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Abstract Cerro Azul is one of the most active volcanoes in the western Galápagos Islands, but its unrest

episodes are poorly studied. Unrest, which started in 2007, culminated in two eruptive phases from 29 May

to 11 June 2008. We investigate this unrest and the associated eruptions using interferometric synthetic

aperture radar (InSAR) data and geodetic modelling. To overcome the unwrapping errors affecting some of

our InSAR data, we invert the wrapped phase directly by estimating the integer ambiguities simultaneously

with the geophysical parameters. Our results highlight how the eruption was preceded by long‐term

pre‐eruptive inflation (October 2007–April 2008). During the first eruptive phase, most of the magma

responsible for the inflation fed the lateral propagation of a radial dike, which caused a first deflation of the

magmatic reservoir. During the second eruptive phase, the further lateral propagation of the dike fed a

radial eruptive fissure at the base of the edifice, causing further deflation of themagmatic reservoir. From the

first to the second eruptive phase, the radial dike changed its strike propagating toward a topographic low

between Cerro Azul and Sierra Negra.

1. Introduction

Basaltic shield volcanoes with summit calderas usually experience repeated unrest, during which the baseline

of the monitoring parameters (e.g., degassing, seismicity, and ground deformation) deviates from quiescence

(Acocella et al., 2015; Newhall & Dzurisin, 1988). Unrest episodes have important volcanic hazard implica-

tions, as nearly all eruptions are preceded by unrest episodes, although not all unrest necessarily culminates

in eruption (Acocella et al., 2015; Biggs et al., 2014; Sandri et al., 2017). Understanding the nature and possible

outcome of unrest becomes, therefore, crucial for themitigation of volcanic risk.Adequate ground‐basedmon-

itoring is often limited by the fact that many volcanic systems lie in remote areas, hindering the study of many

unrest episodes. Volcano monitoring through remote sensing techniques, such as interferometric synthetic

aperture radar interferometry (InSAR) can, on the other hand, overcome these limitations and allow investi-

gations of unrest globally (Gaddes et al., 2019; Pinel et al., 2014). InSARhas proven to be successful at different

volcanic provinces worldwide (e.g., Amelung et al., 2007; Baker & Amelung, 2012; Biggs et al., 2016; Ebmeier

et al., 2013; González et al., 2015; Poland et al., 2017; Sigmundsson et al., 2015; Wright et al., 2006). Among

these, the western Galápagos calderas have been extensively studied using InSAR data, improving our knowl-

edge on these volcanoes and shallow magma transfer mechanisms (Bagnardi et al., 2013; Chadwick et al.,

2011; Galetto et al., 2019; Jónsson, 2009; Xu et al., 2016). Here we investigate the 2007–2008 unrest of Cerro

Azul volcano (western Galápagos), which culminated in two eruptive phases, from 29 May to 11 June 2008,

using InSAR data and geodetic modelling. To avoid unwrapping errors due to erroneous estimation of the

phase integer ambiguities during the so‐called unwrapping process (e.g., Hooper & Zebker, 2007), which

would bias InSAR data inversion results, we propose a method to model the wrapped data directly, instead

of trying to solve them. This differs to the approach of Yun et al. (2007), who used amplitude offset estimates

to first reduce the signal prior to unwrapping. We adopt our newmethod to interpret data from the ENVISAT

satellite that are clearly affected by unwrapping errors. Results highlight how most of the deformation is

related to the propagation of a radial dike, which triggered the two eruptive phases.

2. Geological Background

The Galápagos Archipelago, in the eastern Pacific Ocean, is a hot spot magmatic province. The islands lie

above a broad and thick platform over young (<10 Ma) oceanic lithosphere (Figure 1a) (Feighner &
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Figure 1. (a) Galápagos Archipelago. The red square outlines the extent of Panel b. (b) The western Galápagos Islands of Fernandina and Isabela, on which lies the
volcano of Cerro Azul (the black square is the area in Panel c). Digital elevation model and bathymetry in (a) and (b) from GeoMappApp. (c) Filtered false
colors (R = Band 2; G = Band 4; B = Band 5) Landsat 7 image of Cerro Azul acquired on 22 March 2009, showing the lava flows erupted in 2008. Dotted lines
represent the approximate location of the eruptive fissures.
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Richards, 1994; Rychert et al., 2014). Most of the current volcanic activity focuses on the seven shield volca-

noes forming the western Galápagos Islands of Fernandina and Isabela, in the upwelling region of the hot

spot (Gibson & Geist, 2010; Hooft et al., 2003; Villagómez et al., 2014). These volcanoes are large, flexurally

supported shields with summit calderas, forming a distinct volcanological, petrological, geochemical, and

structural group with respect to the eastern Galápagos volcanoes (Feighner & Richards, 1994; Harpp &

Geist, 2018; White et al., 1993). Among the western Galápagos volcanoes is Cerro Azul, one of the six making

up Isabela Island (Naumann &Geist, 2000). Cerro Azul has a maximum elevation of 1,640 m above sea level,

with gently sloping lower flanks (generally <4°), steep upper flanks (generally ~25°), and a flat summit rim

(~1 km wide) that surrounds a 450‐m‐deep nested caldera (Naumann & Geist, 2000). This 4.2 × 2.2 km wide

caldera, with major axis oriented NW‐SE, results from repeated cycles of collapse and is the smallest, both in

volume (3.1 km3) and area (9.5 km2), among those of the western Galápagos (Naumann & Geist, 2000).

Cerro Azul has erupted some of themost primitivemagmas of the western Galápagos and is the only western

Galápagos volcano to have erupted both tholeiitic and alkali basalts (Naumann et al., 2002; Naumann &

Geist, 1999). These characteristics have been related to its juvenile stage and relatively low magma supply

rates (Naumann et al., 2002; Naumann & Geist, 1999). As a result, Cerro Azul is inferred to lack a well‐

developed shallow magmatic system, with probably only a hot and partially developed deep mushy system

at 5 km below sea level (Geist et al., 2014: Harpp & Geist, 2018). A series of north‐ to northwest‐trending

landslide scarps suggests the collapse of the southwestern flank (Naumann &Geist, 2000). The failure of this

flank, due to its position adjacent to the steep submarine escarpment (3 km height) (Figure 1b) (Geist et al.,

2008), promotes the formation of northwest‐southeast oriented eruptive fissures (Naumann et al., 2002;

Naumann & Geist, 2000).

