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Abstract: We report here methods and techniques for creating an improved model that reproduces

the scintillation and ionization response of a dual-phase liquid and gaseous xenon time projection

chamber. Starting with the recent release of the Noble Element Simulation Technique (NEST

v2.0), electronic recoil data from the β decays of 3H and 14C in the Large Underground Xenon

(LUX) detector were used to tune the model, in addition to external data sets that allow for

extrapolation beyond the LUX data-taking conditions. This paper also presents techniques used

for modeling complicated temporal and spatial detector pathologies that can adversely affect data

using a simplified model framework. The methods outlined in this report show an example of the

robust applications possible with NEST v2.0 framework and how it can be modified to produce a

final, detector-specific, electronic recoil model. This example provides the final model for LUX and

detector parameters that will used in the new analysis package, the LUX Legacy Analysis Monte

Carlo Application (LLAMA), for accurate reproduction of the LUX data. As accurate background

reproduction is crucial for the success of rare-event searches, such as dark matter direct detection

experiments, the techniques outlined here can be used in other single-phase and dual-phase xenon

detectors to assist with accurate ER background reproduction.
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1 Introduction

The Large Underground Xenon (LUX) Experiment was a dual-phase time projection chamber

(TPC) equipped with 370 kg of liquid xenon (LXe), of which 250 kg was an active target. The

LUX experiment took place in the Davis Cavern at the 4850’ level of the Sanford Underground

Research Facility (SURF) in Lead, South Dakota with the primary scientific purpose of detecting

WIMP dark matter [1]. As a dual-phase TPC, LUX collected the prompt scintillation signal (S1)

with two arrays each consisting of 61 photo-multiplier tubes (PMTs) located at the top and bottom

of the detector. The ionized electrons were extracted with an applied electric field into a layer of

gaseous xenon, where the electrons were accelerated to produce a secondary light signal (S2). The

location of the S2 signal in the top PMT array provides the position of the event in the horizontal

plane, x and y, while the time between the S1 and S2 pulses provides the depth of the interaction, z.

While being hosted in the Davis cavern, LUX was used to perform two WIMP searches.

The first science run (WS2013) spanned from April to August 2013 [2, 3], while the second run

(WS2014-16) started in September 2014 and ended in May 2016 [4]. The total exposure for the

combined runs was 3.35 × 104 kg·days. LUX was decommissioned in September 2016.

Throughout the WS2014-16 science run, LUX’s drift field was significantly non-uniform due

to an accumulation of excess charge on the inner detector walls. The distribution of excess charge

changed over the course of the WIMP search, creating a temporal and position-dependent drift

field. Sophisticated modeling was performed to create accurate three-dimensional maps of LUX’s

electric fields and is described in detail in Ref. [5].

In addition, the scintillation and electroluminescence gain factors, g1 and g22, changed through-

out the course of WS2014-16 [4]. WS2013 did not experience these detector effects in a significant

manner.

2g1 and g2 are defined with respect to the expectation values, 〈S1〉 = g1nγ and 〈S2〉 = g2ne, where nγ and ne are the

numbers of photons and electrons that escape the interaction site after an energy deposition, respectively.
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In existing and upcoming large target LXe dark matter experiments, the most burdensome

backgrounds are those from β decays of Rn daughters [6–9], underscoring the importance of

measuring and reproducing the detector response to electronic recoils. In addition, there exist

several dark matter candidate models where the dominant interaction with Standard Model matter

occurs via electronic recoils [10, 11]. To characterize the detector response from β decays, LUX

underwent multiple calibration campaigns measuring the light and charge yields from incident β

particles, including those from 3H and 14C sources which have energy spectra extending out to 18.6

and 156 keV, respectively. As β-Xe interactions occur via electronic recoils (ER), these calibrations

were used to characterize the detector’s response to ER-producing background radiation. There

were multiple 3H calibrations that took place periodically throughout LUX’s stay in the Davis

campus, while a single 14C calibration took place after WS2014-16 in August 2016 immediately

before LUX was decommissioned. Details of the source injections system and processes can be

found in Refs. [12, 13].

With the recent release of the second version of the Noble Element Simulation Technique

(NEST v2.0) [14], the ER calibration responses were compared to the new NEST model. This

model is based on empirical fits to data sets from virtually all existing photon and electron yield

data taken with Xe targets, including the LUX WS2013 3H ER calibration data. NEST then provides

efficient calculation of the observable detector response after a recoil event.

The NEST v2.0 framework was utilized to create the new LUX analysis package, the LUX

Legacy Analysis Monte Carlo Application (LLAMA). LLAMA’s main purpose is to reproduce the

detector response after an energy deposition with minimal deviation between the simulation results

and actual data. While NEST v2.0 only allows for the simulation of a temporally static detector,

LLAMA allows for interpolation of detector parameters as a function of time. Equipped with the

detailed three-dimensional electric field maps, LLAMA can use the NEST models to reproduce

all LUX data despite the significant spatial and temporal detector effects observed after WS2013.

