

This is a repository copy of *Divergent effects of genetic and pharmacological inhibition of Nox2 NADPH oxidase on insulin resistance related vascular damage*.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/160688/

Version: Supplemental Material

Article:

Maqbool, A, Watt, N, Haywood, N et al. (17 more authors) (2020) Divergent effects of genetic and pharmacological inhibition of Nox2 NADPH oxidase on insulin resistance related vascular damage. American Journal of Physiology: Cell Physiology. ISSN 0363-6143

https://doi.org/10.1152/ajpcell.00389.2019

© 2020, American Journal of Physiology-Cell Physiology. This is an author produced version of a paper published in the American Journal of Physiology - Cell Physiology. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/ Divergent effects of genetic and pharmacological inhibition of Nox2 NADPH oxidase on insulin resistance related vascular damage

SUPPLEMENTAL MATERIAL

Maqbool et al. 2020

SUPPLEMENTAL FIGURE S1: Breeding and Genotyping Strategy

A: Observed male progeny from male ESMIRO/ApoE^{-/-} after mating with female ApoE^{-/-}/Nox2^{+/-} **B**: Genotype analysis of PCR products from progeny compare to established control animals: A-ESMIRO (+/-); B-ESMIRO (+/-); C-Nox2^{+/y}; D-Nox2^{-/y}; E&F-ApoE^{-/-}

C: Tie 2 promoter activity is restricted to (endothelial cells in) the lung with no leakage to white blood cells in ESMIRO/ApoE^{-/-}/Nox2^{-/y} mice (n=3). For primer sequences see Refs 9. * denotes P<0.05,

SUPPLEMENTAL FIGURE S2: Genotyping Protocol

For ApoE:

0.5µl 10µM Common: 5'-GCCTAGCCGAGGGAGAGCCG-3'

0.5µl 10µM Wild type Reverse: 5'-TGTGACTTGGGAGCTCTGCAGC-3'

0.5µl 10µM Mutant Reverse: 5'-GCCGCCCCGACTGCATCT-3'

10μl x2 Bio mix red PCR MasterMix (Bioline BIO25006), 12.5μl water and 1μl extracted DNA. PCR cycle conditions are provided in Table S1. Cycles were run using a Verti 96 well thermo cycler (Applied Biosystems). PCR products were then run on a 1.5% agarose gel for 1 hr at 100 V, with a 100 bp ladder (New England Biolabs N0467S). Expected products sizes; were ApoE ^{+/+} 155 bp, ApoE ^{-/-}245 bp, and ApoE ^{-/+} 155 & 245 bp.

For ESMIRO:

0.5µl 10µM ESMIRO Forward: 5'-TGGCAGCTTTCCCCAACACT -3'

0.5µl 10µM ESMIRO Reverse: 5'-CCGTTCCTCAGGGGTGTCC -3'

10µl x2 Bio mix red PCR MasterMix (Bioline BIO25006), 13µl water and 1µl extracted DNA. PCR cycle conditions are provided in Table S2. Cycles were run using a Verti 96 well thermo cycler (Applied Biosystems). PCR products were then run on a 1.5% agarose gel for 1 hr at 100 V, with a 100 bp ladder (New England Biolabs N0467S). Expected products sizes; were WT no band and ESMIRO 172 bp.

For Nox2:

0.5µl 10µM Common: 5'-AAGAGAAACTCCTCTGCTGTG AA -3"

0.5µl 10µM Wild type: 5'-CGCACTGGAACCCCTGAGAAAGG -3"

1µl 10µM Mutant: 5'-GTTCTA ATTCCATCAGAAGCTTAT CG -3'

10μl x2 Bio mix red PCR MasterMix (Bioline BIO25006), 12μl water and 1μl extracted DNA. PCR cycle conditions are provided in Table S3. Cycles were run using a Verti 96 well thermo cycler (Applied Biosystems). PCR products were then run on a 1.5% agarose gel for 1 hr at 100 V, with a 100 bp ladder (New England Biolabs N0467S). Expected products sizes; were Nox2 ^{+/+} 240 bp, Nox2 ^{-/-} 195 bp, and Nox2 ^{-/+} 195 & 240 bp.

SUPPLEMENTAL TABLE S1: APOE PCR Protocol

PCR	Temperature ([°] C)	Time	Cycles
Initial denaturation	94	3 min	1
Denaturation	94	20 sec	
Annealing	68	40 sec	- 35
Extension	72	2 min	

SUPPLEMENTAL TABLE S2: ESMIRO PCR Protocol

PCR	Temperature ([°] C)	Time	Cycles
Initial denaturation	94	4 min	1
Denaturation	94	1 min	
Annealing	60	1 min	32
Extension	72	1 min	
Final Extension	72	15 min	1

SUPPLEMENTAL TABLE S3: Nox PCR Protocol

PCR	Temperature ([°] C)	Time		Cycles	
Initial denaturation	94	5 min		1	
Denaturation	94	30 sec			
Annealing	55	30 sec	-	35	
Extension	72	30 sec			
Final Extension	72	7 min		1	

