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A B S T R A C T

Blood vessel segmentation plays a fundamental role in many computer-aided diagno-
sis (CAD) systems, such as coronary artery stenosis quantification, cerebral aneurysm
quantification, and retinal vascular tree analysis. Fine blood vessel segmentation can
help build a more accurate computer-aided diagnosis system and help physicians gain
a better understanding of vascular structures. The purpose of this article is to develop
a blood vessel segmentation method that can improve segmentation accuracy in tiny
blood vessels. In this work, we propose a tensor-based graph-cut method for blood
vessel segmentation. With our method, each voxel can be modeled by a second-order
tensor, allowing the capture of the intensity information and the geometric information
for building a more accurate model for blood vessel segmentation. We compared our
proposed method’s accuracy to several state-of-the-art blood vessel segmentation algo-
rithms and performed experiments on both simulated and clinical CT datasets. Both
experiments showed that our method achieved better state-of-the-art results than the
competing techniques. The mean centerline overlap ratio of our proposed method is
84% on clinical CT data. Our proposed blood vessel segmentation method outper-
formed other state-of-the-art methods by 10% on clinical CT data. Tiny blood vessels
in clinical CT data with a 1-mm radius can be extracted using the proposed technique.
The experiments on a clinical dataset showed that the proposed method significantly
improved the segmentation accuracy in tiny blood vessels.

c© 2019 Elsevier B. V. All rights reserved.

1. Introduction

Blood vessel segmentation plays a fundamental role in many computer-aided diagnosis (CAD) systems, such as coronary artery

stenosis quantification, cerebral aneurysm quantification, retinal vascular tree analysis, etc. This study focuses on the renal artery

segmentation problem. Segmental renal artery clamping is a promising method to suppress warm ischaemic injury during partial

nephrectomy (PN) (Shao et al., 2012, 2011; Yoshino et al., 2015). The segmentation of renal arteries helps physicians obtain a
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better understanding of vascular topology and allows further quantitative analyses. However, renal artery segmentation remains

difficult due to its low contrast and the kidney’s complex internal structures, especially for tiny structures under a radius of 3 mm

(about the 4th generation of dichotomous branching that extends from the abdominal aorta). No segmentation method exists that is

designed for precise renal artery segmentation problems.

Due to low contrast and tiny elongated structures, accurate blood vessel segmentation remains an elusive challenge in many

medical image-processing applications. Numerous blood vessel segmentation methods have already been proposed in the literature

for various blood vessels (Lesage et al., 2009). In 3D vessel segmentation, most existing techniques exploit such vessel prior

knowledge as tubular structures. Different image modalities, such as digital subtraction angiography, fundus photography, contrast-

enhanced CT, and MRI angiography, have different characteristics of vessel features. Even in the same modality, blood vessels

in different tissues may still have slight differences in feature representations due to signal intensity variations, inhomogeneous

contrast filling, or imaging artifacts.

Conventionally, 3D local geometry features like first- and second-order derivatives of intensities are utilized. Level-set-based

approaches were proposed using gradient information for blood vessel segmentation tasks (Lorigo et al., 2001; Zhu et al., 2009).

Second-order derivatives information, such as the Hessian matrix, models the tubular geometric structure of blood vessels (Frangi

et al., 1998; Sato et al., 1998; Kerkeni et al., 2016). The Hessian matrix is a second-order tensor; the magnitudes of its three

eigenvalues indicate the local geometric structure of the image. A fair amount of approaches use Hessian-based vesselness features

for tubular structure representation (Lin, 2001; Shikata et al., 2004; Wink et al., 2004; Skibbe et al., 2015). However, since Hessian

tensors do not actually lie on Euclidean space. Frangi et al. and Sato et al. proposed dissimilarity measures that represent the

tensor information into 1-dimensional Euclidean space (Frangi et al., 1998; Sato et al., 1998). Dimensionality reduction leads

to the inaccurate modeling of geometric structure. To address this issue, many works used Hessian information associated with

geometrical models (Zhu et al., 2009; Wang et al., 2010; Skibbe et al., 2015; Hanbay and Talu, 2018). Zhu et al. adopted Hessian

vesselness measure as a weight parameter to construct a vascularity-oriented speed function for level-set algorithm (Zhu et al.,

2009). Similarly, Hanbay et al. used Hessian eigenvalue analysis to construct a edge-stopping function for their active contour

model (Hanbay and Talu, 2018). Hessian matrix has also been incorporated into the gradient vector flow model to obtain an

anisotropic partial differential equation (Wang et al., 2010). Other segmentation approaches such as Markov marked-point processes

(Lacoste et al., 2006; Skibbe et al., 2015) have also been used for blood vessel segmentation problems. Blood vessels are modeled

as a combination of piecewise segments or particles and optimized using a Markov chain Monte Carlo algorithm (Skibbe et al.,

2015) that utilizes both first- and second-order derivatives information to construct the particle. However, Markov marked-point

approaches are not pixelwise, and disconnection and bifurcation problems remain to be solved. This is also a common issue for

other model-fitting-based methods, including (Tyrrell et al., 2007; Friman et al., 2010; Wörz and Rohr, 2008).

The graph-cut method, which has been widely used for many such low-level computer vision problems as segmentation and

registration (Boykov et al., 2001; Rother et al., 2004; Tang and Chung, 2007), can find the exact solution in polynomial time for

submodular energy. However, the local neighboring Markov random field (MRF) model, where the voxels are only connected

to their neighboring voxels, has a side effect, short-boundary bias, which results from the influence of the pairwise term, which

penalizes the elongated boundaries. A high-order MRF model has been presented to tackle this problem by coupling similar edges

(Vicente et al., 2008; Jegelka and Bilmes, 2011; Kohli et al., 2013). Many approaches have also adopted graph-cuts into blood vessel

segmentation problems using additional information, such as shape prior (Bauer et al., 2010) and geometrical moments (Esneault

et al., 2010).
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Fig. 1: Flowchart of proposed algorithm.