More in general, Cerro Azul shows the typical eruptive pattern of the western Galápagos volcanoes, with cir-

cumferential eruptive fissures just outside the caldera rim and radial fissures along the volcano's flanks

(Chadwick & Howard, 1991). The stress field allowing the formation of both types of fissures seems to be

mainly controlled by the gravitational unloading after caldera collapse and the stresses from previous intru-

sions (Bagnardi et al., 2013; Corbi et al., 2015, 2016), with further contribution from the load of the edifice

and the pressurization of a flat‐topped magma chamber (Chadwick & Dieterich, 1995).

Before the last eruption in 2008, 10 witnessed eruptions have occurred at Cerro Azul since 1932. During the

previous two eruptions (1979 and 1998), radial eruptive fissures opened in the same area (eastern flank) as

the 2008 eruption (Mouginis‐Mark et al., 2000; Naumann & Geist, 2000; Rowland et al., 2003; Teasdale

et al., 2005).

The 2008 eruption of Cerro Azul occurred in two phases (Global Volcanism Program, 2008). The first phase

(from 29 May to 1 June) began with the effusion of a lava flow from an eruptive fissure immediately outside

the eastern caldera rim (Figure 1c). Subsequently, further eruptive fissures opened on 30 May, parallel to the

former, on the eastern upper flank (Figure 1c). All these fissures ceased their effusive activity by 1 June. The

second eruptive phase (3 June to 11 June) was characterized by effusive activity from a new radial fissure

located in a flatter area near the edge of the lower eastern flank of Cerro Azul (Figure 1).

3. Methods

3.1. InSAR Data Processing

To measure surface deformation before, during, and after the 2008 eruption at Cerro Azul, we used InSAR

data. We generated 79 SAR images acquired by the European Space Agency's ENVISAT satellite (C‐band,

wavelength λ = 5.63 cm), 32 from an ascending track (T61) acquired between January 2006 and May

2010, and 47 from a descending track (T140) acquired between January 2003 and May 2010. We also gener-

ated 33 SAR images from the Japanese Space Agency's ALOS‐1 satellite (L‐band, wavelength λ= 23.6 cm), 17

from an ascending track (T133) acquired between March 2007 and March 2011, and 16 from a descending

track (T474) acquired between March 2007 and July 2010.

We first generated interferograms with the InSAR Scientific Computing Environment software (Rosen et al.,

2012). We removed topographic contributions to the interferometric phase using a 30 m‐resolution DEM

from the NASA Shuttle Radar Topography Mission (Farr et al., 2007). Then, to study the temporal evolution

of surface displacements, we combined interferograms through amulti‐temporal approach. In particular, we
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adopted the small baseline (SB) method using the StaMPS software (Hooper, 2008; Hooper et al., 2012) and

selected the processing parameters that maximized the signal‐to‐noise ratio. In the supporting information

Table S1, we report a list of the network of interferograms used for the SB analysis.

3.2. Geodetic Modelling

To interpret InSAR phase in terms of a geophysical model, it is necessary to estimate the integer ambiguities

in the phase (phase unwrapping). This is generally done prior to geophysical inversion, but any phase‐

unwrapping error will bias the resulting geophysical parameters. This would be the case for the ENVISAT

data (Figure 2), where the three‐dimensional unwrapping routine of StaMPS (Hooper, 2010a) cannot ade-

quately unwrap data in the distal region where the radial eruptive fissures opened. This is evident when

comparing displacements in the ENVISAT data near the eruptive fissures to those in the ALOS‐1 interfero-

gram in Figure 3d. To overcome this problem, we adopted a method to model the wrapped phase data

directly, by estimating the integer ambiguities simultaneously with the geophysical parameters (Hooper,

2010b). We applied aMarkov chainMonte Carlo method to build the posterior probability of the model, con-

ditional on the data.

According to the Bayes' theorem, the probability density function (PDF) of the vector of model parameters,

m, given data vector, d, p(m|d), is (1)

Figure 2. Comparison between (a,c) wrapped and (b,d) unwrapped images from ENVISAT ascending track 61. Dashed
rectangles highlight areas with an incorrect unwrapping, where the opening displacement across the eruptive fissure is
not visible. In (a) and (c), each fringe (full color cycle) represents 2π radians of phase change corresponding to 2.8 cm of
range change in the line‐of‐sight (LOS) direction.
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Figure 3. Time‐series results. (a–c) ENVISAT LOS displacement map for ascending orbit 61 during (a) pre‐eruption (November 2007–April 2008); (b) first eruptive
phase; (c) second eruptive phase . (d–e) ALOS‐1 LOS displacement map for ascending orbit 133, during the eruption. (f) ENVISAT LOS displacement map for
descending track 140. (g) ALOS‐1 LOS displacement map for descending track 474 (April–September 2008). (h) ENVISAT LOS displacement map for ascending
track 61 during the post‐eruptive period (July 2008–May 2010). (i–k) Time series, with the dotted red lines that separate the pre‐eruptive period (P), the sin‐eruptive
period (S), and the posteruptive period (Post). The red dot in Panels c, e, and g indicate the location for which deformation time series are shown respectively in
Panels i, k, and j. In (a), (d–e), and (g–h), data are unwrapped, and spatially correlated look‐angle errors (including orbital ramps) are removed. In (b–c) and (f), data
are wrapped, and each fringe (full color cycle) represents 2π radians of phase change corresponding to 2.8 cm of range change in the line‐of‐sight direction. All the
displacement maps are overlaid onto shaded relief map from WorldDEM data.
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p mjdð Þ ¼
p djmð Þp mð Þ

∫
∞

−∞
p djmð Þp mð Þdm

(1)

Where p(d|m) is the likelihood function, p(m) is the prior distribution for the model parameters, and the

denominator is a normalizing constant. For a given discrete inverse problem, data and model vectors are

related by a function g plus error e (2):

d ¼ g mð Þ þ e (2)

Thus, to calculate the likelihood function, the PDF of e is required. In the InSAR data, after the SB analysis

with StaMPS, the errors are correlated, principally due to the contribution from variable atmospheric propa-

gation delay (e.g., Hanssen et al., 1999). While the univariate PDF for a single wrapped phase value can be

reasonably expected to follow a wrapped normal distribution, the multivariate PDF for correlated wrapped

data is difficult to calculate. We simplify the problem by calculating the wrapped phase differences for arcs

between nearby coherent pixels. For coherent pixels, the contribution of uncorrelated noise to the arc phase

is small (compared to a phase cycle) and reasonably approximated by a Gaussian distribution (Just &

Bamler, 1994). As long as the pixels are nearby, the atmospheric contribution (and any other spatially cor-

related error) to the arc phase is also small and reasonably approximated by a Gaussian distribution.

