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Novel droop control design for overvoltage protection of DC microgrids

with a constant power load

A.-C. Braitor, G. C. Konstantopoulos and V. Kadirkamanathan

Abstract— A novel droop controller for DC microgrid sys-
tems, consisting of multiple paralleled sources feeding a con-
stant power load (CPL), is proposed to achieve the desired
voltage regulation and accurate load power distribution, while
ensuring an overvoltage protection for each source. CPLs are
well-known to exhibit negative impedance characteristic due
to their nonlinear behaviour, which may cause instability to a
DC microgrid if the necessary impedance inequality criteria
are not satisfied. In this paper, a new droop control scheme is
proposed to limit the voltage of each source below a desired
bound, achieve tight voltage regulation and power sharing,
and guarantee closed-loop system stability with the existence
of a CPL. The upper limit of the voltage of each source is
rigorously proven using ultimate boundedness theory, while
after a suitable manipulation of the admittance matrix of
the microgrid, analytic conditions of stability are obtained to
guide the control parameters design. To validate the theoretical
design and analysis, a detailed simulation is performed of a DC
microgrid equipped with the proposed controller.

I. INTRODUCTION

Following the recent developments in the distributed in-

tegration of small-scale power generation combined with

intelligent control and coordination of distribution networks,

the microgrid concept has been formed, representing a key

solution for future power distribution systems. In this frame-

work, extensive research has already been carried out and is

still ongoing to devise and enhance the features of the future

microgrid systems [1]. With the ever-increasing demand for

power and the dire necessity for harnessing green energy

resources, microgrids are drawing a deeper interest in the

power network industry.

DC microgrids are mostly preferred to AC microgrids as

they facilitate seamless integration of renewable resources

into the power grids with increased efficiency and flexibility

[2]. Therein, the distributed generation (DG) sources are

commonly connected in a parallel configuration to a common

DC bus. The interface between the DGs and the bus is

ensured by power electronic devices, which are responsible

to regulate the DC bus voltage and control the output power.

These tasks are ordinarily achieved, at the primary control

layer, by droop-based methods [3].

In general, droop controllers are utilised in microgrids

where communication networks are not suitable for data

exchange due to distributed physical locations of the DG
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sources, with the condition that the line impedances are

mainly inductive [4], [5]. However, conventional droop

control strategies present some serious shortcomings, such

as poor voltage regulation due to their permanent offset,

inaccuracies in the load power sharing, dependency on line

impedance, slow dynamic response, and low stability margin

[6]. The latter aspect is of major significance, especially

in the presence of CPLs. Unlike passive loads, CPLs, also

known as active loads, enable the power conditioning at the

load side and behave as negative impedances in the small-

signal analysis, thus, introducing instabilities in the system

[7], [8]. To increase the system stability margin, several

methods have been proposed in the literature, i.e. passive

damping [9] in the form of RC parallel, RL parallel, RL

series, additional filter or energy storage devices [10] to deal

with the voltage oscillations at the DC bus, virtual resistance

[11] to adjust the current flowing through the source and

DC link, virtual capacitance [12] to reduce the size and

weight of DC-link capacitor. However, to guarantee small-

signal stability with a CPL, the impedance inequality criteria

must be satisfied.

Apart from the theoretical analysis, the need of protecting

the power units from overvoltages via the control design

has emerged [13], [14], since DC capacitors are commonly

used at the output of each unit’s converter, which introduce

a maximum limit. Overvoltage instances occur when the

voltage in a circuit, or part of the circuit, increases above its

designed limit, causing potential damages and faults in the

converter components or the grid. Limitations and challenges

in dealing with such situations have been discussed in [15]. In

[16], a comparison, by means of optimal power flow, between

centralized and local voltage control solutions have been

conducted to mitigate the voltage rise impact. Other methods,

such as those proposed in [17], [18], aim to reduce the active

power injected by a source until their voltage complies with

the operational requirements, commonly referred to as active

power curtailment (APC). In [19], the authors propose a

methodology to identify and locate transient overvoltages

using wavelet packet decomposition (WPD) and general

regression neural networks (GRNN) theory. Still, incorpo-

rating the overvoltage protection at the primary control layer

remains an open problem.

Therefore, in this paper, a novel primary droop control

strategy is employed that ensures an upper bound for the

voltages of each source of the DC microgrid and also

achieves load voltage regulation and accurate power shar-

ing. The voltage limitation is rigorously proven based on

nonlinear ultimate boundedness theory, while the stability



of the closed-loop system with a CPL is analytically proven,

leading to useful conditions for the control parameter design.