Recently, deep-learning techniques have achieved remarkable progress in the computer vision field. Unlike the above unsuper-

vised approaches, conventional deep-learning techniques are data-demanded, which means that many training data and annotated

labels are needed. Many researches addressed 2D retinal blood vessel segmentation problems (Liskowski and Krawiec, 2016;

Fu et al., 2016; Jiang et al., 2018). More recently, a 2.5D fully convolutional neural network (FCN) was successfully applied to

3D blood vessel segmentation on magnetic resonance angiography (MRA) time-of-flight (TOF) and synchrotron radiation x-ray

tomographic microscopy (SRXTM) datasets (Tetteh et al., 2018).

In this study, we tackle the short-boundary bias issue by introducing tubular geometric information to the MRF model to exploit

the advantages of both graph-cut and vesselness-enhancement filtering. We propose a fully automatic blood vessel segmentation

method named tensor-cut using a tensor-based graph-cut approach and apply it to fine renal artery segmentation. We use both

intensity and tensor information to construct a first-order MRF. Using tensors for image processing can be traced back to 1980s,

Bigün et al. first presented structure tensor using gradient information (Bigün, 1987; Bigün et al., 1991). Knutsson et al. presented a

local energy-based method to calculated the local structure tensor by analysing the responses of a set of quadrature filters (Knutsson

et al., 2011). Lindeberg et al. presented Gaussian scale-space for a multi-scale representation for tensors (Lindeberg, 1994). Our

proposed method exploits the second-order information of the geometry structure of blood vessels. Unlike many existing blood

vessel segmentation methods that only use the high-dimensional geometric information in low-dimensional Euclidean space, the

proposed method directly utilizes the geometric information in manifold space that can contribute to a more accurate model.

This work is an extension of our previous work (Wang et al., 2016b) with a more detailed introduction to our approach and more

experiments including both simulated and clinical experiments.
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2. Method

2.1. Overview

This section briefly summarizes the entire algorithm whose flowchart is shown in Fig. 1. In the first stage, the input 3D volume

data are filtered using a Hessian-based vesselness filter to create a tensor field. Then the Riemannian and Euclidean metrics are

respectively utilized as dissimilarity measures for the tensors and the scalar intensity. In the second stage, a first-order Markov

random field is constructed that consists of hidden and labeling layers. Finally, we performed a graph cuts algorithm to get the final

segmentation result.

2.2. Tensor field

In one related work, Han et al. constructed a multi-scale nonlinear structure tensor (MSNST) space to extract textures from

natural images (Han and Wang, 2015). First, a multi-scale structure tensor (MSST) is constructed by calculating gradient Ds(x, y)

(omitted as Ds) of image I at scale s:

τs = α−2s
[

(Ds
x)2 (Ds

xDs
y)

(Ds
xDs

y) (Ds
y)2

]
, (1)

where s ∈ (0, S ), S is the total of the scales. Ds
x and Ds

y represent two gradient components along the x and y directions. Ds
x(x, y) =

∂(I ∗ θs)(x, y)/∂x, Ds
y(x, y) = ∂(I ∗ θs)(x, y)/∂y. θ(x, y) is a 2D differential function, and α is a constant parameter.

Then, a nonlinear anisotropic filter (Gerig et al., 1992) is applied to each MSST to obtain the MSNST space. Each pixel in an

image is represented as a MSNST T:

T = {τ̂0, τ̂1, ..., τ̂s−1}. (2)

In this work, instead of using first-order structure tensor to capture the texture features, we utilize a Hessian matrix to describe

the tubular geometric features. Unlike the previous work (Han and Wang, 2015), we do not construct a multi-scale tensor space.

Using a multi-scale vesselness-enhancement filter, we get the best scale to represent the blood vessels. This strategy effectively

reduces the computing time.

The 3D Hessian matrix at scale s is given:

∇2I s(x) =


I s

xx(x) I s
xy(x) I s

xz(x)
I s
yx(x) I s

yy(x) I s
yz(x)

I s
zx(x) I s

zy(x) I s
zz(x)

 . (3)

Here Ii j(x) =
∂2

∂i∂ j
I(x), (i, j ∈ {x, y, z}) represents the second-order partial derivatives of local image I at voxel x. This symmetric

matrix can resembleresembles a second-order tensor T H . A multi-scale Hessian-based vesselness-enhancement filter (Frangi et al.,

1998; Sato et al., 1998) is utilized to find the most appropriate scale to represent the tubular structure. Vesselness-measure Vs at

scale s is given:

Vs =


|λs

3|

(
λs

2

λs
3

)γ23
(
1 +

λs
1

|λs
2|

)γ12

, if λs
3 < λ
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s
1 ≤ 0,
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3|

(
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2

λs
3

)γ23
(
1 − α
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1

|λs
2|

)γ12

, if λs
3 < λ

s
2, 0 < λ

s
1 <
|λs

2|

α
,

0, otherwise.

(4)

where λs
1, λ

s
2, and λs

3 are the eigenvalues of the Hessian matrix at scale s, (λs
1 > λs

2 > λs
3). Scale s ∈ (0, S ), S is the total number of

scales. γ12 and γ23 are constant parameters. α is introduced to provide an asymmetrical characteristic(Sato et al., 1998). The scale

with highest vesselness-response Vmax is the most appropriate scale to represent the blood vessels, and the most appropriate scale

s′ = argmaxsV
s, s ∈ (0, S ).
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Fig. 2: Constructed tensor field of one CT slice. Only tensors withVmax > 0 are shown.