LLAMA also serves as an example of how to expand upon the NEST v2.0 framework in order to

simulated a temporally dynamic detector.

Since the empirical models in NEST v2.0 were created by fitting to world data of light and

charge yields in LXe, it is understandable to expect that NEST would slightly deviate from the data

of a single experiment, especially for data that were not included in the fits. As the WS2014-16

and 14C acquisition data sets were not included during the development of NEST v2.0, the model

required additional tuning and optimization to consistently reproduce all LUX data. The purpose of

this paper is to develop techniques and methodologies to minimize deviations when modeling ER

backgrounds in a LXe detector. More generally, this work explores the limits of what is possible for

the detailed understanding of the ER response of future large two-phase xenon TPCs. Therefore, we

will describe in detail the process of optimizing NEST v2.0’s physics models for reproducing LUX

data using LUX ER bands in S1c-log(S2c/S1c) space, where S1c and S2c are the corrected S1 and

S2 signals that take into account possible position-dependence of g1 and g2, while preserving the

structure of the NEST v2.0 simulation package. In addition, results using temporal interpolation

and the complete position-dependent electric field maps with LLAMA will be shown, displaying an

expansion of the NEST v2.0 framework that can accurately account for dynamic detector parameters

and data-taking conditions.
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2 Optimizing the Mean Yields Model

Given the energy of the incident particle the magnitude of the drift field at the interaction point,

and the target Xe density, NEST v2.0 calculates the expected total number of particles generated

during the interaction, nq, and then it calculates the total electron yield [14]. The sum of electrons

and photons produced in an ER event is given by nq = ne + nph = E/W , where E is electronic

recoil energy, and W is the average work function for scintillation and ionization in LXe and is

approximately 13.7 eV [15]. By calculating the charge yields separately, the number of produced

photons is simply the difference between total quanta and number of electrons. After the mean

yields are calculated, fluctuations about the mean are calculated separately and applied to the result.

The NEST v2.0 β ER charge yield equation is a sum of two sigmoidal functions. To create the

LUX yields model for use in LLAMA, and following work reported in Ref. [16], the NEST v2.0

double-sigmoid was reformulated as

(2.1)Qy(E, E) = m1 +
m2 − m1

(1 + (E/m3)m4)m9
+ m5 +

0 − m5

(1 + (E/m7)m8)m10
,

where Qy is the mean electron yield per unit energy, ne/E . The individual mi are free parameters

that can depend on the applied field strength, E, and are tuned so that the first sigmoid models low

energy charge yields and the second sigmoid controls the behavior at higher energies. Note that m6

is explicitly set to zero; because m6 controls the low-energy asymptote of the high-energy sigmoid,

it has degenerate effects with m1, which controls the high-energy asymptote of the low-energy

sigmoid. This double-sigmoid approach allows for the reproduction of older yields models based

on first-principles approximations: the Thomas-Imel Box model (TIB) for low energy ER and

Doke’s formulation of Birk’s Law (DB) for high-energy particle tracks [17, 18]. The TIB model

approximates the recoil as a point-like scatter and assumes spherical symmetry of the produced

particle cascade. At higher energies, the DB formulation assumes cylindrical symmetry of the

particle cascade about a high-energy particle track. The medium-energy regime between these

two idealized approximations is significantly harder to model [19], but the NEST sum of sigmoids

allows for a smooth transition in this stitching region.

Using data from the WS2013 and WS2014-16 3H calibrations, the deviation between the

simulated and actual S1c-log(S2c/S1c) band means was minimized. However, due to the significant

temporal and spatial dependencies of the detector’s gains and drift field that were observed in

WS2014-16, simplifications of the detector geometry were required. Because of the temporal

dependencies, the WS2014-16 data was split into four unequal date bins; the 14C calibration that

occurred after WS2014-16 is considered to be a part of a fifth separate date bin. In addition,

NEST’s framework does not allow for straightforward incorporation of the complicated field maps

for WS2014-16, so each date bin was divided into four horizontal slices of the detector’s fiducial

volume – each corresponding to a 65 µs window of drift time. The drift time is defined as the time

between the beginning of the S1 and S2 pulses and represents the depth of the interaction. Explicitly,

from top to bottom of the detector, these four drift windows are: 40 < t < 105, 105 < t < 170,

170 < t < 235, and 235 < t < 300, where t is the drift time measured in µs. To begin simulating the

S1c-log(S2c/S1c) bands with NEST, each of the date bins was provided a mean g1 and g2 associated

with the data taken in the relevant time period. The field maps provide field magnitudes for each
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three-dimensional spatial coordinate in the detector. By making a histogram of field magnitudes for

each cubic millimeter volume element inside a volume slice, it is straightforward to extract the mean

field and the standard deviation within a given volume. For each bin of drift times, NEST randomly

selects a field value for each event from a uniform distribution with mean and width related to the

relevant volume’s mean field and standard deviation.