Thus, we approximate the joint PDF with a multivariate Gaussian distribution, with the likelihood function

given by (3):

p djmð Þ ¼ 2πð Þ−N=2
Qdj j−1=2e−

1
2 W d−g mf gf gTQ−1

d
W d−g mf gf gf g (3)

where W{.} is the wrapping operator, d now represents wrapped arc phase values, N is the dimension of d,

and Qd is the variance‐covariance matrix for the errors in the arc phase values.

As InSAR data sets contain a large number of measurement points, to reduce computational time, we

subsample the data set prior to generating the network of arcs. For the best results, it is essential to

use an algorithm that maintains a good data point density in the deformed area. To this end, we use

the adaptive quadtree sampling algorithm of Geodetic Bayesian Inversion Software (GBIS) (see

Bagnardi & Hooper, 2018 and Decriem et al., 2010 for details) modified so that in each iteration the

mean wrapped phase for the all pixels in the polygon is found. If the wrapped difference between

the mean and phase of any pixel is greater than a threshold value (default π/2), the polygon is subdi-

vided into smaller polygons. This differs from the standard algorithm, which thresholds on standard

deviation of phase values.

We generate the network of arcs using the Euclidean minimum spanning tree method (Kruskal, 1956; Prim,

1957). This methodminimizes the total length of the arcs and avoids introducing unnecessary redundancy in

the measurements; in other words, the model values for all arc phase values remain independent. The

Euclidean minimum spanning tree leads to a network with every pixel connected to at least one other

and without isolated subsets (Figure 4c). We assume that the only correlation between arc phase errors is

due to the contribution of spatially uncorrelated noise to arcs connected by the same pixel. This means that

we ignore any potential correlation due to the atmospheric contribution to the errors. This may not be neg-

ligible in areas of steep topography, where the hydrostatic tropospheric contribution to the arc phase errors

could be significant and correlated between arcs, but it is likely reasonable for our application to the gently

sloping flanks of Cerro Azul.

We quantify the error structure of the data in the conventional way using the fitVariogram function of

GBIS (Bagnardi & Hooper, 2018) applied to an undeformed region of the interferogram, where phase

unwrapping is typically not problematic. Once estimated using the fitVariogram function, we use the

nugget, sill, and range values to set up the variance‐covariance matrix; we set the elements of the main

diagonal (σ2ii) as (4):

σ
2
ii ¼ 2*nuggetþ 2*sill* 1−exp −3*h=rangeð Þ½ � (4)

where h is the length of the arc that connects each pair of pixels. We set the off‐diagonal terms to the nugget

value for arcs that share a pixel and zero otherwise. Then we convert the variance and covariance values
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fromm2 to rad2. We do not consider potential model errors in this study, but they could be incorporated into

the variance‐covariance matrix using the approach of Duputel et al. (2014).

Once we have defined the arcs and variance‐covariance matrix for our quadtree‐sampled data set, we esti-

mate the posterior PDF of model parameters and uncertainties using the Bayesian approach implemented

in the GBIS software (Bagnardi &Hooper, 2018), which uses aMarkov chainMonte Carlo method, incorpor-

ating the Metropolis Hastings algorithm and which we modified for working with the phase difference

instead of unwrapped LOS displacements.

Therefore, with this method, the integer ambiguities in the phase are not explicitly solved for, but a probabil-

ity distribution of integer ambiguities for each pixel is a by‐product of the inversion.

We tested this method on synthetic data and validated it by comparing the results to those from GBIS. We

modeled the sources using the rectangular dislocation (RD) model of Nikkhoo et al. (2017) and set the

“plunge angle” θ = 0 (see Nikkhoo et al., 2017 for further details) so that the two uppermost corners of

the dike/inclined sill are at the same depth. In this configuration, the RD model becomes almost equal to

the Okada (1985) solution (Nikkhoo et al., 2017). For all modelling, we assumed an isotropic elastic half‐

space with Poisson's ratio of 0.25. To achieve convergence of the posterior PDF, we found it necessary to per-

form half a million iterations.

4. Data Description

4.1. Pre‐Eruption

InSAR time series of ENVISAT ascending and ALOS‐1 descending data record a pre‐eruptive uplift of ~10–

12 cm, peaking immediately outside the western portion of the caldera, and occurring from October 2007 to

April 2008, before the eruption started on 29 May (Figures 3a and 3i–3j). The inflation slows in the months

just before the eruption (Figures 3i–3j). The temporal resolution of the InSAR data does not shed light on

whether this uplift continued until just prior to the eruption or not.

4.2. Eruption

ENVISAT ascending data allow us to separate the deformation of the two eruptive phases. Until 31 May (the

end of the pre‐eruptive phase plus the first eruptive phase), these data record a subsidence of ~12 cm in the

western sector of the caldera and in the west and south‐western sectors of the upper flank of the volcano,

peaking in the same area of the maximum uplift of the pre‐eruptive period (Figure 3b). LOS displacements

of about the same magnitude, but opposite in sign, occurred near the active eruptive fissures, placed on the

upper east flank (Figure 3b). After 31 May (the second eruptive phase plus the beginning of the posteruptive

phase; Figures 3c–3g), there is an eastward shift of the subsidence on the volcano summit, with another 24

cm of subsidence peaking in the caldera area (Figures 3c–3e). At the same time, the deformation on the east

flankmigrated from the summit vents, which ceased their activity on 1 June, to the distal radial fissure at the

Figure 4. (a) Wrapped InSAR data from ENVISAT ascending track 61, acquired from 31 May to 5 July 2008. Each fringe (full color cycle) represents 2π radians of
phase change corresponding to 2.8 cm of range change in the line‐of‐sight direction. (b) Downsampled data using our modified quadtree function. (c) The arcs
formed by the Euclidean minimum spanning tree (EMST).
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base of the eastern flank, which started its activity on 3 June. Most of this deformation (~60 cm) occurred by

4 June (Figures 3d–3f), even if the eruptive fissure remained active until 11 June. Conversely to ENVISAT

data, ALOS‐1 descending data (Figure 3g) maintain good coherence on the southern flank of Cerro Azul,

even though they are less well sampled temporally, and show a lower amount of subsidence (~15 cm) with

respect to the proximal area (~38 cm).