However, scale s′ can be obtained for every voxel of image I(x) even if its structure is not tubular. Therefore, we add a

constraint to reduce these noisy tensors. In this paper, we introduce diagonal tensor T D to replace these non-vessel tensors that can

be expressed:

T =

T H , Vmax > 0
T D, Vmax ≤ 0

, (5)

where T D =

λ1 0 0
0 λ2 0
0 0 λ3

 and λ3 � λ2 ≈ λ1 > 0. Here T D represents a plate-like structure. This diagonal tensor provides a non-

tubular tensor for those voxels that do not belong to the tubular structures. Tensor field T can be constructed. T = {T0,T1, ...,Tn}, n ∈

N.Ti ∈ {T
H ,T D}, ∀i ∈ N. N denotes voxel number. A visualized example of a tensor field is shown in Fig. 2 where only tubular

tensors are illustrated. The tensor visualization technique was previously presented (Barmpoutis et al., 2007). Ellipsoids are

constructed with the eigenvalues and the eigenvectors of the Hessian matrix.

2.3. Tensor metric in Riemannian space

In this section, we briefly review Riemannian metrics for computing tensor statistics. Since second-order tensors cannot be

handled by traditional linear statistical methods, non-linear metrics are required for computing statistics on tensors. In our previous

work, we modeled a tensor as an ellipsoid and used Euclidean metrics to calculate the dissimilarity between ellipsoids (Wang et al.,

2016a).

Many studies have studied how to perform statistics over tensor space, such as DTI images (Fletcher and Joshi, 2007; Pennec

et al., 2006; Ghosh et al., 2008). Tensors are not a vector space so that traditional vector operations cannot applied to tensor

computing. Actually, the tensor space forms a type of manifold, viz., a Riemannian manifold. Riemannian manifolds (M, g) are

smooth manifoldsM with Riemannian metric g. A manifold consists of a series of linear Euclidean subspaces. Similar to any other

curved surfaces, the geodesic distances between two vectors on a manifold is a continuous collection of projection distances in a

tangent space at each point. Riemannian metric g makes it possible to calculate the statistics of the manifolds, such as mean value,

geodesic distances, and geodesic interpolation.

Riemannian metrics handle symmetric positive definite (SPD) matrices, which form a convex half-cone in the vector space

of the matrices. Many standard operations are stable in this space (Pennec et al., 2006). However, the Hessian matrix may have

negative eigenvalues, i.e., since it is an indefinite matrix.

In our previous work (Wang et al., 2016b), we used a transformation trick to convert the indefinite Hessian matrices to SPD

matrices. The transformation helps map a Hessian matrix to a Riemannian manifold. Let T − denotes an indefinite Hessian matrix
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Fig. 3: Illustration of geodesic distance computing on manifold. x and y denote two tensors on manifoldM. Σ is a vector on tangent space TxM at x. Σ is projected
by a logarithmic mapping logx(y) from tensor x to tangent space, and exponential mapping expx(Σ) projects Σ back to manifold.

with negative eigenvalues, and let U denotes an invertible orthogonal matrix with columns that correspond to eigenvectors. We have

T − = UDU−1 = UDUT , where D is a diagonal matrix. D = diag(di), where di is the i-th eigenvalue. Positive definite tensor T + can

be obtained:

T + = abs(T −) = Udiag(abs(di))UT ,T + ∈ S ym+. (6)

However, this transformation assumes that tensors are in ideal tubular shape: λ2 ≈ λ3, |λ2| � |λ1| ≈ 0. In this work, we directly

use the absolute value of generalized eigenvalues of the tensors to transform the Hessian tensors to a semi-Riemannian space. The

revised transformation is given in Eq. 7, which is more mathematically reasonable than previous transformation. The tensors that

do not satisfy this condition will induce errors into the statistics. In this paper, we directly use the absolute value of generalized

eigenvalues of the tensors to avoid additional errors. The equation is given in Eq. 7.

Pennec et al. and Moakher et al. described an affine invariant Riemannian metric for statistics to compute SPD matrices

(tensors) (Pennec et al., 2006; Moakher, 2005). As shown in Fig. 3, the geodesic path between tensors x and y on manifold M

is the shortest curve shown in the dotted line. The geodesic distance is defined as d(x, y) = ‖
−→xy‖x. −→xy is a vector in tangent space

TxM, which is projected by a logarithmic mapping: −→xy = logx(y). In our case, the geodesic distance between two tensors can be

written:

d(T1,T2) = ‖logT1
(T2)‖T1 =

 d∑
i=1

log2 abs
(
λi(T1,T2)

)
1
2

, (7)

where λi(T1,T2) is the generalized eigenvalues of tensors T1 and T2. d denotes the order of the SPD matrix, which is d = 3.

Actually, Eq. 7 is a kind of semi-Riemannian metric (a.k.a pseudo-Riemannian metric) to handle our Hessian matrices. Semi-

Riemannian manifold, is a differentiable manifold, in which the requirement of SPD constraint is relaxed. In semi-Riemannian

space, tensors need not be positive definite at every point which allows us to calculate semi-distance between Hessian tensors.

We calculated the mean and the variance of the tensors using the same method given in a previous work (Pennec et al., 2006).

A simple introduction is described in the appendix. A more detailed description is also available (Pennec et al., 2006).
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2.4. Graph-cut using tensors

A graph-cut is a powerful optimization tool for solving low-level vision problems (Boykov et al., 2001; Boykov and Jolly, 2001).

Based on the max-flow/min-cut theorem, the minimum cut that corresponds to the best solution of a sub-modular energy function

can be found in polynomial time. A traditional graph-cut is based on a first-order Markov random field (MRF), which means that

only adjacent nodes are considered. This graphical model easily leads to a short-boundary bias. For blood vessel segmentation

problems, this short-boundary bias causes serious under-segmentation of tiny blood vessels. This problem can be addressed with a

high-order MRF instead of a first-order MRF considering high-order cliques can also effectively avoid local minimum cuts (Kohli

et al., 2013; Jegelka and Bilmes, 2011). Another direct method to avoid short-boundary bias is to make a more accurate objective

distribution model to prevent local minimal cuts. In this paper, we use the local geometric information presented as tensors to

improve the accuracy of the GMM model.