The tuning of the individual mi reported in Ref. [16] provided a robust ER yields model. To

preserve this, only one of the mi was used as a free parameter while creating the LUX yields model

and considering only energies and fields relevant to LUX data. As charge yields from 3H β ER fall

into the TIB regime and bleed into the medium-energy stitching region, m1 was chosen as the free

parameter for minimizing the deviation between the model and the data, as it directly affects the

shape of the charge yields in the stitching region. Explicitly, m1 was allowed to float to minimize

the test statistic:

(2.2)∆µ = |
∑

(µ
NEST

− µ
data

)|+

√

∑

(µ
NEST

− µ
data

)2 ,

where µ represents the mean value of log(S2c/S1c) for a given bin of S1c, and the summation is

over the total number of S1c bins. The width of the S1c bins was chosen to be 1 phd. Both terms

are different representations of the total deviation of the band means; the first term vanishes for a

perfect match, assuming that any noise is Gaussian, and the second term is the quadrature sum of

the deviations, and was added in the event that the first term fell into a false minimum value. We

note here that ∆µ ignores the deviation in the Gaussian widths of the ER bands, as changes in the

mean yields model had minimal effects on the band widths.

102

Drift Field [V/cm]

5

10

15

20

25

m
1 [

e
/k

eV
]

Date Bin 1
Date Bin 2
Date Bin 3
Date Bin 4

Figure 1. Best fit m1 values for each bin of drift time associated with the four date bins of WS2014-16, along

with the WS2013 best-fit value circled in yellow at 180 V/cm (also highlighted by the vertical yellow dashed

line). The dashed black line represents the original m1 model from Ref [16]. The solid black line shows

the average sigmoidal best fit to the WS2014-16 data, which disagreed with the result of the WS2013 data.

Because WS2014-16 data experienced complex detector effects and the WS2103 data had very little field

variation, the WS2013 m1 value was used to constrain the fit. A logarithmic function was chosen to split the

differences given the constraint, and this final function is shown in orange.

Figure 1 shows the resultant best fit m1 found by minimizing ∆µ using 3H data from each of

the 16 date-drift bins of WS2014-16, as well as for WS2013. The original m1 model used a field-

dependent sigmoid and agreed with the WS2013 data, and the WS2013 data did not experience
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significant field variation. Therefore, the WS2013 best fit value was used to constrain the final

field-dependence of m1. However, re-tuning the m1 model after including the WS2014-16 data did

not comply with the WS2013 constraint. Therefore, the functional form was changed to be linear

in log-field space to force agreement with WS2013 while simultaneously splitting the differences

seen in the WS2014-16 data. With the simplifications made to model the LUX detector during

WS2014-16 inside the NEST v2.0 framework, this additional emphasis on the WS2013 data was

necessary, since it was more straightforward to fully model the detector conditions from WS2013.

This new functional form for m1 grows infinitely with field strength, however, data from Doke

et al. [20] of measured charge yields from 976 keV Compton scatters from 207Bi suggest that m1

reaches a maximum at large fields. Fitting to this data, a high-field asymptote was added to the m1

model, and the comparisons to the 207Bi light and charge yields can be seen in Figure 2. Although

Compton scatters are γ ER, the difference in yields between γ and β interactions in LXe is likely

due to the energy-dependent photoabsorption component of γ interactions. Data from Compton

scatters should not have a significant photoabsorption component, thus, Compton scatters should

largely mimic β interactions [13, 21]. While the field magnitudes where this cut-off is necessary

are irrelevant to LUX data, this was included to allow extrapolation beyond LUX’s conditions for

comparison with other detectors.

20
30
40
50
60

Qy
 [e

/k
eV

]

Doke et al.
NESTv2.0
LUX Model

101 102 103 104

Field [V/cm]

10
20
30
40
50

Ly
 [p

h/
ke

V]

Figure 2. (Top) Comparison to the Doke et al. [20] charge yield data from 976 keV Compton scatters with

the public version of NEST v2.0 and the optimized LUX ER Model. This data set was used to set a limit

on the new m1 model, at fields much larger than seen in any of the LUX acquisitions. The change to the m1

and m5 models also created a much better agreement with the low field data from this data set. (Bottom)

Comparison to the Doke et al. light yield data with the public version of NEST v2.0 and the optimized LUX

ER Model. This comparison highlights the anti-correlated behavior of light and charge yields, as NEST

calculates light yields by subtracting charge yields from the total quanta produced in an energy deposition.