4.3. Posteruption

After the eruption, from July 2008 to March 2011 there was a new uplift of the caldera area, characterized by

nonuniform rates (Figures 3h–3k). The temporal resolution of our InSAR data does not allow us to better

constrain the onset of uplift.

5. Tests on the Synthetic and Real Data

To test the validity of the method described in section 3.2, we performed a test on synthetic data. We used a

data coverage similar to that of ENVISAT data in the area of the dike (Figures 2c and S1). We calculated the

phase due to displacements caused by an RD dike source (model parameters reported in Figure 6 and Table S2),

assuming wavelength of 0.0563 m, an incidence angle of 25.71° and a heading angle of 12.3992° (Figure S1a).

We added a realistic atmospheric phase screen error using an isotropic two‐dimensional fractal surface with

power‐law behavior (Hanssen, 2001; Figure S1b) and random noise (Figure S1c) to simulate noncorrelated

errors. Then we inverted the synthetic data using both the method described in section 3.2 (Figures 5a–5c)

and GBIS (Figures S2a–S2c) and compared the results (Figure 6; Table S2). Results show that the actual

model parameters fall within the 95% bounds of the posterior PDFs (Figure 6), with the latter consistent with

GBIS results, confirming the applicability of the method. In Figures S3 and S4, we show the trace plot,

obtained with the new method and with GBIS, in which it is possible to evaluate the convergence of the

Markov chain. In both cases, the number of early samples that strongly depend on the choice of the starting

value (the so‐called “burn‐in” period) is similar. This is due also to the fact that the new method uses the

same MCMC algorithm as GBIS, with the main difference being that the wrapped phase differences between

pixels are used to constraint the model rather than the LOS displacements.

We also performed tests on real data. First, we applied this new method to a real case that can be easily

unwrapped, by performing a joint inversion of the deformation recorded in ALOS‐1 ascending and descend-

ing data on the east flank of Cerro Azul (Figures 3d and 3g). We compared these results to those obtained

with GBIS, finding an overall consistency (Figures 5d–5i, S2d–S2i, and S5 and Table S3), again supporting

the method proposed in section 3.2. Finally, we applied the new method to invert the unwrapped phase of

data that are affected by unwrapping errors (the ENVISAT ascending data; Figures 2c and 5j). Results

(Figures 5j–5l, Figure S6, and Table S4) are consistent with those obtained from the inversion of ALOS‐1

data, further confirming the applicability of the method to measurements that cannot easily be unwrapped

without errors and so cannot be inverted with GBIS (Figure S7 and Table S5).

6. Results of the Geodetic Modelling

6.1. Pre‐Eruptive Phase

We modeled the pre‐eruptive uplift occurred at Cerro Azul recorded by ALOS‐1 descending track data

(19 October 2007–20 April 2008) for possible magmatic sources using the standard GBIS software applied

to unwrapped interferogram. Best results were obtained using a Mogi source (Figures 7a–7c and S8,

Table 1). The Bayesian analysis converged to an inflation point, placed at ~5 km below the north caldera

rim, with a volume change (ΔV) = 12.6 ± 3.7 × 10−3 km3 and a corresponding injection rate of 2.5 ± 0.7

× 10−2 km3/year.

6.2. Eruptive Phase

ENVISAT ascending data are the only that allow us to distinguish the deformation of the first eruptive phase

from that of the second phase. Thus, we use these data to constrain the sources of deformation of the two

phases. As we were not able to reliably unwrap these interferograms, we used the wrapped inversionmethod

described in section 3.
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Figure 5. (a) Simulated wrapped data. (b) Predicted displacements for the RDmodel using theMAP solution (Table S2). (c) Related residuals. (d,g)Wrapped ALOS‐
1 data for descending track 474 (d,j) wrapped ALOS‐1 data for the ascending track 133. (j) Wrapped ENVISAT data from ascending track 61. (e,h,k) Predicted
displacements for the RDmodel using the MAP solution (see Tables S3 and S4). (f,i,l) Related residuals. Each fringe (full color cycle) represents 2π radians of phase
change corresponding to 2.8 cm of range change in the LOS direction in Panels a–c and j–l and to 11.8 cm of range change in the LOS direction in Panels d–i. The
local origin for Panels d–l is 91°26'W and 0°93'S.
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6.2.1. April–31 May (End of the Pre‐Eruptive Phase Plus the First Eruptive Phase)

We modeled deformation during the first phase using a combination of two RD sources (Figures 8a–8c, S9;

Table 2). The first dislocation converged to a 9 × 1 km horizontal sill, with the major axis oriented northeast‐

southwest, placed at ~5.2 km below the western sector of the caldera and the flank of the volcano. The mod-

eled sill shows a contraction of 1.1 ± 0.2 m, with a corresponding volume change of ΔV =−11.2 ± 0.6 × 10−3

km3. As for the second dislocation, the Bayesian analysis converged to an east‐southeast oriented subvertical

dike, whose top edge is placed at ~2.8 km below the eastern flank, with an opening of 1.1 ± 0.3 m. The cor-

responding ΔV is 9.9 ± 0.5 × 10−3 km3. This dike explains most of the deformation recorded on the east flank

by the InSAR data in this period, but it is placed ~2 km to the north of the active eruptive fissures of the first

phase, and its geometry (southward dipping) and position do not seem compatible with the location and

orientation of the eruptive fissures. There is no obvious geodetic signal associated with these eruptive fis-

sures, and we infer that it is probably hidden by that of the radial dike, which dominates the deformation

field. The small residuals near the summit eruptive vents, which cannot be explained by our model, may

be the remains of the geodetic signal related to these eruptions.