The minimum cut problem, also known as s-t cut, needs prespecified source nodes (s nodes) and sink nodes (t nodes). However,

for 3D blood vessel segmentation, manually creating these terminal nodes is time-consuming (including s and t nodes). In this work,

we automatically generate terminal nodes using K-means algorithm. Let IV(x) be an image filtered by a vesselness-enhancement

filter, and then we extract the most probable blood vessel region as s nodes with K-means clustering. The most probable cluster

c′max is given:

C′ = argmin
C

K∑
i=1

∑
x∈ci

||IV(x) − Īci ||
2, ci ∈ C (8)

c′max = argmax
c′i

1
|c′i |

∑
x∈c′i

|IV(x)|, c′i ∈ C′, (9)

where ci is the i-th cluster of total K clusters C. Īci denotes the mean intensity of the voxels in cluster ci. C′ is the final clusters. In

Eq. 9, cluster c′max with the highest mean intensity is selected as the foreground region: the s nodes. In practice, cluster number K

is set to five in this paper. An example of a generated foreground region is shown in Fig. 4. For the possible background region,

we first dilate the foreground region with radius r = 3 and use the complement of the dilated foreground region as a possible

background region (t nodes).

Same as previous work (Rother et al., 2004), for improved accuracy, we used a Gaussian mixture model (GMM) to estimate

the probability distribution of the blood vessels and the background region instead of histogram approaches. Two GMMs with Kg

components are required: one for the foreground region and another for the background region. A GMM can generally be written as

Pr(u) =
∑

k ηkN(u|µk, σk) (k ∈ Kg). N(u) denotes the Gaussian distribution. ηk is a weight parameter for each Gaussian component.

GMMs for intensity and tensors are given:

Pr(x) =

Kg∑
k=1

γkN(x|Īk, σk
I )

Pr(T ) =

Kg∑
k=1

θkN(T |T̄ k, σk
T )

, (10)

where Ī and σI denote the mean and the variance of the intensity. T̄ and σT denote the mean and the variance of the tensors; detailed

descriptions are given in the appendix. γ and θ are weight parameters that can be obtained using the EM algorithm (Dempster et al.,

1977).
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(a) (b)

Fig. 4: Generated foreground region using K-means clustering: (a) Vesselness-enhancement result IV(x). (b) Most probable blood vessel region c′max extracted
using K-means (K = 5).

For a graph-cut, we utilized both the intensity and tensor information. The energy function is described:

E(L) =
∑
x∈X
− log Pr(Lx|x)︸                ︷︷                ︸

data term

+ λI

∑
{xm,xn}∈N

Vm,n(xm, xn)︸                       ︷︷                       ︸
smoothness term︸                                                  ︷︷                                                  ︸

intensity term

+ ω
(∑
T∈T
− log Pr(LT |T ) + λT

∑
{Tm,Tn}∈N

′

Um,n(Tm,Tn)︸                                                           ︷︷                                                           ︸
tensor term

)
,

(11)

where L = {LF , LB} denotes labels and LF and LB are foreground and background labels. ω represents the weight parameter to adjust

the weight between the intensity and tensor term energy. The λI and λT parameters adjust the weight between the data term and the

smoothness term in the graphical model. Pr(Lx|x) and Pr(LT |T ) denote conditional probabilities of voxels x and tensors T derived

using Bayes rule. In this paper, we use a first-order MRF, which means that we only consider the edges between neighboring voxels.

N and N ′ denote pair sets of neighboring voxels and tensors. Vm,n(·, ·) and Um,n(·, ·) denote a dissimilarity measure for a pair of

neighboring voxels and tensors: the energy of the edges. The dissimilarity measure for both voxels and tensors are given:

Vm,n(xm, xn) =
exp

(
−ξd2(xm, xn)

)
dist(xm, xn)

Um,n(Tm,Tn) =
exp

(
−ξd2(Tm,Tn)

)
dist(Tm,Tn)

, (12)

where ξ is a constant parameter that can be estimated as the noise level and dist(·, ·) denotes the Euclidean distance between two

voxels or tensors, i.e. the physical distance between two points.

Finally, the minimum cut can be found by the graph-cut algorithm for a given energy function in Eq. 11. The terminal nodes

belonging to the source are the final segmentation result. A simple pseudocode for our tensor-based graph-cut is shown in Algorithm

1.
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Algorithm 1 Tensor-based graph-cut

Input: x ∈ I,T ∈ T
Output: Segmentation L = {LF , LB}

Initialize: T̄0 = T1, t = 0, ε = 0.001
Calculate

c′max . Terminal nodes (Eq. 9)
Pr(x),Pr(T ), (x ∈ c′max,T ∈ c′max) . GMM (Eq. 10)
− log Pr(Lx|x),− log Pr(LT |T ) . Data terms
Vm,n(xm, xn),Um,n(Tm,Tn) . Smoothness terms

L← min-cut/max-flow algorithms (Boykov and Jolly, 2001)

3. Experiments

3.1. Material

In this paper, we did experiments both on simulated data and on clinical contrast-enhanced CT data to validate our proposed

algorithm.

We used Eleven cases of phantom data, all of which were generated using a public tubular structure generator called vascular

synthesizer (VascuSynth)(Hamarneh and Jassi, 2010), which is a simulated vascular synthesizer that generates vascular structure

based on such user-defined vascular properties as bifurcation number, oxygen demand map, and other tunable parameters. To the

best of our knowledge, VascuSynth is the state-of-the-art vascular synthesizer in the literature. However, public vascular datasets1

have few bifurcation nodes, which can easily be segmented by all methods. Therefore, we generated the phantom datasets with

more bifurcation nodes and small bifurcation angles. Four generated pieces of phantom data are shown in Fig. 5. In this work,

we generated phantom data with different bifurcation numbers that ranged from 200 to 400, and oxygen demand maps and other

parameters were randomly decided. Gaussian white noise was added to obtain the final simulated data. We added two noise levels

to each phantom data with Gaussian variations σn = 0.3 and 0.8; Thus in the simulated experiments, we have 22 synthetic datasets.