The remainder of this section revisits some notations

used throughout the entire manuscript. Section II introduces

the DC microgrid model in the presence of a CPL. In

Section III, the novel droop control strategy is proposed

which includes a useful guideline for selecting the control

parameters. Asymptotic stability of the entire microgrid is

guaranteed in Section IV, while in Section V the dynamic

response of the system states is presented. Conclusions are

drawn in Section VI.

A. Common notations

Given an n-dimensional sequence (v1, v2, . . . , vn), let v ∈
R

n represent the associated vector, and [v] ∈ R
n×n the

associated matrix, whose diagonal entries are the elements of

v. Consider 1n ∈ R
n and 0n ∈ R

n being the n-dimensional

vector, and 1n×n ∈ R
n×n and 0n×n ∈ R

n×n the n-

dimensional matrix with all the entries equal to one, and

zero, respectively. Let I be the ordered index set, and In
the square identity matrix of size n. For v ∈ R

n, define the

column vector-valued, and diagonal matrix-valued functions

sinv, cosv, and [sinv], [cosv], respectively.

II. DC MICROGRID MODEL

A common DC microgrid architecture is depicted in Figure

1, consisting of n power converters that have an output

capacitor, Ci, and are connected to a common bus, through

a line with resistance, Ri, in a parallel configuration and

feeding a common load. The dynamic equations of the

capacitor voltages can be obtained by employing Kirchhoff’s

laws

CiV̇i = iini − ii (1)

where Vi is the output voltage, and iini and ii represent

the input and output current respectively. The term iini
also describes the control input, for ∀i ∈ I. Note that the

configuration represents just a generic model of n-sourced

units that could be incorporated within the microgrid via

different power converter configurations (buck, boost, buck-

boost, AC/DC).

In the presence of a CPL, the power balance equation must

hold:

P = Vo

n
∑

i=1

ii (2)

where Vo is the voltage of the DC bus, and P is the power

of the load. The output current ii then has the following

expression:

ii =
Vi − Vo

Ri

. (3)

Now for system (1)-(3), consider the following assumption:

Assumption 1. Let the inequality:

(

n
∑

i=1

Vi

Ri

)2

> 4P
n
∑

i=1

1

Ri

hold, with P > 0, and Vi > 0, ∀i ∈ I.
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Fig. 1: Generic framework of a DC microgrid

Replacing ii from (3) into (2), it yields the following

expression for the load voltage, given by the real solutions

of the second order polynomial as:

Vo =

∑n
i=1

Vi

Ri
±

√

(

∑n
i=1

Vi

Ri

)2

− 4P
∑n

i=1

1

Ri

2
∑n

i=1

1

Ri

. (4)

The load voltage has two solutions, a high voltage and a low

voltage, with the high voltage being the feasible solution.

By taking the partial derivative of the output current, ii,

from (3) with respect to the capacitor voltage, Vi, we get the

admittance matrix, Y , similar to [20], as

Y = R−1 (In − 1n×nD) (5)

with R = diag {Ri}, and D = diag
{

∂Vo

∂Vi

}

≻ 0 with the

following expression

D=
1

2
∑n

i=1

1

Ri









R−1+

∑n
i=1

Vi

Ri
√

(

∑n
i=1

Vi

Ri

)2

−4P
∑n

i=1

1

Ri

R−1









where, according to Assumption 1, the denominator
√

(

∑n
i=1

Vi

Ri

)2

− 4P
∑n

i=1

1

Ri
yields a real number. Hence,

the positive eigenvalues of D will have the form

λDi=
1

2
∑n

i=1

1

Ri









1

Ri

+

∑n
i=1

Vi

Ri
√

(

∑n
i=1

Vi

Ri

)2

−4P
∑n

i=1

1

Ri

1

Ri









,

with i ∈ I.

III. PROPOSED CONTROL ARCHITECTURE

The main tasks of the proposed control method are to

achieve voltage regulation close to the rated value, and

accurate power sharing among the sources with an inherent

overvoltage protection for each source independently.