6.2.2. 31 May–5 July (Second Eruptive Phase and Beginning of the Posteruptive Phase)

To model the second eruptive phase, we again used two RD sources (Figures 8d–8f and S10; Table 2). The

Bayesian analysis results in a larger 9 × 7 km deflating sill, placed below the caldera. The corresponding

volume loss is 25 ± 2.2 × 10−3 km3. To reduce the number of variables and to better constrain the opening

and the length and width of this sill, we fixed the sill depth using the depth of the sill obtained from the inver-

sion of the data of the first eruptive phase. The opening of a N80° south‐southeast‐dipping dike (dip angle =

68°), whose top is at ~0.9 km below the radial distal eruptive fissure, explains the distal deformation. The

volume change of this dike is 57.4 ± 2.6 × 10−3 km3. Most of this volume was probably emplaced by 4

Figure 6. Posterior probability density distribution (PDFs) for each individual model parameter from the inversion of the
synthetic data using both our newmethod and GBIS. The red lines representing the actual simulated values (see Table S2).
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Figure 7. (a,d,g)Wrapped ALOS‐1 LOS displacements for descending track 474. Each fringe (full color cycle) represents 11.8 cm of LOS displacement. (b) Predicted
displacements for the Mogi model. (c) Related residuals. (e,h) Predicted displacements for the four dislocation models using the maximum a posteriori probability
solutions (MAP). (f,i) Related residuals. The surface projections of the dislocations are shown on Panel e. Dikes appear as lines as we drew only the projection
of the top of the dislocation. The dotted gray line in Panel d delimits the area of the Panels a to c. The local origin for all panels is 91°26'W and 0°93'S.
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June, as ALOS‐1 ascending data (Figures 3d–3e) indicate that most of the related deformation occurred by 4

June. This radial dike lies on the continuation of the radial dike of the first phase, even though with an

anticlockwise rotation of about 28° and a decrease in the dip angle (68° compared to 84°).

6.2.3. ALOS‐1 Data: 20 April–5 September (Cumulative Displacements of the TwoEruptive Phases)

ALOS‐1 descending track data are less temporally constrained than the ENVISAT data, recording the cumu-

lative deformation pattern of the 2008 eruption but maintain good coherence on the southern flank.

Therefore, we inverted the ALOS‐1 data using the GBIS software. To allow for multiple different sources

as indicated by the ENVISAT results, we inverted for four RDs (Figures 5d–5f, S11; Table 1).

We modeled the deformation at the base of the east flank of Cerro Azul with a dike. We set uninformative

prior PDFs for each model parameter of this dike (Table 1). As deformation from the radial dike in the first

eruptive phase is masked by the subsequent deformation, we fixed the parameters for it to the MAP solution

from the ENVISAT results. We allowed for only one sill to fit the deformation beneath the caldera during

Table 1

Results of the Bayesian Analysis for the ALOS‐1 Descending Track Data

ALOS‐1 data (descending track 474)

Pre‐eruptive (19 October 2007–20 April 2008)
Mogi source

x (m) y (m) Depth (m) ΔV (×106 m3)
Optimal −16,962 2,202 4,905 11.66
2.50% −17,472 1,828 4,364 8.94
97.50% −16,602 2,560 5,815 16.29
Prior lower −20,000 −5,000 4,000 0.01
Prior upper −10,000 5,000 8,000 1,000
Eruption (20 April–5 September 2008): 2 RD sill sources + 2 RD dike sources
RD dike (first event)

x (m)a y (m)a z (m)a L (m)a W (m)a θ
a Dipa Strikea Op.a (m) ΔV (×106 m3)

Optimal −8,747 880 3,252 7,570 1,018 0 84 108 1.28
2.50% −8,747 880 3,252 7,570 1,018 0 84 108 1.28
97.50% −8,747 880 3,252 7,570 1,018 0 84 108 1.28
Prior lower −8,747 880 3,252 7,570 1,018 0 84 108 1.28
Prior upper −8,747 880 3,252 7,570 1,018 0 84 108 1.28
RD dike (second event)

x (m) y (m) z (m) L (m) W (m) θ
a Dip Strike Op. (m) ΔV (×106 m3)

Optimal −990 1,205 3,538 4,051 4,829 0 75 73 3.53 69.1
2.50% −1,051 1,103 3,268 3,960 4,091 0 73 72 3.33 61.2
97.50% −945 1291 3,674 4,226 5,103 0 76 74 3.79 73.2
Prior lower −10,000 −10,000 2,700 1,000 1,000 0 40 1 0
Prior upper 10,000 10,000 4,000 6,000 5,200 0 85 90 5
Northern RD deflated sill

x (m) y (m) z (m)a L (m) W (m) θ
a Dipa Strikea Op. (m) ΔV (×106 m3)

Optimal −13,523 2,304 5,200 2,025 3,007 0 0 35 −4.47 −27.2
2.50% −13,679 2,169 5,200 2,006 3,004 0 0 35 −4.49 −29
97.50% −13,383 2,454 5,200 2,757 3,511 0 0 35 −3.15 −25.5
Prior lower −20,000 −10 5,200 2,000 3,000 0 0 35 −5.5
Prior upper −10,000 4,000 5,200 10,000 8,000 0 0 35 0
Southern RD deflated sill

x (m) y (m) z (m)a L (m) W (m) θ
a Dipa Strike Op. (m) ΔV (×106m3)

Optimal −16,041 −4,611 5,200 1,433 7,473 0 0 63 −0.97 −10.38
2.50% −16,487 −5,737 5,200 514 6,295 0 0 47 −2.96 −13.3
97.50% −15,297 −3,875 5,200 2,390 7,786 0 0 77 −0.6 −7.8
Prior lower −18,000 −8,000 5,200 500 6,000 0 0 10 −3.5
Prior upper −13,500 −1,000 5,200 3,000 7,800 0 0 89 0

Note. x and y are the local coordinates of the Mogi source and of the center of the RD source with respect to a local origin (see Figure 7) at 91°26' W and 0°93'S.
Depth (z) is referred to the center of the RD and is with respect to the surface (positive downward). ΔV is the volume change (for the RD source it is calculated
with the formula ΔV = L *W * Op). θ is the angle between the RD upper edge and the intersection of the RD plane with the free surface. L andW are the length
and width of the RD source. Op. is the opening (see Nikkhoo et al., 2017, for a better explanation of the RD parameters). Optimal is the maximum a posteriori
probability solution. 2.50% and 97.50% are the percentile values describing the credible interval. Prior lower and upper are the bounds of the prior distribution
used for the inversion.
aFixed parameter.
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both eruptive phases in the ENVISAT data, as the locations are the same within error. We also added a

second sill beneath the south flank of Cerro Azul, an area not covered by the ENVISAT data, as there is

deformation visible there in the ALOS data.

The results for the unconstrained dike converged to a south‐southeast‐dipping dike (dip angle ~75°), with a

ΔV = 67.2 ± 6 × 10−3 km3, which is about 22% more than estimated from the ENVISAT data inversion. This

discrepancy is due to the inversion of only one ALOS‐1 descending track; this records a higher magnitude of

the LOS displacements in that area than the ascending tracks of ALOS‐1 and ENVISAT. Results from the

joint inversion of the ALOS‐1 ascending and descending track (Figures 5d–5i and S2d–S2i; Table S3) are

in fact consistent with the volume estimated from the inversion of ENVISAT data.