Note that as the amount of deposited energy becomes large, Equation 2.1 reduces to Qy ≈

m1 + m5. Therefore, changing m1 effectively alters the role of m5 in the high-energy regime. For

this reason, m5 was constrained using the theoretical maximum charge yield. As (ne + nγ) = E/W ,

where ne and nγ are the total numbers of produced electrons and photons that leave the interaction

site. Then, Qy ≡ ne/E = 1
W

· [1 +
nγ
ne

]−1. The maximum charge yield occurs when the probability

of recombination vanishes, causing nγ/ne = α, where α is the ratio between excited and ionized

xenon atoms and is constant for electronic recoils at the relevant energy scale for this analysis [19].
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Therefore at large enough energies, m1 + m5 ≈ 1
W

· [1 + α]−1. After changing the high energy

asymptote of Qy, the shape of the charge yields model in the Doke-Birks regime was altered. To

account for this, the field-dependence in the original m10 model was modified. From Ref. [16], m10

is expressed as a field-dependent sigmoid, and it controls the curvature of the Qy model at higher

energies. The m10 sigmoid was tuned by hand to restore the behavior of the new Qy model in this

regime to what it was before tuning m5. Because the LUX 3H data consist of low energy ER events

with only moderate field strength, the changes to m5 and m10 have no effect on m1 optimization,

although they are necessary for constructing a well-behaved model that extrapolates to higher energy

ER background events. The remaining mi were not changed.

3 Modeling the LUX Detector

After tuning the β ER yields model to better match LUX data, the focus was shifted to finding

nominal g1 and g2 values for each date bin. While g1 represents the total light collection efficiency

and is a fundamental property of the TPC, g2 is a product of other fundamental detector properties.

Explicitly:

(3.1)
g2 = SE · ǫext (Egas)

= g
gas

1
· Ye(Egas,∆zgas) · ǫext (Egas),

where ǫext is the efficiency to extract liberated electrons from the interaction site; Egas is the applied

electric field in the gas layer; SE is the mean number of photons produced by a single extracted

electron; g
gas

1
is the collection efficiency of light produced in the gas layer, which includes the

PMT quantum efficiencies; Ye is the light yield of extracted electrons in the gas layer; and ∆zgas is

the height of the gas layer. Both SE and g2 were measured multiple times throughout the course

of LUX’s science runs. With these, it was possible to provide NEST with starting values for g
gas

1

and Egas after calculating the extraction efficiency using methods reported in [22]. For finding the

best-fit values of g2, g
gas

1
was chosen to be the free parameter, and the Egas values for each date

bin were left untouched. These best-fit gain factors could then be used to create the continuous

temporal g1 and g2 for use in LLAMA’s temporal interpolation.

Also, with the simplifications made to the WS2014-16 electric field maps for use in the NEST

v2.0 framework, it was expected that the mean fields used in each horizontal slice of drift time

would need to slightly shift from the mean values of the field maps. As mentioned in the preceding

section, each drift bin was provided a range of electric fields that are associated with the mean

and standard deviation of the field magnitudes in that drift bin from the relevant field map. For

each modeled interaction, NEST selects the electric field from that range using a uniform random

distribution. To find effective fields that allowed for proper reconstruction of the S1c-log(S2c/S1c)

bands in this simplified framework, the mean field of each drift bin was treated as a free parameter.

However, the mean field value in each bin was not allowed to deviate from the original value by

more than one standard deviation. The widths of the field ranges were left fixed. This method

was also used for the four drift bins associated with the 14C acquisition. These effective fields

can provide a weighting of the field maps in LLAMA to assist in data reproduction by fitting the

best-fit field means with a continuous function of drift time. The WS2013 data did not require this

spatial binning since significant field fringing was not observed during the first science run. Thus,

a WS2013 effective field was not required and the full 3D position dependence was implemented.
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Focusing on the WS2014-16 3H data and the 14C acquisition, the deviation between the band

means could be minimized for each bin of drift time. This was done by calculating ∆µ from Eqn. 2.2

while simultaneously varying g1, g
gas

1
, and the mean electric field, E, for each drift bin. However,

it was necessary to force g1 and g
gas

1
to take only one set of values for each date bin and to not differ

across the fiducial volumes. This is because the position reconstruction of the S1 and S2 pulses

should already take the position dependence of g1 and g2 into account. Therefore, the average

deviation for all drift bins in a single date bin was minimized. Explicitly for a single date bin,

(3.2)∆
′

µ
=

1

4
[∆µ1(g1, g

gas

1
, E1) + ∆µ2(g1, g

gas

1
, E2) + ∆µ3(g1, g

gas

1
, E3) + ∆µ4(g1, g

gas

1
, E4)]

was minimized, where the individual ∆µi are the aforementioned test statistics (∆µ) for each drift

bin. This forces the resultant optimal parameters to have equal g1 and g
gas

1
values for all drift time

bins in a given date bin while each drift bin gets its own effective field.