To make the simulated data more closely resemble the clinical CT data, we applied a Gaussian-smoothing filter with a 2.0-mm

radius to the phantom data. An example of the final generated data is shown in Fig. 6. Compared to its original phantom data

without noise, many tiny vascular structures are lost by applying with noise and smoothing filters. The sizes of all the 22 simulated

bits of data are 160 × 160 × 160 with identical resolution 1.0 × 1.0 × 1.0 mm3.

We used 19 cases of clinical CT data for the experiments and focused on the renal artery segmentation problem. As pre-

processing for the clinical CT data, the volumes of interest (VOIs) of the kidney region were extracted manually. One bit of VOI

data contains an entire kidney region. One example of kidney VOI data is shown in Fig. 7. Detailed VOI data specification is

summarized in Table 1.

3.2. Measurements

We used three types of measurements to validate the segmentation performances in this work: sensitivity (S e), specificity (S pc),

centerline overlap (CO), and centerline error (CE). S e, or the true positive rate (TPR), measures the algorithm’s ability to correctly

extract the target region (blood vessels). S pc, or the true negative rate (TNR), refers to its ability to correctly extract the background

region (non-blood vessels). S e and S pc are given:

S e =
T P

T P + FN
, S pc =

T N
T N + FP

, (13)

1http://vascusynth.cs.sfu.ca
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(a) (b) (c) (d)

Fig. 5: Four phantom vascular pieces of data generated by VascuSynth with different bifurcation numbers: (a), (b), (c), and (d) respectively have 200, 250, 300, and
400 bifurcations.

Table 1: Kidney VOI specification

Slice size [pixels] (98 – 166) × (90 – 148)
Slice number [slices] 157 – 270
Pixel spacing [mm] 0.5 – 0.7
Slice pitch [mm] 0.4 – 0.8

where T P, FN, T N, and FP respectively denote the voxel numbers of true positives, false negatives, true negatives, and false

positives.

The Dice coefficient (DC) (Dice, 1945) is generally used for evaluating the overlap between the ground truth and segmentation

results. However, the DC metric is heavily influenced by the volume of the target region (Rohlfing, 2012). A small volumetric

variation of segmented, thick blood vessels may have greater influence than the volumetric variation of tiny blood vessels. Therefore,

instead of DC, we introduce the CO index to improve the accuracy evaluation for tiny blood vessel segmentation and use centerline

overlap measures (Metz et al., 2008). Fig. 8 describes how to calculate the centerline overlap ratio. ΩG(x) and ΩS (x) denote the

centerlines of the ground truth and segmentation results, respectively. Overlap region OΩ = {x|x ∈ ΩS (x) ∩ x ∈ U(x)}, whereU(x)

is dilated ΩG(x) with a two-voxels radius. The CO index is given:

CO =
2 ∗ ‖OΩ‖

‖ΩG‖ + ‖ΩS ‖
, (14)

where ‖·‖ represents the length.

Centerline error (CE) has also been used in many blood vessel segmentation works (Metz et al., 2008; Moccia et al., 2018)

especially for coronary artery which needs quantitative analysis. CE mainly measures the distance between segmentation and

ground truth. In this work, our CE index is defined:

CE =
h(ΩG(x),ΩS (x)) + h(ΩS (x),ΩG(x))

2
, (15)

where h(·) denotes average centerline distance, e.g., h(ΩG(x),ΩS (x)) = 1
‖ΩG‖

∑
pG∈ΩG

minpS ∈ΩS (|pG − pS |). For both CO and CE, we

only compute the scores on the longest connected vascular trees. Pre-processing is performed to extract the maximum connected

voxels. Tensor-cut has three primary parameters that must be specified: λI , λT , and ω. In both simulated and clinical experiments,

we performed a grid search to select these three parameters and to plot the upper bounds of all the results in the ROC curves.

3.3. Reference approaches

We consider six reference approaches in this paper. As the basic ideas of our proposed method, evaluations of the classic

vesselness-enhancement filter (VEF) (Sato et al., 1998) and the graph-cut algorithm (GC) (Boykov and Jolly, 2001) are critical for
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Fig. 6: Example of final simulated data: Original phantom data without noise are shown in first row. Simulated data in second row are applied with white noise of
σn = 0.3, and third row is applied with σn = 0.8. (a) and (b) two axial slices of the simulated data. (c) maximum intensity projection (MIP) images. Compared to
original phantom data, many details are lost by adding white noise and smoothing.
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(a) (b) (c)

Fig. 7: Volume of interest showing kidney in CT data: (a) and (b) one axial and sagittal slice, respectively. (c) MIP of image of VOI data.

Fig. 8: Illustration of calculation of centerline overlap CO. Tubular structure in black is gold standard blood vessel, and its centerline ΩG(x) is shown as blue dash-dot
line. TubeU(x) is generated by dilating centerline of a two-voxel radius. Red dash line denotes centerline of segmented vessels ΩS (x).

proving the effectiveness of our proposed method. Our method is benchmarked against four competing state-of-the-art unsupervised

blood vessel segmentation methods: multiscale spherical flux (MSF)(Law and Chung, 2009), multiple hypothesis tracking (MHT)

(Friman et al., 2010), super-ellipsoids (SE) (Tyrrell et al., 2007), and commercial image processing software AMIRA (AMIRA3-D).

VEF: VEF’s two main parameters, αV and γV , control the trade-off between branch detection and noise suppression. Based on a

previous work (Sato et al., 1998), αV = 0.25 and γV = 1.0 can optimize the trade-off and get robust results. We used this parameter

setting for all the experiments in this paper, including both the simulated and clinical CT data. Since VEF is an enhancement

filter, we manually threshold the segmentation results to get the best binary segmentation result for a quantitative evaluation. We

implemented VEF in C++ based on a previous work (Sato et al., 1998).

GC: Unlike an interactive segmentation scheme (Boykov and Jolly, 2001), we still use the automatic segmentation scheme cited

in Section 2.4. The foreground seed region is calculated by K-means, and the possible background region is the complement region

of the dilated foreground region. GMM estimates the posterior probability. The energy function is identical as Eq. 11 without

tensor terms. GC was implemented mainly based on a previous work (Boykov and Jolly, 2001).