The two sills largely overlap the sill resulting from the modelling of the second eruptive phase from the

inversion of ENVISAT data (Figure 7e). However, the sill on the southern flank shows less contraction

(−1.8 ± 1.2 m) with respect to the sill below the caldera (−3.8 ± 0.7 m). The total volume lost by the two sills

is approximately equal to the sum of the volume loss from the inversion of ENVISAT data during the two

eruptive phases (Tables 1 and 2) (−37.8 ± 4.5 × 10−3 km3 with respect to −36.2 ± 2.8 × 10−3 km3 of

ENVISAT data).

Figure 8. (a)Wrapped ENVISAT phase for ascending track 61 for the first eruptive period and (d) for the second eruptive period. Each fringe (full color cycle) repre-
sents 2π radians of phase change corresponding to 2.8 cm of range change in the LOS direction. (b,e) Predicted displacements for the respective two RD models
using the MAP solutions. (c,f) Related residuals. The surface projections of the dislocations are shown on Panels b and e. Dikes appear as lines as we drew only the
projection of the top of the dislocation. The local origin for all panels is 91°26'W, 0°93'S. The dotted gray line in Panel d delimits the area of the Panels a to c.
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6.2.4. Joint Inversion of ALOS‐1 and ENVISAT Data

We jointly inverted the descending data of ALOS‐1 and the total deformation recorded by ENVISAT ascend-

ing track, to better constrain the deformation source parameters, allowing for two dikes and two sills

(Figure S12; Table S6). In this inversion, we combined the use of unwrapped data for ALOS‐1 and wrapped

data for ENVISAT. For the radial dike of the first eruptive phase, we again fixed the geometry using theMAP

solution from the inversion of ENVISAT data for the first eruptive phase but now inverting for the opening.

Results of the Bayesian analysis (Table S6) converge to solutions similar to the other models. In the area near

the caldera, residuals are larger than those from the single track inversions (Figure S12) due to the require-

ment to also fit the ALOS‐1 data.

6.2.5. ALOS‐1 Data: 20 April–5 September (Cumulative Displacements of the TwoEruptive Phases)

Finally, we inverted the ALOS‐1 descending data with GBIS using also a different combination of sources

(one RD sill and three RD dikes), to test if the subsidence on the southern flank could be modeled with a

dike. As for the dikes on the eastern flank, we made the same assumptions done in the inversion reported in

section 6.2.3 (Table 1).

Results of the Bayesian analysis (Figures 7g–7i and S13; Table 3) converge to a southeast oriented vertical

dike, placed at 4.2 ± 0.6 km below the southern flank of Cerro Azul (Figure 7h), with a ΔV = 29.9 ± 8.7 ×

10−3 km3, providing therefore an alternative source to that inferred in section 6.2.3. As the descending track

data of ENVISAT (Figure 3f), acquired from 1May to 5 July 2008, show a similar deformation pattern in that

area, this dike probably propagated during the second eruptive phase. As for the other sources, the results of

the Bayesian analysis (Table 3) converge to solutions similar to those in section 6.2.3. Interestingly, the sill

Table 2

Results of the Bayesian Analysis for the Inversion of ENVISAT Ascending Track Data

ENVISAT ascending track 61. April–May 2008 (first eruptive phase)

RD radial dike

x (m) y (m) z (m) L (m) W (m) θ
a Dip Strike Op. (m) ΔV (×106 m3)

Optimal −8,747 881 3,252 7,569 1,019 0 84 108 1.29 9.9
2.50% −8,942 776 3,182 7,005 1,001 0 83 108 0.79 9.4
97.50% −8,603 925 3,325 7,895 1,683 0 85 110 1.41 10.4
Prior lower −12,500 100 2,100 1,000 1,000 0 40 80 0
Prior upper −5,000 5,000 5,000 10,000 4,000 0 89 270 5
RD deflating sill

x (m) y (m) z (m) L (m) W (m) θ
a Dip Strike Op. (m) ΔV (×106 m3)

Optimal −16,964 −458 5,188 9,365 1,001 0 0 43 −1.23 −11.5
2.50% −17,053 −517 5,026 8,695 1,003 0 0 41 −1.24 −11.8
97.50% −16,864 −130 5,319 9,727 1,415 0 2 49 −0.88 −10.6
Prior lower −21,000 −5,000 3,200 2,000 1,000 0 0 1 −5
Prior upper −10,000 5,000 6,000 12,000 12,000 0 30 360 0

ENVISAT ascending track 61. May–July 2008 (second eruptive phase)
RD radial dike

x (m) y (m) z (m) L (m) W (m) θ
a Dip Strike Op. (m) ΔV (×106 m3)

Optimal −593 1,234 2,985 5,564 4,529 0 68.4 80 2.25 56.7
2.50% −632 1,161 2,915 5,441 4,349 0 67.6 79 2.17 54.8
97.50% −512 1,268 3,139 5,749 4,878 0 68.9 81 2.31 61
Prior lower −6,000 −2,000 2,800 1,000 1,000 0 50 1 0
Prior upper 5,000 4,000 5,000 5,800 5,200 0 86 89 5
RD deflating sill

x (m) y (m) z (m)a L (m) W (m) θ
a Dip Strike Op. (m) ΔV (×106 m3)

Optimal −14,889 603 5,200 9,009 7,231 0 0 35 −0.39 −25.4
2.50% −15,069 395 5,200 8,271 6,428 0 −3 24 −0.43 −27.2
97.50% −14,714 953 5,200 9,470 7,813 0 5 48 −0.37 −22.8
Prior lower −21,000 −5,000 5,200 1,000 1,000 0 −30 1 −5
Prior upper −10,000 5,000 5,200 14,000 14,000 0 30 90 0

Note. For the meaning of the parameters, see note in Table 1.
aFixed parameter.
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placed below the caldera shows a volume loss of ΔV = −30.8 ± 2.4 × 10−3 km3 that it is almost equal to the

total volume loss by the system in the solution with two deflating sills (section 6.2.3 and Tables 1 and 3).