A. Droop control design with overvoltage protection

Inspired by the sl-PI controller in [21], the novel droop

control strategy defines the control input, iini, in the follow-

ing form

iini = −giVi + Imax
i sinσi (6)

with σ designed to follow the nonlinear dynamics

σ̇i =
ki

Imax
i

(V ∗ − Vo −miii)cosσi (7)

that incorporates the droop control, with V ∗ representing the

reference voltage and mi the droop coefficient satisfying

mi < Ri, ∀i ∈ I. (8)

By replacing the controller dynamics into the open-loop

system, one gets

CiV̇i = −giVi + Imax
i sinσi − ii. (9)

Consider the following continuously differentiable energy-

like function

Wi =
1

2
CiV

2

i (10)

and by taking the time derivative, it becomes

Ẇi = −giV
2

i + ViI
max
i sinσi − Viii

= −giV
2

i + ViI
max
i sinσi − Pi, (11)

where Pi = Viii represents the power fed by the i−th source

to the common DC bus through each i−th line. Depending

on the sign of the power Pi, the discussion follows around

two separate cases:

a) Case 1: Pi ≥ 0

From equation (11), one can clearly notice that

Ẇi≤−giV
2

i +ViI
max
i sinσi≤−gi|Vi|

2+Imax
i |Vi|. (12)

Let gi = ḡi + ǫi > 0, with ḡi > 0 and ǫi representing an

arbitrarily small positive constant. In that case, (12) becomes

Ẇi ≤ − (ḡi + ǫi) |Vi|
2 + Imax

i |Vi|

≤ −ǫi|Vi|
2, ∀ |Vi| ≥

Imax
i

ḡi
. (13)

According to (13), the solution Vi (t) is uniformly ultimately

bounded, and every solution starting with the initial condition

Vi (0), satisfying

|Vi (0) | ≤
Imax
i

ḡi
, (14)

will remain in this range for all future times, i.e.

|Vi (t) | ≤
Imax
i

ḡi
, ∀ t ≥ 0. (15)

To ensure that each voltage Vi is bounded below a maximum

voltage V max, the control parameters, ḡi and Imax
i can be

selected to satisfy

Imax
i

ḡi
= V max. (16)

This completes the design of the control parameters ḡi and

Imax
i , to guarantee an upper bound for the output voltage Vi,

when Pi ≥ 0.

b) Case 2: Pi < 0

Due to the microgrid structure and the existence of a

constant power load, with P > 0, at least one current source

(e.g. j-th source) should be feeding the CPL and/or other (up

to n − 1) source units. Hence, if the corresponding power

of that particular source is Pj > 0, then since Pj = Vjij =

Vj
Vj−Vo

Rj
, it yields that Vj > Vo, and equivalently from Case

1, there is Vo < Vj ≤ V max. However, since for the i−th

source, the output power is negative Pi = Vi
Vi−Vo

Ri
< 0, then

Vi < Vo which leads to Vi < V max.

Therefore, in both cases, an upper bound for the output

voltage is guaranteed, i.e. Vi(t) ≤ V max, at any time instant,

i.e. even during transients.

B. Parameter selection

It should be noted that the controller parameters Imax
i and

gi = ḡi + ǫi can take any values that satisfy (16) in order to

guarantee the desired voltage limitation. However, in order

to provide a guidance for the user to select these two values,

a worst case scenario is considered where the i−th source

feeds the load by itself, i.e. Pi ≈ P . In this case, one can

easily understand from (11) that depending on the value of

P , compared to the term giV
2

i , the actual upper bound of Vi

can be limited well below V max. Given a known upper value

of the CPL power, i.e. 0 < P ≤ Pmax, and since it is desired

the upper value of Vi to be as close to V max as possible,

one can achieve this by suitably selecting the parameter gi
such that the term giV

2

i dominates the term P in (11), i.e. it

is at least 10 times higher, in the worst case scenario, hence

gi ≥
10Pmax

(V max)2
. (17)

Subsequently, since according to (16) there is ḡiV
max =

Imax
i , then Imax

i can be then selected as

Imax
i ≈

10Pmax

V max
, (18)

due to the very small positive constant ǫi. Note that the

above expressions for selecting the controller parameters are

provided for guidance only, since any other selection that

satisfies (16) will still guarantee the desired upper bound for

each voltage Vi. In addition, a more detailed analysis on the

condition that the parameter gi needs to satisfy is provided

in the sequel and is related to the asymptotic stability of the

closed-loop system.

IV. STABILITY ANALYSIS

Before beginning the stability analysis of the closed-loop

system, the two following lemmas should be introduced first:

Lemma 1. Consider A and B two Hermitian matrices,

with λ1 ≤ λ2 ≤ · · · ≤ λn the eigenvalues of A, and β1 ≤
β2 ≤ · · · ≤ βn the eigenvalues of B. Then, the following

inequality holds

λi + β1 ≤ ηi ≤ λi + βn



where ηi, with i ∈ I, represent the eigenvalues of the

Hermitian matrix A+B.

Proof. in Chapter 7, in [22].

Lemma 2. With S a real symmetric matrix, and D a

positive-definite real symmetric matrix, the following state-

ments hold:

1) SD (or DS) is diagonalizable.

2) SD (or DS) has only real eigenvalues, and also the

same number of positive, negative or null eigenvalues

as matrix S has.