MSF: Law et al. presented an efficient implement of a multiscale spherical flux computation method (Law and Chung,

2009), which is useful for practical vascular segmentation problems. Multiscale spherical-flux based method was first proposed

by Vasilevskiy et al.(Vasilevskiy and Siddiqi, 2002). By measuring the gradient flux through the boundaries of multiscale spheres,

divergence of image gradients can be calculated. The maximum response can be obtained when the sphere is located at the centerline

of blood vessel with radius same with blood vessel. To accelerate the computation speed, a multiscale spherical flux computation is

performed in the Fourier domain. Vesselness is directly formulated to the response of the spherical flux. Similar to other methods

(Frangi et al., 1998; Sato et al., 1998), MSF is a vascular enhancement filter. An appropriate threshold is needed to obtain the final

binary segmentation result. 0.005 is the best threshold value for clinical experiments on MRA data (Law and Chung, 2009). We
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used the public Matlab implementation provided by Law et al.2.

SE: SE is a typical model-fitting-based tubular structure segmentation method. A combination of parameterized superellipsoid

and intensity appearance model is built for representing tubular structures. Maximum-likelihood method is used to estimate the

parameters of superellipsoid models. The corresponding between vessel model and real blood vessel is verified using a generalized

likelihood ratio test. Tracking starts from the multiple random seed points for experiments on clinical data and only evaluates the

segmentation results inside the kidney mask are evaluated. Model fitting is performed using cylindrical super-ellipsoids to detect

the tubular structures. The algorithm was implemented on their Farsight software platform3. We used the default parameters in our

experiments except for the detection radii.

MHT: MHT obtained the highest score in the coronary artery centerline extraction challenge (Schaap et al., 2009). Unlike the

SE method, a template vessel model is designed based on Gaussian line appearance model instead of super-ellipsoids. Student

t-test is used to verify the corresponding instead of likelihood ratio test used in SE. To avoid early stopping caused by a local

minimum score, MHT introduces a multiple hypothesis tracking scheme to further improve the segmentation accuracy. The multiple

hypothesis approach starts multiple tracking process in parallel, and keep the tracking with the maximum score as the success

tracking. The implementation we used is provided on their MeVisLab software platform4. The pruning and termination thresholds

are the two primary parameters that affect the segmentation performance. In our experiments, the termination thresholds were set

twice as high as the pruning thresholds, based on the official suggestion (Friman et al., 2010). Since MHT is a semi-automatic

method, the initial seed points must be manually specified. For all the experiments, we randomly put ten seed points at each branch

level.

AMIRA: AMIRA is commercial biomedical software for visualization and image processing (AMIRA3-D). We used a module

named AutoSkeleton for segmentation and implemented a vascular structure segmentation method (Fouard et al., 2006) that can

extract the skeleton and the diameter of tubular structures with a distance map. First, distance map is computed using adjusted

chamfer distance (Fouard and Malandain, 2005). Then, centerline and diameter are calculated using adapt distance ordered ho-

motopic thinning (DOHT) algorithm. In this, work, we directly applied thresholding to distance maps to obtain the final binary

segmentation results.

3.4. Experimental results on simulated data

We tested the segmentation methods on 22 simulated pieces of data, including two noise levels for each phantom data. The

objective of the simulated experiments is to evaluate the general segmentation ability of the tubular structures. Experiments with

different noise levels can evaluate the robustness against the noise. The receiver operating characteristic (ROC) curve of three

cases is shown in Fig. 9. The x- and y-axes denote 1 - Spc (FPR) and Se (TPR), both of which are measured voxel-wise. No

post-processing is performed on the segmentation results. As for methods which have multiple parameters, such as TC and SE,

the ROC curves indicate the upper bound of all experimental results using grid-search approach. From the ROC curves, tensor-cut

(TC) and MSF have the best performances among the six tested methods on the simulated dataset with a noise level of σn = 0.3.

However, TC outperformed MSF on the simulated data with a noise level of σn = 0.8, which proved its robustness against different

noise levels.

2http://www.cse.ust.hk/∼maxlawwk/
3http://www.farsight-toolkit.org/
4https://www.mevislab.de
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Fig. 9: ROC curves of three simulated vascular data generated by VascuSynth with different bifurcation number. Cases 1, 2, and 3 have 250, 300, and 350 bifurcations.
Experimental results of two noise levels (σn = 0.3 and σn = 0.8) are shown in first and second rows.

Table 2: Quantitative statistical results of simulated dataset. Two noise levels with σn = 0.3 and σn = 0.8 are shown in two columns for each approach. Mean
sensitivity, specificity, and centerline errors with their standard deviations are also shown.

Se (%) Spc (%) CE (mm)

σn = 0.3 σn = 0.8 σn = 0.3 σn = 0.8 σn = 0.3 σn = 0.8
TC 85.5±3.8 75.3±5.4 99.2±0.1 99.3±0.1 1.65±0.23 2.82±0.91
GC 62.2±7.6 66.0±6.4 99.8±0.1 99.6±0.2 5.57±1.98 5.16±1.67

VEF 72.9±4.2 71.2±4.2 98.9±0.2 99.0±0.1 1.57±0.57 3.07±1.09
MSF 87.2±4.2 64.5±6.2 99.0±0.2 99.6±0.1 1.96±0.50 3.84±1.13
SE 67.0±5.1 64.2±5.3 98.7±0.1 98.3±0.1 8.81±3.46 8.09±1.78

MHT 68.0±7.2 60.7±5.6 98.9±0.2 98.8±0.2 3.54±1.22 5.40±1.22

Experimental results showed that TC had better performances than GC and VEF, which proves the effectiveness of our proposed

method. ROC indicates that the TC curves extended the GC curves, which means that TC extracted more structures than GC; i.e.,

introducing a tensor term effectively suppresses the short-boundary problem.