7. Discussion

The use of InSAR data and their geodetic modelling allows us to reconstruct the evolution of the 2008 erup-

tion at Cerro Azul. Pre‐Eruptive uplift of the caldera area during the 7 months before the eruption

(Figures 9a–9b) seems related to the supply of new magma and is modeled with the inflation of a point

source at ~5 km below the caldera. On 29 May, the first eruptive phase started. During this phase, the lateral

propagation of a subvertical dike triggered the deformation on the eastern flank, while the observed subsi-

dence is modeled with the deflation of a sill, placed below the western portion of the caldera and the upper

western flank (Figures 9c–9d). The depth of this sill (~5 km below the surface) is consistent with the depth of

both the modeled pre‐eruptive point source and the magmatic reservoir of Cerro Azul, deeper than the other

western Galápagos calderas (Geist et al., 2014). Therefore, the pre‐eruptive uplift and the coeruptive subsi-

dence are probably related to the inflation/deflation of the magmatic reservoir. The fact that we have mod-

eled the reservoir with different simple sources reflects the complexities of the true magma reservoir, which

may respond in various ways during the different inflation/deflation events (Edmonds et al., 2019; Sparks

et al., 2019). Therefore, more complex geometries of the magma reservoir cannot be excluded (Yun et al.,

2006). The modeled dike is placed ~2 km to the north of the eruptive fissures active during this phase,

and its geometry and position do not seem compatible with the location of these fissures. Rather, the position

of this dike (Figures 9e–9f), indicates it is the western, proximal portion of the radial dike responsible for the

second eruptive phase, suggesting that the two segments form a single continuous intrusion. Thus, most of

the deformation along the east flank of the first phase seems related to the incipient propagation of the radial

dike of the second eruptive phase. During the first phase, the volume of the radial dike is similar to the

Table 3

Results of the Bayesian Analysis for the ALOS‐1 Descending Track Data

ALOS‐1 data (descending track 474)

Eruption (20 April–5 September 2008): 1 RD sill source + 3 RD dike sources
RD dike (first event)

x (m)a y (m)a z (m)a L (m)a W (m)a θ
a Dipa Strikea Op.a (m) ΔV (×106 m3)

Optimal −8,747 880 3,252 7,570 1,018 0 84 108 1.28
2.50% −8,747 880 3,252 7,570 1,018 0 84 108 1.28
97.50% −8,747 880 3,252 7,570 1,018 0 84 108 1.28
Lower −8,747 880 3,252 7,570 1,018 0 84 108 1.28
Upper −8,747 880 3,252 7,570 1,018 0 84 108 1.28
RD dike (second event)

x (m) y (m) z (m) L (m) W (m) θ
a Dip Strike Op. (m) ΔV (×106 m3)

Optimal −995 1,201 3,501 4,080 4,703 0 74 73 3.55 68.1
2.50% −1,045 1,075 3,234 3,962 3,695 0 72 72 3.29 59.8
97.50% −931 1,266 3,712 4,225 5,177 0 75 74 3.83 73.7
Lower −10,000 −10,000 2,700 1,000 1,000 0 40 1 0
Upper 10,000 10,000 4,000 6,000 5,200 0 85 90 5
RD deflated sill

x (m) y (m) z (m)a L (m) W (m) θ
a Dipa Strikea Op. (m) ΔV (×106 m3)

Optimal −13,423 1,875 5,200 2,120 3,003 0 0 35 −4.89 −31.1
2.50% −13,591 1,804 5,200 2,009 3,004 0 0 35 −5.1 −33.2
97.50% −13,282 2,123 5,200 3,167 3,491 0 0 35 −2.81 −28.4
Lower −20,000 −10 5,200 2,000 3,000 0 0 35 −5.5
Upper −10,000 4,000 5,200 10,000 8,000 0 0 35 0
SouthernRD dike

x (m) y (m) z (m)a L (m) W (m) θ
a Dip Strike Op. (m) ΔV (×106 m3)

Optimal −15,015 −3,357 3,840 5,514 1,846 0 89.7 142 2.35 23.9
2.50% −15,740 −3,938 3,562 5,506 1,020 0 87.5 137 1.47 18.2
97.50% −14,596 −2,914 4,750 6,369 2,883 0 89.9 152 5.12 35.6
Lower −18,000 −8,000 3,000 5,500 1,000 0 40 91 0.1
Upper −13,500 −1,000 5,000 9,000 3,200 0 90 179 9

Note. For the meaning of the parameters, see note in Table 1.
aFixed parameter.

10.1029/2019JB018521Journal of Geophysical Research: Solid Earth

GALETTO ET AL. 15 of 20



volume lost by the sill and also to the volume of magma intruded in the previous 7 months (Tables 1 and 2).

This suggests that the magma stored in the pre‐eruptive period may have been remobilized during the first

eruptive phase, promoting the subsidence of the magmatic reservoir and the emplacement of the radial dike.

The geodetic signal associated with the opening of the eruptive fissures of the first phase is probably hidden

Figure 9. Conceptual model. Pre‐eruptive deformation (a) due to newmagma supply within the shallowmagma reservoir
of Cerro Azul (b). (c) Sin‐eruptive deformation of the first eruptive phase related to the deflation of the shallow magma
reservoir and the propagation of a proximal radial dike (d). (e) Deformation occurred during the second eruptive phase.
Much more magma was supplied from the reservoir to a distal dike (f). Sections in b, d, and f are E‐W trending, passing
through the caldera.
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by that of the radial dike. One explanation is that the volume of magma involved in the eruptions at the sum-

mit vents during the first eruptive phase was negligible compared to that of the radial dike. This proposed

scenario is similar to that inferred for the 1998 eruption at Cerro Azul (Teasdale et al., 2005), and agrees with

the typical eruptive pattern of Cerro Azul, where the volume of lava erupted at the summit vents is usually

much lower than that erupted along the lower flanks (Naumann & Geist, 2000). However, there are cur-

rently no estimates of the volume erupted during the two analyzed eruptive phases, and future studies

should test this hypothesis.

The lower portion of the modeled dike is ~1.5 km shallower than the sill. We speculate that, from the north-

east edge of the sill, an upward propagation of magma first occurred below the northeast sector of the cal-

dera, which became a radial dike at shallower levels. The temporal resolution of our data does not allow

us to test this hypothesis, as only the deformation associated to the radial dike is recorded. However, the

inferred propagation pattern is similar to that observed in the last decades at Fernandina, where radial dikes

generally initiate as sill‐like intrusions that become progressively steeper below the caldera rim and twist

around a radial horizontal axis (Bagnardi et al., 2013). The stress field imposed by the caldera unloading

and the gravitational load of Cerro Azul may control this pattern of magma propagation, as at Fernandina

(Corbi et al., 2015). The opening of the eruptive fissures of the first phase could have been related to a minor

amount of magma that, during the initial steepening of the sill, propagated upward below the northeast cal-

dera rim, reaching the surface. A limited lateral propagation of this dike may have fed the nearby fissures on

the upper east flank.