Proof. SD is similar to the symmetric matrix D
1

2SD
1

2 ,

hence diagonalizable. Statement 1) is proved. By polar

decomposition SD (or DS) is of the form SD = UP , with

U unitary and P =

√

(SD)
T
SD a positive-semidefinite

symmetric matrix. Consider Q unitary that satisfies Q2 = U .

Note that M = Q−1 (SD)Q = QPQ is symmetric, and by

spectral decomposition M = V ΛV −1, with V unitary and

Λ diagonal with the eigenvalues of M (and same index of

inertia as SD) on the main diagonal. One can infer that

(QV )
−1

SD (QV ) = Λ, with QV unitary.

Matrix D
1

2SD
1

2 is congruent with S, hence, according to

Sylvester’s law of inertia, D
1

2SD
1

2 has the same index of

inertia as matrix S. Statement 2) is proved in Chapter 7, in

[22].

Now that the necessary lemmas have been stated, let the

closed-loop system (7), (9) be written in a matrix form as

V̇ = C−1 (−gV + Imaxsinσ − i) (19)

σ̇ = I−1

maxk [cosσ] ((V
∗ − Vo)1n −mi) (20)

where C = diag {Ci}, V = [V1 . . . Vn]
T

, g = diag {gi},

Imax = diag{Imax
i }, i = [i1 . . . in]

T
, σ = [σ1 . . . σn]

T
,

k = diag {ki}, m = diag {mi}.

Considering an equilibrium point (Ve, σe) of the closed-

loop system (19)-(20), (3) and (4), with σie =
(

−π
2
, π
2

)

,

that satisfies Assumption 1, the following theorem can be

formulated that guarantees stability of the entire droop-

controlled DC microgrid with a CPL.

Theorem 1. The equilibrium point (Ve, σe) is asymptoti-

cally stable if the controller parameter gi satisfies

gi >
nλDi − 1

Ri

, ∀i ∈ I. (21)

Proof. The corresponding Jacobian matrix of system (19)-

(20) has the following form

J=

[

−C−1g − C−1Y C−1Imax [cosσe]
−I−1

maxk [cosσe] (1n×nD +mY ) 0n×n

]

Replacing Y from (5), one gets

J=

[

−C−1
(

g−R−1(In−1n×nD)
)

C−1Imax[cosσe]
−I−1

max
k[cosσe]

(

1n×nD+mR−1(In−1n×nD)
)

0n×n

]

,

with the characteristic polynomial of the system given as

|λI2n − J | = |λ2In + λC+K| = 0, (22)

where the two matrix coefficients are

C = C−1g + C−1R−1 (In − 1n×nD)

K = C−1 [cosσe]
2
k
((

In −mR−1
)

1n×nD +mR−1
)

.

By right multiplication with |D−1| > 0, equation (22)

becomes

|λ2D−1 + λC̄+ K̄| = 0 (23)

with

C̄ = C−1gD−1 + C−1R−1
(

D−1 − 1n×n

)

K̄ = C−1 [cosσe]
2
k
((

In −mR−1
)

1n×n +mR−1D−1
)

By left multiplying (23) with |RC| > 0, it yields

|λ2RCD−1 + λC∗ +K
∗| = 0 (24)

with

C
∗ = RgD−1 +D−1 − 1n×n

K
∗ = R [cosσe]

2
k
(

In −mR−1
)

×
(

1n×n+
(

In−mR−1
)

−1

k−1 [cosσ]
−1

R−1mD−1

)

Notice that matrix C
∗ is a symmetric matrix, and, after

factorisation, matrix K
∗, according to Lemma 2, is a diago-

nalizable matrix with real eigenvalues. Thus, by expressing

the latter as K
∗ = P−1ΛP , with matrix P being unitary,

and Λ diagonal, and replacing it in (24), it yields that

|λ2RCD−1 + λC∗ + P−1ΛP | = 0 (25)

or, equivalently,

|λ2PRCD−1P−1 + λPC
∗P−1 + Λ| = 0 (26)

which is a quadratic eigenvalue problem (QEP) with matrix

Λ having the same index of inertia as matrix K
∗, whereas

the similarity transformations PRCD−1P−1 and PC
∗P−1

are symmetric, since P is unitary
(

P−1 = PT
)

, and they

have the same eigenvalues as matrices RCD−1, and C
∗,

respectively. According to the QEP theory, if RCD−1, C∗,

and Λ are positive-definite, then the eigenvalues λ will be

real and negative, i.e. λ < 0, thus, J will be Hurwitz.