The best results (top-left of the ROC curve) of the two cases are visualized in Fig. 10. From the visualized results, TC

outperformanced the other approaches. VEF and GC under-segmented the tiny tubular structures. MSF also has good sensitivity,

although it is susceptible to noise. MSF achieved similar segmentation results to TC under the σn = 0.3, but underperformed TC

under σn = 0.8 condition. The model-fitting-based methods (SE and MHT) are limited to the detection of small tubular structures.

ROC also showed that SE and MHT obtained poor results under both two noise levels. The quantitative statistical results of all 22

simulated bits of data are given in Table 2 that show the mean S e and S pc with their respective standard deviations.

3.5. Experimental results on clinical CT data

We performed experiments on the 19 clinical CT data (VOI data). To increase the algorithm’s focus on the renal arteries, we

manually created a kidney mask using the standard graph-cut algorithm (Boykov and Jolly, 2001). Several cases with kidney mask

overlapping are shown in Fig. 11. In this work, we also included the outside, thick renal arteries to mask.

In clinical experiments, the SE and MHT methods did not achieve comparable results on the clinical dataset. The latter only

extracted one or two main thick branches, and the former failed to extract renal arteries. Therefore, we omitted these two methods
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Fig. 10: Segmentation results of simulated data of Cases 1 and 3. For each, segmentation results of two noise levels (σn = 0.3 and σn = 0.8) are shown in the first
and second rows.

Fig. 11: Three kidney VOIs with masks, which overlap in yellow.

from our comparisons in the clinical experiments. We give the CO curves (CO against False Positive) in Fig. 12. Although

the performances on the simulated and clinical data are different, our proposed method (TC) almost got the best segmentation

performances. The quantitative CO and CE evaluation of 19 cases is demonstrated in Fig. 13. The TC method outperformed the

other methods, and its performances are more robust. Several volume rendering results are given in Fig. 14. For each case, we

show the segmentation results with the highest CO indices. Our method obtains a stable high performance, especially for tiny blood

vessels.

4. Discussions

Our experiment results on both the simulated and clinical CT data show a high performance of the tensor-cut method for tubular

structure segmentation. In this study, we used both the ROC curves (TPR against FPR) and the CO curves (CO against FP) to

evaluate the performances of the methods. The ROC curves measure the general segmentation ability. and the CO curves measure

the segmentation ability for tiny tubular structures.

Our experiments on simulated data show the segmentation ability for general tubular structures. In Table 2, the experimental

results with a noise level of σn = 0.3 show that TC and MSF outperformed all the reference approaches. However, on the noisier

simulated data with a noise level of σn = 0.8, TC and VEF outperformed the other reference approaches. The experimental
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Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Fig. 12: CO curves of six clinical cases whose respective volume rendering results are shown in Fig. 14

(a) CO (b) CE

Fig. 13: Quantitative evaluation of 19 clinical cases. For each case, we selected the best segmentation results with the highest CO index and the lowest CE index.
Red lines indicate median values, and tops and bottoms of blue boxes indicate 25th and 75th percentiles. Upper and lower bounds indicate maximum and minimal
CO and CE values.

results with different noise levels indicate that TC is robust to noise and has a stable, higher performance than the other reference

approaches. From Fig. 10, we identified the limitations of the ability of the model-fitting-based methods (SE and MHT) to segment

tiny structures. This weakness results from the size limitation of a single vascular model. Other voxel-wise methods (including TC)

do not suffer from this weakness.

Our experiments on clinical CT data aim to show the segmentation ability of blood vessels in actual clinical scenes. We show

several detailed CO curve comparisons of all the reference approaches (Fig. 12) and the overall quantitative CO and CE evaluation

of 19 clinical cases (Fig. 13). Fig. 12 shows the robustness of TC against the parameter variations. In Fig. 13, we plot the best CO

and CE index of each case. TC achieved the best and most robust segmentation performance of all the reference approaches. TC’s

mean CO index is 84.0% and outperformed the second best GC of 73.2%. TC’s mean CE is 1.37mm outperforming the second best

GC of 2.11mm.

We show several detailed segmentation results on actual clinical CT slices in Fig. 15. The arrows indicate tiny renal arteries

with small radii and low contrast against the surrounding renal cortex. Although these tiny renal arteries are easily overlooked by
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Fig. 14: Volume rendering of six clinical cases corresponding to the same cases in Fig. 9 and Fig. 12.

humans, our proposed method can segment them.

Similar to the simulated experimental results, TC outperformed the GC and VEF methods in the clinical experiments. GC

achieved good segmentation results in Cases 2, 3, and 4 because high-quality CT angiographic data simplify the generation of good

initial terminal nodes that contain tiny tubular structures. We show detailed comparison results of Cases 1 and 3 in Fig. 16 to

evaluate the influence of the initial seed voxels on the segmentation results. GC’s performance heavily depends on the initial seed

voxels. The poorly extracted initial seeds directly lead to poor segmentation results. TC is more robust to the initial seeds. Owing

to the tensor term adopted in TC, the short-boundary bias was suppressed. More tiny blood vessels were extracted by TC than GC

for Case 1 (Fig. 16).

Unlike the simulated data, clinical CT data have more complex structures, such as renal veins and ureters. A simple VEF cannot
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3D volume rendering 2D CT slice

Fig. 15: Segmentation performances on CT slices: Segmented tiny blood vessels are indicated by arrows on CT slices. These tiny renal arteries can be extracted by
our proposed method.

easily distinguish these structures from arteries. VEF concentrates on tubular representations but ignores the vascular topological

information. Our experimental results also confirmed that VEF’s performances are worse on the clinical data than the simulated

data, which has simple topological patterns. However, this problem can be effectively suppressed by introducing a graphical energy

optimizer. Graphical energy not only considers the probabilities of all the nodes but also the smoothness between pairwise nodes.