On 1 June, the first eruptive phase ended, and the second phase began. This latter phase is associated with

the eastward propagation of the radial dike of the first phase, which erupted (on 3 June) once it reached the

topographic low coinciding with the plain between Cerro Azul and Sierra Negra. During this eruptive phase,

the deflated area on the volcano summit became significantly larger, with the center of the subsidence

migrating southeastward. We infer this to be due to the widening of the area of the magma reservoir from

which the magma was withdrawn during this phase. The total volume lost by the magmatic system during

this phase is about twice that lost during the first event. Some results suggest that the northern portion of the

shallow magma reservoir, closer to the radial dike, lost a larger volume than the southern distal zone. Thus,

the radial dike was fed mainly by the proximal area of the magmatic reservoir. Conversely, other results sug-

gest that the subsidence on the southern flank may have been triggered by the propagation of a southeast

oriented dike, probably during the second eruptive phase.

During this second phase, the estimated amount of magma of the radial dike is about twice the estimated

volume lost by themagmatic reservoir and about five times greater than the volume that this dike had during

the first phase. In addition, if the subsidence on the southern flank had been due to the propagation of

another dike, the estimated volume of the dikes would become about three times greater than that lost by

the magma reservoir. This suggests that an important magma supply from greater depth occurred at

Cerro Azul between the first and the second eruptive phase; this may have promoted the further propagation

of the eastern radial dike, triggering the eruption, the propagation of the southern dike, and the partial

replenishment of the volume lost by the magma reservoir. An alternative explanation is an increase in the

compressibility of the magma, which can account for volume discrepancy (Rivalta & Segall, 2008). In this

context, during the first eruptive phase, the magma had to be nearly incompressible to explain the similarity

in the volume lost by the reservoir and gained by the dike (Rivalta & Segall, 2008). During the second phase,

the compressibility increased, for example, for an increase in the exsolved volatiles (Huppert & Woods,

2002), causing the apparent volume discrepancy. In any case, from the first to the second eruptive phase,

there is an increase in the volume of magma supplied from the reservoir to the eastern radial dike, which

could also have promoted the further propagation of the latter (Anderson & Poland, 2016).

From the first to the second eruptive phase, the eastern radial dike rotated anticlockwise by 28–33°, pointing

toward Sierra Negra volcano, and stopped erupting in the depressed area between the two volcanoes. A simi-

lar change in the strike and arrest of a dike, when propagating from below a topographic high to a topo-

graphic low in front of a nearby volcanic edifice, was observed also during the 2014 Bardarbunga eruption

(Sigmundsson et al., 2015). Topographic variation seems to be the main factor controlling this rotation

and arrest between two nearby volcanoes (Heimisson et al., 2015; Sigmundsson et al., 2015; Urbani et al.,

2017; Walter, 2003; Walter et al., 2006).
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A new uplift within the caldera begun after the eruption; this continued in the following 3 years (Figures 3i–

3k), characterized by nonconstant uplift rates.

7.1. Comparison Between Cerro Azul and the Other Western Galápagos Calderas

The deformation pattern of the caldera of Cerro Azul shows pre‐eruptive uplift, coeruptive subsidence, and

posteruptive uplift (Figures 3i–3k). This pattern is similar to that observed in other calderas of the western

Galápagos, such as Fernandina in 2005 (Bagnardi & Amelung, 2012; Chadwick et al., 2011) and Sierra

Negra in 2005 (Chadwick et al., 2006) and is typical of the mafic calderas (Acocella et al., 2015; Dvorak &

Dzurisin, 1997).

Most of the deformation related to the 2008 eruption of Cerro Azul is caused by the propagation of a radial

dike. This is typical of the western Galápagos volcanoes, where the eruptions along the flanks of these vol-

canoes are related to radial dikes (Chadwick & Dieterich, 1995). The propagation pattern of the radial dikes

proposed for Fernandina (Bagnardi et al., 2013), where a sill‐like intrusion progressively turns upward and

twists around a horizontal radial axis, also seems applicable for the 2008 radial dike of Cerro Azul.

According to our results, the magma reservoir constantly fed the radial dike during the two eruptive phases,

increasing the volume of magma transferred from the reservoir to the dike during the second eruptive phase.

This situation is different to what happened at neighboring Alcedo volcano during the 2010 unrest, where

the lack of new magma supply during unrest stopped an incipient lateral propagation of a sill (Galetto

et al., 2019), confirming the importance of a continuous supply of magma in the propagation of a dike/sill.

Finally, GPS data show a decrease in the uplift rate of Sierra Negra during the 2008 eruption of Cerro Azul

(Poland, 2014). This suggests a possible connection between the two nearby volcanoes at deeper levels, simi-

lar to what is observed at the Aira‐Kirishima system (SW Japan; Brothelande et al., 2018). This possibility is

reinforced by petrological data, which suggest a common source in the lithospheric mantle for the magmas

of Cerro Azul and Sierra Negra (Naumann et al., 2002). The anticorrelation of deformation between Cerro

Azul and Sierra Negra can be tested only in 2008, as no deformation data are available for other periods, with

the exception of the 2005 eruption of Sierra Negra, when Cerro Azul apparently did not deform. Future stu-

dies should test this working hypothesis, to understand better the deep plumbing system of these two volca-

noes and to try to correlate the dynamics of the deep plumbing system with that of the shallower

plumbing system.

8. Conclusions

The unwrapping limitations affecting our ENVISAT data gave us the opportunity to test a new method,

based on the wrapped phase differences among nearby pixels, to model the wrapped data directly. Thanks

to this method, we successfully inverted the deformation data of the two eruptive phases of Cerro Azul,

recorded by the ascending track data of ENVISAT. Results show that after 7 months of pre‐eruptive uplift,

an eruption, divided in two eruptive phases, occurred at Cerro Azul in 2008. During the first eruptive phase,

the incipient propagation of a radial dike promoted uplift on the east flank of Cerro Azul and a coeval first

episode of deflation below the caldera, related to its magma reservoir. Eruptions occurred in the upper east

flank during the first eruptive phase. The further lateral propagation of the radial dike triggered the second

eruptive phase. The radial dike changed its strike when it propagated from below the volcanic edifice to a

topographic low, between Cerro Azul and Sierra Negra.
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