SUPPLEMENTAL TABLE S4: Taqman Probes

Target	Cat. No. (ThermoScientific)
NOX2	Mm01287743_m1
NOX4	Mm00479246_m1
Catalase	Mm00437992_m1
SOD	Mm01313000_m1
IL-1β	Mm00434228_m1
ΤΝFα	Mm00443258_m1
CCL2	Mm00441242_m1
CCR2	Mm99999051_gH
HPRT	Mm03024075_m1

SUPPLEMENTAL FIGURE S3: Metabolic phenotype of ESMIRO/ApoE^{-/-}/Nox2^{-/y} and ESMIRO/ApoE^{-/-}/Nox2^{+/y} mice

A: No difference in growth when comparing ESMIRO/ApoE^{-/-}/Nox2^{-/y} (n=90) and ESMIRO/ApoE^{-/-}/Nox2^{+/y} mice (n=59), arrow denotes commencement of western diet. **B**: ESMIRO/ApoE^{-/-}/Nox2^{-/y} mice had lower fasting blood glucose (n=22) than ESMIRO/ApoE^{-/-}/Nox2+/y (n=16). **C**: No difference in random insulin when comparing ESMIRO/ApoE^{-/-}/Nox2^{-/y} (n=12) and ESMIRO/ApoE^{-/-}/Nox2^{+/y} mice (n=10). **D**: No difference in intraperitoneal insulin tolerance tests when comparing ESMIRO/ApoE^{-/-}/Nox2^{-/y} (n=23) and ESMIRO/ApoE^{-/-}/Nox2^{+/y} mice (n=13). **E**: Glucose tolerance was significantly better at 30 min when comparing ESMIRO/ApoE^{-/-}/Nox2^{-/y} (n=22) and ESMIRO/ApoE^{-/-}/Nox2^{+/y} mice (n=16). **F**: No difference in fasting triglyceride when comparing ESMIRO/ApoE^{-/-}/Nox2_{-/y} (n=12) and ESMIRO/ApoE^{-/-}/Nox2^{+/y} mice (n=7). **G**: No difference in fasting cholesterol when comparing ESMIRO/ApoE^{-/-}/Nox2_{-/y} (n=12) and ESMIRO/ApoE^{-/-}/Nox2_{-/y} (n=14) and ESMIRO/ApoE^{-/-}/Nox2_{+/y} mice (n=9). Data expressed as mean (±SEM), n=number of mice per genotype * denotes P<0.05.

Photomicrographs of aortic sinus from ESMIRO/ApoE^{-/-} (A) and ESMIRO/ApoE^{-/-}/Nox2 ^{-/y} (C) showing elastin fiber fragmentation after 12 weeks Western Diet. Multiple sites of fragmentation of elastic lamina are noted in ESMIRO/ApoE^{-/-}/Nox2 ^{-/y} (high powered views in D, E, F) compared to ESMIRO/ApoE^{-/-} (image B). Scale bar – 100 μ m

SUPPLEMENTAL FIGURE S5: The effect of genetic ablation or pharma -cological inhibition of Nox2 on Heavy Chain Myosin expression and alpha smooth muscle actin in aortas of mice

A: No difference in heavy chain myosin expression in the aortas of ESMIRO/ApoE^{_/-}/Nox2^{-/y} (n=6) and ESMIRO/ApoE^{-/-}/Nox2^{+/y} mice (n=6). **B**: No difference in heavy chain myosin expression in the aortas of ESMIRO/ApoE^{-/-} mice treated with the NOX2 inhibitor, gp91dstat (n=5) compared to ESMIRO/ApoE^{-/-} mice treated with scrambled peptide (n=5). C: No difference in alpha smooth muscle actin expression in the aortic sinus in ESMIRO/ApoE^{-/-}/Nox2-/y (n=5) and ESMIRO/ApoE-/-/Nox2+/y mice (n=5).

SUPPLEMENTAL FIGURE S6: Liver function and lipid deposition in ESMIRO/ApoE^{-/-}/Nox2^{-/y} and ESMIRO/ApoE^{-/-}/Nox2^{+/y} mice

A: No difference in serum alanine aminotransferase (ALT) levels of ESMIRO/ApoE^{-/-}/Nox2^{-/y} (n=9) and ESMIRO/ApoE^{-/-}/Nox2^{+/y} mice (n=9). **B**: No difference in serum aspartate transaminase (AST) levels of ESMIRO/ApoE^{-/-}/Nox2^{-/y} (n=9) and ESMIRO/ApoE^{-/-}/Nox2^{+/y} mice (n=9). **C**: No difference in lipid deposition in the liver of ESMIRO/ApoE^{-/-}/Nox2^{-/y} (n=4) and ESMIRO/ApoE^{-/-}/Nox2^{+/y} mice (n=5). Scale bar: 100µm