% of the time.

Movements by the robot were split into 4 categories:

moves towards the target but not reaching it (hereafter

referred to as the TT condition), moves in which the target

was reached (TR condition), stepping off the target having

been positioned on it (SO condition), and moving further

away when already positioned off the target (FA condition).

All conditions are illustrated in Fig. 1.

Participants observed the tasks in blocks of approximately

4 minutes, with breaks in between. Most participants ob-

served 6 blocks of trials. However, two Cursor Task partic-

ipants observed only 2 blocks, four Claw Task participants

observed 3-5 blocks, and two Claw Task participants ob-

served 7 and 8 blocks.

B. Participants

Ten participants (aged 18-43) observed the Cursor Task.

Seventeen participants (aged 18-35) observed the Claw Task.

All participants of both tasks reported no history of psy-

chiatric illness, head injury or photosensitive epilepsy, had

normal or corrected-to-normal vision, and had no history of

color-blindness. Written informed consent was provided be-

fore testing began, and all procedures were approved by the

University of Sheffield ethics committee and in accordance

with the Declaration of Helsinki. Data have previously been

published comparing FA and SO conditions in the Claw Task

[8], and comparing TT and TR conditions in the Cursor Task

[13].

C. Data Acquisition and Preprocessing

For the Cursor Task, EEG signals were recorded at 500Hz

using an Enobio 8 headset. 8 channels were recorded,

positioned at Fz, Cz, Pz, Oz, C3, C4, PO7, and PO8.

For the Claw Task, an Enobio 20 headset was used, again

recording at 500Hz. 20 channels were recorded: F7, F3,

Fz, F4, F8, FC1, FC2, T7, C3, Cz, C4, T8, CP1, CP2,



P3, Pz, P4, PO7, PO8, and Oz. In both tasks, a further

reference electrode was placed on the earlobe. All data were

band-pass filtered (frequencies are discussed in section II-D),

and then resampled to 64Hz. Trials were baseline corrected

using a period of 200ms immediately before virtual robot’s

movement. Any trials with a range of greater than 100µV

between the highest and lowest amplitude in any channel

was rejected due to artefact contamination.

D. Classification

A subject-specific 2-step classification strategy was imple-

mented, first classifying each movement as either correct or

an error, then subclassifying as either the TT or TR condition

(if the initial classification was “correct"), or the FA or SO

condition (if the initial classification was “error").

For error vs correct classification, time domain data from

3 electrode sites were used for the Cursor Task: Fz, Cz,

and Pz. As more electrodes were available for the Claw

Task, some further ones were included: FC1, FC2, CP1, and

CP2. These were selected as fronto-central to centro-parietal

electrodes around the midline are known to be associated

with error-related potentials and are commonly used for

such classifications [3]–[5]. The trials were filtered from

1 to 10Hz, as ErrP features are usually expressed at low

frequencies [3]. A time window of 100 to 700ms was selected

based on visual inspection of time domain data.

For subclassification of correct actions (TT vs TR condi-

tion), data from 6 channels (Fz, Cz, Pz, Oz, PO7, PO8) were

used for each trial, with a time window of 200 to 700ms, and

a filter band of 1 to 32Hz, as these parameters had previously

proven successful for classifying these two correct conditions

against each other [13].

For subclassification of error types (FA vs SO condition),

due to the small number of trials available for these condi-

tions, it had previously proven useful to pre-select 1 time

domain feature from each channel, based on the correlation

between the class labels and the signal amplitudes of each

trial at the time point in question [8]. As such, we employed

this strategy here, along with a filter band of 1 to 10Hz and

a time window of 100 to 700ms.

Stepwise Linear Discriminant Analysis (SWLDA) was

selected as the classification strategy for each stage of the

class, as this has previously been shown to be effective

in selecting features and classifying event related potentials

[14], including in our previous work with observed robot

navigation [8], [13]. Features were selected iteratively. Be-

ginning with an empty feature set, regression analysis was

performed on models created with and without each feature,

providing a p-value for each one. If the p-value of any

features not already in the model were below 0.025, the

feature with the lowest p-value would be added to the model.

If no p-values were below this threshold, then the feature in

the model with the highest p-value, if above 0.075, would

be removed from the model. Iterations continued until no

features reached the thresholds to be added to, or removed

from, the model. Linear classification models were then

trained and tested, using the selected features.

The classification strategy was tested using leave-one-out

cross validation. For example, to test each TT condition trial,

an error vs correct SWLDA model would be trained using

a training set consisting of all TT condition trials except the

current trial and all TR condition trials combined to make

one class, and all FA and SO condition trials combined to

make the other class. The left-out trial would then be tested

using the trained model. If the model predicted “correct", the

trial would be subclassified using a model trained with all TT

condition trials except the current trial as one training class,

and all TR condition trials as the other class. If the initial

prediction was “error", the trial would be subclassified using

a model trained with all FA condition trials as one class and

all SO condition trials as the other class. At each stage, the

class with the fewest training trials was oversampled in order

to balance the number of training trials per class.

For each participant, a chi2 test was performed on the

contingency table of actual conditions and predictions. The

classification was called statistically significant if the p-value

of the chi2 statistic was less than 0.05.