For the WS2014-16 3H data, minimizing Eqn. 2.2 while varying the three free parameters

for each date bin results in g1 values of 0.0996 ± 0.0035, 0.0994 ± 0.0032, 0.0988 ± 0.0023, and

0.0976±0.0029 for the four date bins in temporal order. Taking the best fit g
gas

1
values and converting

back to g2 results in g2 values of 19.21± 0.37, 19.66± 0.26, 19.67± 0.22, and 19.96± 0.28. These

results are consistent with those reported in [4]. The shifts needed for the mean field in each drift bin

were similar across the four date bins, thus it was possible to obtain a single set of field multipliers

for the WS2014-16 data by finding the weighted average with respect to each date bin’s event

density. In order of increasing drift time (which is the same as decreasing electric field strength,)

these averaged multipliers are 0.98, 1.16, 0.96, and 0.86.

For the 14C date bin, the best fit g1 and calculated best fit g2 are 0.0931±0.0005 and 18.12±0.09,

respectively, which are in agreement with those reported in [13]. The uncertainties on each g1 and

g
gas

1
value are the standard deviations of the best fit g1 and g

gas

1
values for the four drift bins in

the given date bin. The g
gas

1
uncertainties were converted into uncertainties on g2 using error

propagation with Eqn. 2.1. The effective field multipliers that minimize the deviation between the
14C comparisons are 0.94, 1.11, 0.88, and 0.70 in order of increasing drift time. Figure 3 shows the

values of the effective fields compared to the original field means for each of the twenty drift bins.

For reproducing the WS2013 3H data, which did not require an effective electric field, the

optimal g1 and g2 values are 0.1165 and 13.18. While the value for g1 is in agreement with that

previously reported in [12], this g2 value is increased by 1.4σ. This suggests a possible over-

estimation of the previously reported 3H charge yields. All of the remaining detector parameters

used in the NEST framework for WS2013, WS2014-16, and the Post-WS 14C acquisition are

included in Table 1.

4 Modeling Yield Fluctuations

All of the aforementioned model optimizations compared only the deviation between the band means

of the LUX data and simulated events in S1c-log(S2c/S1c) space, ignoring comparisons between

the Gaussian band widths. This was because changes in the mean yields model, g1, g2, and the mean

drift field resulted in little change in the band widths. However, after the improved comparison

between the band means, disagreements remained between the band widths, especially for data
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Figure 3. Effective fields for use in the NEST v2.0 framework, compared to the original field means and

widths reported in Ref. [5]. The y = x line is shown in dashed black. We note here that the mean and average

deviations from the original measurements for WS2014-16 is 16% and 9%, which are more than a factor

of two better than previously reported using older versions of NEST. Including the deviations of the 14C

effective fields, the maximum and average deviations are 30% and 10%, which are still a large improvement

compared to those previously reported that did not include 14C data. An effective field value for the WS2013

data was not required since WS2013 did not experience significant variation in the electric field.

Table 1. Remaining parameters used in for modeling the LUX detector in the NEST v2.0 framework for

each time period. In the entries where four values are provided in WS2014-16, each value corresponds to

one of the four date bins.

WS2013 WS2014-16 Post-WS

Primary Scintillation (S1) Parameters

Single Photoelectron Resolution 0.37 0.37 0.37

Single Photoelectron Threshold [phe] 0.38 0.38 0.38

Single Photoelectron Efficiency 1 1 1

Gaussian Baseline Noise [phe] -0.01 ± 0.08 -0.01 ± 0.08 -0.01 ± 0.08

Double Photoelectron Emission Probability 0.173 0.173 0.173

Ionization and Secondary Scintillation (S2) Parameters

g
gas

1
0.1 0.0852, 0.0928, 0.0898, 0.0854 0.0769

Single Electron Size Fano-like Factor 3.7 0.8, 1.95, 2.49, 2.67 2.6

S2 Threshold [phe] 192.3 234.6 234.6

Extraction Region Field [kV/cm] 6.55 8.134, 7.95, 8.047, 8.087 8.269

Electron Lifetime [µs] 800 735, 947, 871, 871 947

Thermodynamic Properties

Temperature [K] 173 177 177

Gas Pressure [bar] 1.57 1.95 1.95

Geometric Parameters

Minimum Drift Time [µs] 38 40 40

Maximum Drift Time [µs] 305 300 300

Fiducial Radius [mm] 180 200 200

Detector Radius [mm] 235 235 235

LXe-GXe Border [mm] 544.95 544.95 544.95

Anode Level [mm] 549.2 549.2 549.2

Gate Level [mm] 539.2 539.2 539.2

Cathode Level [mm] 56 56 55.9

with larger S1s. This suggested that NEST’s fluctuations models needed their own optimization to
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reproduce LUX data, and careful consideration of the possible contributions to fluctuations in S1

and S2 pulses was taken. Three sources of pulse fluctuations were identified: statistical quantum

fluctuations in the total produced quanta, nq, recombination fluctuations from ionized electrons

recombining with xenon atoms before extraction, and additional random noise in pulse areas due

to experimental detector effects. The first of these creates a correlated fluctuation in the S1 and