TC’s over-segmentations can be controlled to an acceptable range compared to the VEF approach. As illustrated in Fig. 14, VEF

suffers from severe over-segmentation of the other tubular structures; TC has fewer false positives and maintains high segmentation

accuracy of tiny blood vessels. Moreover, due to the low vesselness responses at bifurcation points, VEF is weak at segmenting

bifurcations. Our MRF model not only consider the Hessian-tensor term but also the intensity term. The smoothness term also
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Fig. 16: Comparison between GC and TC on clinical Cases 1 and 3: Initial foreground seed voxels (s nodes) are shown in upper-right. Segmentation results of GC
and TC are shown in lower rows.

(a) (b) (c) (d)

Fig. 17: One over-segmentation case: (a) one slice of original CT data; (b) initial foreground seed voxels; (c) and (d) two slices from segmentation result showing
over-segmentation of renal veins marked in yellow; red regions are correctly segmented renal arteries.

helps to improve the continuity of segmentation results. Thus, our MRF model naturally address the bifurcation segmentation issue.

We demonstrate one segmentation results at bifurcations in Fig. 18. As demonstrated, vesselness responses at bifurcations are

lower than those of tubular structures shown in Fig. 18(a) and (b). However, our proposed TC can successfully extract bifurcations

without introducing false positives.

Figures 12 and 13 show that the TC method achieved the best and most robust segmentation performances on the clinical data.

However, in some low contrast conditions, the initial terminal seeds have already over-segmented the other tubular structures. These

over-segmented seeds will also be treated as prior information of the data term. The smoothness term has difficulty removing these

over-segmented terminal seeds. As illustrated in Fig. 17, the over-segmented initial foreground seed voxels (s nodes) directly

induced the final over-segmentation of the renal veins. Therefore, in this work, we restricted the initial seed voxels to have a high

possibility of actually being blood vessels. This strategy can easily generate under-segmented initial seeds, such as Case 1 in Fig.

17, which is one reason that GC has unsatisfactory segmentation results; TC does not suffer from this problem.
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(a) (b) (c)

Fig. 18: Segmentation performance of bifurcations. (a) volume rendering of vesselness response calculated by VEF. (b) 2D view of VEF’s response at different
bifurcation points. (c) TC’s segmentation results at same position.

Tensor-cut, which is built upon two components, intensity term and tensor term, benefits from both the GC and VEF character-

istics. We introduced parameter ω to adjust the weight between the intensity and tensor terms, and λI and λT to control the weights

between the data terms and smoothness terms, as shown in Eq. 11. However, this strategy causes a larger parameter search space.

Compared to the GC and VEF approaches, which have only one primary parameter, tensor-cut has three parameters that must be

specified. The influences of different parameters are illustrated in Fig. 19. An increasing λI encourages the smoothness of voxel

intensity. Unlike λI which acts on the intensity term, an increasing λT mainly encourages the smoothness of vesselness. Instead of

suppressing the small isolated voxels, the tubular segments are suppressed with λT increasing. ω controls the balance between the

intensity and tensor terms, and more tubular structures can be extracted by increasing ω. Although tensor-cut has the most robust

segmentation performance in the clinical experiments, simplifying its parameters remains future work.

5. Conclusion

We presented a novel unsupervised blood vessel segmentation approach using a tensor-based graph-cut method. Our simulated

and clinical experiments showed that our proposed method has higher segmentation performances than other reference approaches.

In this study, we focused on renal artery segmentation. Our clinical experimental results show that our tensor-cut method is robust

and outperformed the other reference methods, especially on tiny blood vessels. Accurate vascular topology is the foundation of

such follow-up processing as the estimation of vascular dominant regions.
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Appendix

This section simply describes the mean and variance of Hessian tensors. The Fréchet mean generalizes the centroids to arbitrary

matrix space by minimizing the Fréchet variance:

T̄ = argmin
T∈T

ρ(T ), (16)
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where ρ(T ) denotes sum-of-squared distance which is defined:

ρ(T ) =
1

2N

N∑
i=1

d2(T̄ ,Ti). (17)

Geometric mean tensor T̄ is the center point on a manifold at which the Fréchet variance is minimized for any tensor T ∈ T. The

existence and uniqueness of geometric mean has been proven by Karcher (Karcher, 1977). Then, Newton gradient descent solves

the given minimization problem in Eq. 16. Also, the gradient of ρ(T ) is given by

∇ρ(T ) = −
1
N

N∑
i=1

logT (Ti). (18)

Initialize T̄0 with arbitrary tensor T ∈ T, and the t + 1 step of the Newton gradient descent procedure is given:

T̄t+1 = expT̄

 1
N

N∑
i=1

logT̄t
(Ti)

 = T̄
1
2

t exp

 1
N

N∑
i=1

log(T̄
−

1
2

t TiT̄
−

1
2

t )

 T̄ 1
2

t . (19)

As shown in Fig. 3, expx(Σ) is called exponential mapping, which is an inverse mapping of logarithmic mapping. Here exponential

mapping is to delineates the arithmetic mean in the tangent space back to the manifold space. Gradient descent algorithm workflow

is given in Algorithm 2. Detailed deduction information is available (Pennec et al., 2006).

Algorithm 2 Calculate geometric mean tensor T̄

Input: Ti ∈ T, (i = 1, 2, ...,N)
Output: Mean tensor T̄
Initialize: T̄0 = T1, t = 0, ε = 0.001
Do

t = t + 1 . Update step

Xt =
1
N

∑N
k=1 logT̄t

(Tk) . Gradient

T̄t+1 = expT̄t
(Xt) . Update mean tensor

While ‖Xt‖ > ε

Since we know how to calculate the distance and the mean, the variance of tensors σ2
T is given:

σ2
T = E[d2(T̄ ,T )] =

1
N

N∑
i=1

d2(T̄ ,Ti), (20)

where E[·] is the expectation of the squared deviation from mean tensor T̄ . The statistics of the tensors given above, geodesic dis-

tance, geometric mean and variance, are used to compute a Gaussian mixture model (GMM) to estimate the probability distribution

of the foreground and background voxels.
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Figure A. ROC of 10 cases. Blue and red curves denote previous and current methods, respectively. 
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