Since RCD−1 ≻ 0, the remaining conditions are C
∗ ≻ 0,

and Λ ≻ 0, or equivalently K
∗ has positive eigenvalues.

1) C
∗ ≻ 0: As C

∗ is a sum of symmetric matrices,

according to Lemma 1, the condition becomes

Rigi + 1

λDi

− n > 0, i ∈ I

which is always guaranteed, provided (21) holds.

2) Λ ≻ 0 (or equivalently, K∗ has positive eigenvalues):

Due to the choice in (8), and for the bounded σie ∈
(

−π
2
, π
2

)

, the first matrix term in the multiplication

inside K
∗ is positive-definite, i.e.

R [cosσe]
2
k
(

In −mR−1
)

≻ 0.

Therefore, according to Lemma 2, one can investigate

only the remaining symmetric matrix in the product,

which is

1n×n +
(

In −mR−1
)

−1

k−1 [cosσe]
−1

R−1mD−1.
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Fig. 2: DC microgrid considered for testing

The above matrix is represented by a sum between a

positive semi-definite and a positive-definite symmetric

matrices, hence, one can clearly agree that the matrix

is positive-definite (Lemma 1).

As a result, when (21) is satisfied, J is Hurwitz, and the

equilibrium point (Ve, σe) is asymptotically stable. This

completes the proof.

V. SIMULATION RESULTS

A DC microgrid portrayed in Figure 2, with the parameters

specified in Table I, consisting of five DC/DC buck convert-

ers, is simulated in MATLAB/Simulink, considering a 0.3 s
testing scenario. The desired task for the proposed controller

is to regulate the load voltage close to the reference value,

V ∗ = 100V , and accurately distribute the load power among

converters in a 5 : 4 : 3 : 2 : 1 ratio, while maintaining a

safe output voltage margin below 1.05V ∗, i.e. 5% above the

rated value.

The simulation starts at t = 0 s, with a load power demand

being P = 250W . As one can notice in the time responses

in Figure 3, the load voltage is tightly regulated very close

to the reference with Vo ≈ 99.95V , as expected by the

droop control function (Figure 3b). The output currents are

accurately shared in a 5 : 4 : 3 : 2 : 1 ratio with

i = [0.66 0.53 0.4 0.26 0.13] A, as it can be seen in Figure

3a. Note that the output voltages are kept below their upper

limit.

Later on, at t = 0.1 s, the load power demand increases

to P = 1 kW . Notice that the transient occurring shortly

after the load change, at 0.1 s, is successfully limited below

105V . As one can see in Figure 3b, the load voltage is still

kept very close to the rated with Vo ≈ 99.7V , and the power

sharing is also very accurate with the output current vector

TABLE I: System and control parameters

System Parameters Values

C1...5 [µF ] [25 50 20 20 5]

R1...5 [Ω] [1 1.1 1.05 1.12 1.5]

Control Parameters Values

m1...5 [0.42 0.21 0.14 0.105 0.084]

Imax

1...5
[1.05 1.05 1.05 1.05 1.05]× 6000

g1...5 [1 1 1 1 1]× 60

k1...5 [2 2 2 2 38]× 107

(a) Output currents

(b) Output voltages

Fig. 3: Simulation results of the DC microgrid equipped with

the proposed controller

being i = [3.34 2.67 2 1.34 0.67] A, as displayed in Figure

3a.

At t = 0.2 s, the load power demand increases further

to P = 1.25 kW . According to Figure 3b, the new steady-

state value of the load voltage is Vo = 99.6V , meanwhile

the output voltage of the 5th DC/DC buck converter is

limited below the upper bound V max = 105V . On the other

hand, the power sharing among the other four converters

is kept in a 4 : 3 : 2 : 1 ratio with the output current

vector being i = [3.6 2.7 1.8 0.9] A as shown in Figure

3a. Hence, the theoretic analysis has been clearly verified,

illustrating how the proposed controller has as its first priority

to protect each converter by limiting the output voltage below

a desired upper bound at all times, while also ensuring the



required power sharing and load voltage regulation in the

DC microgrid loaded by a CPL.

VI. CONCLUSIONS

In this paper, a novel droop controller with overvoltage

protection has been presented. Using nonlinear systems the-

ory, an ultimate bound for the voltage of each source is

analytically proven. Following the proposed control strategy,

closed-loop asymptotic stability is also guaranteed with a

suitable selection of the controller parameters. Simulation

testing has been carried out for a DC microgrid consisting

of five parallel-operated DC/DC buck converters loaded by

a CPL displaying a normal operation with tight voltage

regulation and accurate power sharing, while maintaining an

upper voltage bound at all times, even during transients.
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