S2 areas; as the total yield fluctuates, the number of electrons and photons should fluctuate in the

same direction relative to the mean value. The second source, recombination fluctuations, are anti-

correlated, as a recombining electron will excite a xenon atom, eventually leading to de-excitation

and possible photon production. These two sources are fundamental to the atomic physics of energy

depositions in xenon targets. The last source of fluctuations, noise from detector effects, can be

different for any experiment and are not currently included in NEST v2.0. These fluctuations are

expected to have uncorrelated impacts on S1 and S2 size.

Comparing the calculated energy resolution in NEST v2.0 with those measured in WS2013 and

reported by LUX in Ref. [23], the discrepancy is not significant compared to the differences seen

in the simulated and measured S1c-log(S2c/S1c) band widths. Because recombination fluctuations

have no significant effect on the combined energy resolution, this suggests that the correlated

statistical fluctuations model in NEST v2.0 did not require any additional tuning for the LUX yields

model. Therefore, we set our focus on tuning the NEST ER recombination model to reduce the

remaining deviation in the S1c and S2c distributions.

Historically, modeling recombination as a binomial process - either an electron recombines or

it does not - has been unable to fully explain the observed anti-correlated yield fluctuations in light

and charge yields [24]. Reported by LUX in Ref. [23], recombination fluctuations on the number

of produced ions, Nions, have a variance of the form:

σ2 = r(1 − r)Nions + ω2N2
ions . (4.1)

The first term can be recognized as a binomial term with recombination probability, r , while the

second term is the non-binomial correction weighted by a field-dependent parameter, ω. This

is also the same form that recombination fluctuations take in the NEST v2.0 framework, with

the weighting parameter, ω, represented by a field-dependent quadratic function of recombination

probability which makes use of three free parameters. For optimizing the LUX yields model,

NEST’s ω representation was adopted, but simplifications were made by reducing the number of

free parameters to a single field-dependent variable. Specifically,

(4.2)ω = −4c(r −
1

2
)2 + c,

where c is the free parameter. This is useful as it forces the non-binomial variance contributions to

vanish when r becomes zero or unity, and reaches a maximum when the probabilities for recom-

bination and escape are equal. In addition, while NEST v2.0 models recombination fluctuations

as a Gaussian process, data reveals that the final S2 distribution is more accurately represented by

a skewed Gaussian distribution [25]. Therefore, the LUX yields model expanded upon the NEST

v2.0 recombination model to incorporate skew in the final S2 distributions.

9



To begin the optimization process, a new test statistic was required, as the choice for the band

mean optimization (Eqn. 2.2) was agnostic to the changes in the band widths. Therefore,

(4.3)∆ =
1

N
[
∑

|µ
NEST

− µ
data

|+
∑

|σ
NEST

− σ
data

|]

was chosen as the optimization test statistic: the summed average deviations of the band means

and band widths. Here, µ is the mean value of log(S2c/S1c) for a given S1c bin, while σ is the

standard deviation; µ and σ were found using Gaussian fits. As before, the summation takes place

over the number of S1c bins. Although the band means have already been optimized, including the

deviation between the means in ∆ prevents any changes in the fluctuations adversely impacting the

previously accomplished improvements.

Similar to the approach taken in the mean yields optimization, the free parameters were found

that minimized the test statistic for each of the WS2013 and WS2014-2016 drift bins using 3H data.

Figure 4 shows the best fit values of c for the 17 LUX bins, and also includes data points from

XENON10 and ZEPLIN-III at higher fields than LUX [25, 26]. The inclusion of data from these

different experiments allows for extrapolation of the recombination model beyond LUX’s data-

taking conditions. These data also indicate asymptotic behavior in c as the drift field increases.

Therefore, c was modeled as a field-dependent sigmoid and was fit to the WS2014-16 data. As

with the band mean optimization, the WS2013 result was used to constrain the fit because the first

science run did not experience significant temporal and spatial detector effects.
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Figure 4. Best-fit c values as a function of field shown as a solid black line, found by fitting to the WS2013

and WS2014-16 3H data, as well as XENON10 and ZEPLIN-III data. Because of the similar values for

XENON10 and ZEPLIN-III that suggest the need for a high-field asymptote, a sigmoid was chosen as the

best fit function. This is the same functional form as used originally for NEST v2.0, indicated by the dashed

black line. The fit to the WS2014-16 data was constrained using the WS2013 result, as detector effects were

not significant during this data collection campaign.