A minimum of 12 trials are recommended to achieve a

reasonable level of stability in the ERN and Pe [15], and

literature suggests that a minimum of 20 trials are required

for a stable P300 [16]. Therefore, in line with our previous

studies [8], [13], participants were only included in the

classification phase if they had produced at least 12 trials in

each of the FA and SO error conditions, at least 40 trials from

error conditions combined, and at least 20 trials in each of the

TT and TR correct conditions. This meant that classification

analysis was performed using data from 8 participants of the

Cursor Task and 14 participants of the Claw Task.

III. RESULTS AND DISCUSSION

For the Cursor Task, participants included in the classi-

fication phase produced an average of 157.6 ± 7.2 (mean

± standard deviation) TT condition trials, 85.0 ± 5.3 TR

condition trials, 47.8± 11.5 FA condition trials, and 24.8±

4.1 SO condition trials. The mean overall accuracy was

44.3%. The mean classification rates for the TT, TR, FA

and SO conditions were 49.9%, 43.3%, 32.2%, and 33.4%,

respectively. Classification rates achieved for each individual

Cursor Task participant are shown in Table I. Importantly,

the overall accuracy was over 25% for every participant,

and classification results were found to be significant for all

Cursor Task participants.

For the Claw Task, participants included in the classi-

fication phase produced an average of 133.1 ± 33.4 TT

condition trials, 72.1± 17.8 TR condition trials, 46.2± 16.4

FA condition trials, and 22.4± 5.4 SO condition trials. The

mean overall accuracy was 36.0%. The mean classification

rates for the TT, TR, FA and SO conditions were 39.8%,

30.5%, 32.6%, and 37.9%, respectively. Classification rates

achieved for each individual Claw Task participant are shown

in Table II. Again, the overall accuracy was over 25% for

every participant. Classification results were found to be

significant for all but one of the Claw Task participants.



TABLE I

CURSOR TASK 4-WAY CLASSIFICATION ACCURACY

Subject TT TR FA SO Overall Accuracy

1 50.0% 36.0% 33.8% 40.0% 42.5%

2 42.7% 45.2% 20.5% 44.0% 40.8%

3 52.8% 43.8% 29.8% 50.0% 46.7%

4 55.5% 48.9% 32.4% 54.5% 50.8%

5 44.2% 23.5% 23.1% 17.4% 33.6%

6 50.0% 48.1% 40.4% 14.3% 45.6%

7 41.4% 35.5% 39.3% 12.5% 36.6%

8 62.7% 65.2% 38.3% 34.8% 57.9%

Mean 49.9% 43.3% 32.2% 33.4% 44.3%

Accuracy shown for each condition: TT (towards target), TR (target

reached), FA (further away from target), SO (stepped off target). Overall

accuracy is the percentage of trials, of any class, correctly classified.

TABLE II

CLAW TASK 4-WAY CLASSIFICATION ACCURACY

Subject TT TR FA SO Overall Accuracy

1 42.2% 27.2% 33.3% 33.3% 35.8%

2 36.9% 24.7% 33.7% 33.3% 33.3%

3 28.8% 26.0% 27.5% 31.8% 28.1%

4 32.3% 16.7% 25.6% 43.5% 28.0%

5 46.3% 21.8% 45.7% 37.9% 38.2%

6 39.2% 40.0% 40.0% 42.9% 39.8%

7 40.5% 34.4% 37.5% 50.0% 39.1%

8 41.9% 26.8% 15.2% 37.9% 32.7%

9 44.2% 33.9% 38.8% 19.0% 38.4%

10 47.5% 41.8% 51.5% 42.1% 46.0%

11 30.8% 23.6% 32.4% 38.1% 29.6%

12 37.6% 45.8% 17.9% 46.2% 38.0%

13 44.0% 25.0% 29.5% 38.5% 36.4%

14 44.8% 39.4% 28.1% 36.4% 40.2%

Mean 39.8% 30.5% 32.6% 37.9% 36.0%

Accuracy shown for each condition: TT (towards target), TR (target

reached), FA (further away from target), SO (stepped off target). Overall

accuracy is the percentage of trials, of any class, correctly classified.

The accuracy levels achieved here are encouraging for

4-way classification, especially considering the similarity

between the two error types and the two types of correct

action. Crucially, the fact that classification levels were

greater than chance level (p < 0.05 for the vast majority

of participants, including all participants of the Cursor Task)

means that the 4-way classification shown here could be

utilised as detailed feedback in a reinforcement-learning-

based BCI.

IV. CONCLUSIONS AND FURTHER WORK

For the first time, we have shown that it is possible to

perform 4-way single-trial classification of different types of

navigational actions, based on automatically generated EEG

signals as participants only had to observe the virtual robot

tasks.

In future it may be possible to improve the classification

accuracy further, particularly with larger training data sets.

Attempts could be made to utilise features other than the time

domain features used here, such as common spatial pattern

features or spectral power. Recent advances in transfer learn-

ing have proven promising in other areas of BCI [17], and

could potentially be applied here. If the classification were

applied online, adaptive algorithms may be useful in order

to adjust to any changes in EEG responses over time.

This study represents an important step towards a semi-

autonomous BCI. As users only need to observe the tasks,

the mental workload is reduced. Nevertheless, we are able to

gather detailed information about the robot’s actions. Implicit

communication such as this can lead us to a more efficient

and user-friendly brain-machine interaction.
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