The data used in the ω model thus far was limited in range of the recombination probability,

and as ω depends directly on r , it was important for extrapolation purposes to check the behavior

of the model for a large spread of recombination probabilities. Data provided in a dissertation

by C.E. Dahl [15] provides recombination fluctuation data for a wide range of electron fraction

(defined as ne/(ne + nph)), which is proportional to (1 − r). Because the model should provide

the true recombination fluctuations for an event, it is favorable that the fluctuations in the model

are underestimated instead of being overestimated compared to data, as data may contain unknown

10



sources of noise. With this in mind, initial comparisons show that the new LUX yields model

performs better when recombination is more probable than escape, but the original NEST v2.0

model performs better at lower values of the recombination probability. Because of this, the LUX

yields ω model was weighted with a recombination-dependent error function, helping to improve

the model for lower recombination probabilities. Figure 5 shows this data compared to the NEST

v2.0 model and the LUX model, both before and after this final modification. The effects of this

change on the LUX data comparisons were negligible for all of the relevant fields and energies, so

re-optimization of the LUX model parameters was not necessary.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Electron Fraction ( ne
ne + nph )

250

300

350

400

450

500

550

600

650

qu
an

ta

Dahl Data
NESTv2.0
LUX Model
Modified LUX Model

1 0.75 0.50 0.25 0
Recombination Probability

Figure 5. Recombination fluctuations as a function of the ratio of electrons to total quanta compared with the

NEST v2.0 model (magenta) and the LUX yields model before and after modification with an error function

(solid blue and dashed red, respectively). The electron fraction is equal to (1 − r)/(α + 1), where r is the

recombination probability and α is the ratio of excitons to ions produced in the original energy deposition.

5 Modeling Detector Noise in S1 and S2 Pulses

With the newly finished recombination model optimized for a wide range of recombination prob-

abilities, the last source of yield fluctuations to address were those from detector effects. It is

understandable that this would be necessary for the WS2014-16 and 14C data, as the field non-

uniformity and time-dependent light collection efficiencies made proper simulation of the LUX

data difficult. These fluctuations were modeled as corrections on the S1 or S2 pulse area, A, using

a Gaussian smearing with a standard deviation, λA, where λ is a free parameter that encapsulates

complicated or unknown detector effects that impact the area of the detected S1 or S2, similar to

the techniques used in Ref. [15]. For simplicity, λ was chosen to be identical for smearing of both

S1 and S2 pulses.

Best-fit λ values were found for the 3H data from WS2013 and each WS2014-16 date bin,

as well as for the 14C acquisition. Because the effects of this method of modeling detector noise

increase as the pulse areas increase, the test statistic (Eqn. 4.3) was minimized using data out to the

largest S1s available for a given date bin: 115 phd for WS2013 3H data and between 80 and 100

phd for WS2014-16 3H data. The WS2014-16 S1 range is less than the maximum S1 for WS2013
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Figure 6. Comparison of the final LUX ER yields model using the NEST v2.0 framework with two different

sets of LUX WS2013 3H data. The solid lines represent the Gaussian means of log(S2c/S1c) values inside

each S1 bin. Dashed lines show the Gaussian widths of each S1 bin.

because g1 decreased and was changing during the second science run. For 14C, only data with

S1 pulses smaller than 300 phd were used, as the number of events becomes too few beyond this

limit. For WS2013, the four WS2014-16 date bins, and the 14C acquisition, the best fit values of λ

are: 1.4± 0.7%, 1.4± 0.7%, 2.3± 0.4%, 3.0± 0.6%, 4.4± 0.6%, and 7.0± 0.1%, respectively. This

is consistent with the expectation that detector effects were steadily increasing over time. As with

the gain factors, g1 and g2, a smooth temporal fit to these λ values can be added into LLAMA for

accurate reproduction of the band widths for WS2014-16 and the 14C acquisition.

6 Results

After tuning the NEST v2.0 mean ER charge yields and fluctuations models and finding optimal

light collection efficiencies and effective drift fields, final comparisons can be made with the LUX

data. Figures 6, 7, and 8 show the comparisons of the final LUX yields model to the WS2013
3H data, each of the 16 drift bins associated with the WS2014-16 3H data, and the four 14C drift

bins. The simulated bands were created with increased statistics to reduce the effects of Poisson

fluctuations obscuring the final quantitative and qualitative results.

In addition to this discretized approach, Figures 9 and 10 show the comparison using LLAMA

for the total WS2014-16 band and the 14C band. Using the best-fit detector parameters and creating

continuous temporal functions for each one allows LLAMA to take the newly modified NEST ER

models and accurately reproduce the LUX data, despite the significant detector pathologies that

affected the data.

Table 2 shows the remaining net average relative deviation between each comparison. For the

band means, the average deviations never become larger than 1%, quantitatively indicating good

agreement between the data and simulations. The magnitude of the net deviations for the band

widths are on average larger than those for the band means. This is due to larger Poisson fluctuations

and relative uncertainties in the band width calculations and measurements. These values also show

that the remaining deviation does not appear to be systematically offset. Importantly, these final
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Figure 7. Comparison of the final LUX ER yields model using the NEST v2.0 framework with 3H data

from each of the WS2014-16 drift bins. Each row shows one of the four date bins with the best-fit g1 and g2

values, and each column represents one of the four bins of drift time. The solid lines represent the Gaussian

means of log(S2c/S1c) values inside each S1 bin. Dashed lines show the Gaussian widths of each S1 bin.
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Figure 8. Comparison of NESTv2 and LUX post-Run04 14C data. Similarly to the Run04 data, 14C data is

split into four spatial bins of equal drift time. The solid lines represent the Gaussian means of log(S2c/S1c)

values inside each S1 bin. Dashed lines show the Gaussian widths of each S1 bin. Note that units of S1s are

expressed in either S1 spikes or pulse areas in phd. Typically, S1s less than approximately 120 phd will be

expressed in terms of spikes, and anything larger will be expressed in terms of standard S1 pulse areas.
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Table 2. Average signed deviation between the NEST simulation and LUX data for each acquisition period

for both the means and widths, calculated as (XNEST − XLUX )/XNEST , since the LUX data was limited in

statistics and dividing by a data point with a significant downward fluctuation would inflate the calculated

deviations. The sub-percent deviations along with the variation between positive and negative values indicate

that there is no systematic offset between the simulation and the data. The large deviation in the widths for

the lowest field bin in Date Bin 2 is due to low statistics in the data, and this can be seen in the corresponding

pane of Figure 7.

LUX Acquisition Drift Time Bin Max S1 Avg Deviation: Means Avg Deviation: Widths

Run 3 - 105 0.01% -0.31%

Run 4: Date Bin 1

1 70 0.11% 2.06%

2 70 -0.21% 2.19%

3 70 0.37% -1.12%

4 70 0.65% 2.13%

Run 4: Date Bin 2

1 70 0.33% -5.77%

2 70 -0.25% -2.94%

3 70 0.39% -2.85%

4 70 0.34% 16.10%

Run 4: Date Bin 3

1 70 0.11% 1.83%

2 70 -0.22% -0.40%

3 70 0.39% -4.51%

4 70 0.20% -0.90%

Run 4: Date Bin 4

1 70 -0.09% 1.62%

2 70 -0.30% 0.12%

3 70 0.38% -4.71%

4 70 0.35% 0.91%

Run 4: C-14 Acquisition

1 300 -0.10% -0.31%

2 300 -0.33% -1.25%

3 300 0.01% -5.47%

4 300 -0.22% 3.72%

Averages - - 0.09% -1.79%

values reveal that very little additional progress can be made beyond the improvements presented

here.

Conclusion

The final LUX backgrounds model requires an ER yields model that can mimic the data collected

throughout the LUX experiment. The techniques and methods described in this paper present a

detailed and robust application of NEST v2.0 for use in accurately reproducing light and charge

yields from TPCs with xenon targets. With minimal tuning of the NEST v2.0 models, it was possible

to reproduce LUX ER calibration data from each of the different acquisition time periods. Even

with the significant field fringing and time-dependent light collection efficiencies present in the

data beyond WS2013, the NEST v2.0 framework was able to accurately and efficiently encapsulate

these effects with simplified geometry after binning the detector spatially and temporally, while also

providing nominal values of g1 and g2 for each time bin and nominal effective electric field ranges.

The results found using the temporal and spatial binning of the LUX detector were interpolated

to create smooth functions for the relevant detector parameters. Expanding upon the NEST v2.0
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Figure 9. Comparison of the final LUX ER yields model using LLAMA with the WS2014-16 3H data.

LLAMA uses the temporal dependence of g1 and g2 found with the four date bins. In addition, the full

time-dependent and position-dependent field map is used and is weighted with the optimized effective field

multipliers found with the discretized approach.
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Figure 10. Comparison of the final LUX ER yields model using LLAMA with the 14C acquisition data.

This comparison uses the full position-dependent field map and is weighted with the optimized effective field

multipliers found for the 14C data with the discretized approach.

framework to create LLAMA for simulating a temporally dynamic detector, this final model can

accurately reproduce all LUX ER data, despite the significant detector pathologies observed in later

data acquisitions. The completed LLAMA framework equipped with the final LUX ER model will

be used for all future background modeling in upcoming LUX analyses.
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