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Abstract. This paper presents a new spatial fully connected tubular network
for 3D tubular-structure segmentation. Automatic and complete segmentation
of intricate tubular structures remains an unsolved challenge in the medical
image analysis. Airways and vasculature pose high demands on medical
image analysis as they are elongated fine structures with calibers ranging
from several tens of voxels to voxel-level resolution, branching in deeply multi-
scale fashion, and with complex topological and spatial relationships. Most
machine/deep learning approaches are based on intensity features and ignore
spatial consistency across the network that are otherwise distinct in tubular
structures. In this work, we introduce 3D slice-by-slice convolutional layers
in a U-Net architecture to capture the spatial information of elongated struc-
tures. Furthermore, we present a novel loss function, coined radial distance

loss, specifically designed for tubular structures. The commonly used methods
of cross-entropy loss and generalized Dice loss are sensitive to volumetric
variation. However, in tiny tubular structure segmentation, topological errors
are as important as volumetric errors. The proposed radial distance loss places
higher weight to the centerline, and this weight decreases along the the radial
direction. Radial distance loss can help networks focus more attention on tiny
structures than on thicker tubular structures. We perform experiments on
bronchus segmentation on 3D CT images. The experimental results show that
compared to the baseline U-Net, our proposed network achieved improvement
about 24% and 30% in Dice index and centerline over ratio.

Keywords: tubular structure segmentation, spatial FCN, radial distance
loss, blood vessel, bronchus

1 Introduction

The extraction and quantification of bronchi and blood vessels remains a fundamental
problem with relevance to many computer aided diagnosis (CAD) systems. Automatic
and complete segmentation of intricate tubular structures remains a major challenge in
medical image-processing field. Airways and vasculature pose high demands on image
analysis as they are elongated fine structures with calibers ranging from several tens of
voxels to voxel-level resolution, branching in deeply multi-scale fashion, and with com-
plex topological and spatial relationships. Over the past few years, deep learning meth-
ods have become the dominant approach inmany data analysis fields and have achieved
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remarkable advances in the medical image analysis [1]. Recently, airways and vascu-
lature image analysis have also been approached using deep convolutional neural net-
works (ConvNets) instead of the traditional filter banks and machine learning methods.

Many studies have been made using 2D/2.5D image patches to train their net-
works [2–4]. Oda et al. [2] used multiple fully connected networks (FCNs) to tackle
the problem of segmenting tiny abdominal arteries. Three 2D U-Net networks were
employed to respectively segment 2D patches on three anatomical planes, and three
2D segmentation results were merged as a final volumetric segmentation. Similarly,
Yun et al. [3] used 2D patches on three anatomical planes to train three ConvNets
as classifiers to classify whether a voxel belongs to the bronchus. To explore the
inherent relationship between such orthogonal 2D patches, Tetteh et al. [4] presented
2D orthogonal cross-hair filters to make use of 3D context information but with a
reduced computational burden.

The above approaches made use of local contexts to address the tubular-structure
segmentation. Although, they achieved good performance, the problem remains of
taking full advantages of large-range information in the field of view (FOV), which can
provide global queues unavailable from small local patches. Meng et al. [5] attempted
to use an original 3D U-Net combined with a traditional bronchus tracking method
to improve bronchus segmentation accuracy. Huang et al. [6] presented a liver-vessel
segmentation method using a 3D U-Net with variant Dice loss function. Both works
used a large 3D sub-volume size of around 100×100×100 voxels.

Compared to 2D local patch-based methods, 3D FCNs for tubular-structure
segmentation has some limitations that need to be addressed. Foremost is the severe
imbalance in the sizes of the large background area when compared to the small
foreground (tubular structure). Second, it’s unclear whether FCNs can learn useful
features from the abundant contexts of 3D data that while capturing coarse-scale
long-range interrelationships are also accurate to detect tubular details and topological
correctness at finer scales. The motivation of this work is to improve the accuracy
of tubular-structure segmentation in respect to these two concerns.

The main contributions of this work can be summarized as follows. 1) We
introduce 3D recurrent convolutional layer in FCN architecture for tubular-structure
segmentation. 2) We propose a novel radial distance loss for 3D tubular-structure
segmentation that helps the networks to recover tiny tubular structures. 3) Both 3D
recurrent convolution layer and radial distance loss are generic and flexible, so they can
be easily incorporated in other state-of-the-art networks and used in other applications.

2 Method

2.1 Overview

Our main contribution is twofold from the viewpoint of tackling both network archi-
tecture and its loss function. The motivation of this work is to design a new end-to-end
FCN for 3D-tubular structure segmentation. Compared with traditional layer-by-layer
convolutional layers, the proposed slice-by-slice convolutional layer permits messages to
efficiently pass slices. Our proposed loss function places more weight on the centerline
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Fig. 1. Overview architecture

of a tubular structure than on the outer border which can help the network pay more
attention to tiny structures. A simple illustration of our architecture is shown in Fig. 1.

2.2 3D spatial FCN

Spatial-CNN was first proposed to address the traffic lane detection problem [7]. The
main contribution of spatial-CNN is the introduction of a slice-by-slice convolutional
layer. Different from the traditional layer-by-layer CNN, slice-by-slice convolutions
perform like recurrent neural networks. The in-layer recurrent convolutions provide
more efficient message-passing between neurons in the same layer. This can help
networks reinforce structures with strong spatial constraints [7].

In this work, we incorporated Recurrent Convolutional Layers (RCLs) in a 3D
FCN architecture for 3D medical imaging applications. Detailed structure of RCLs
is illustrated in Fig. 2. Convolutions are performed in both forward and backward
directions along the width, height, and depth dimensions. As shown in Fig. 2, RCLw,
RCLh, and RCLd denote RCLs with convolutions in front-to-back direction along

the three dimensions. RCL
′

w, RCL
′

h, and RCL
′

d denote RCLs with convolutions in
the reverse direction. Forward computation of RCLw can be defined as

Zc,i,j,k=

{

Xc,i,j,k, if i=0

Xc,i,j,k+f(Zc,i−1,j,k∗K), if 0<i<W ,
(1)

Fig. 2. RCL architecture: Feature map represents the output of the last convolutional
layer with a shape of N×C×W×H×D. Slice-by-slice recurrent convolutions are
performed in each RCL.
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Fig. 3. Volume rendering of binary ground truth and corresponding radial distance
map. Radial distance map shown on the right is rendered with pseudo color mapping
0 to blue, and 1 to red.

where X denote an input 4D feature tensor of size C×W×H×D, and Z denotes
the output of RCLw. Let c,i,j,k denote the index of channel, width, height and depth
dimensions. K is a 3D convolution kernel of size w×w×w. f(·) denotes a nonlinear
activation function. RELU is used in this work. Similarly, forwarding for RCLh and
RCLd can be easily derived based on Eq. 1.

In this work, we chose U-Net architecture [8, 9] with three multi-scale levels as
our backbone FCN. As shown in Fig. 1, we placed the RCLs directly after the
deepest feature map, i.e. the compressed low-dimensional representation. In previous
spatial-CNN [7], the authors placed the RCLs after the output of CNN, under the
assumption that the top hidden layer with rich semantic information is an ideal place
to apply RCLs. However, in our FCN architecture, applying RCLs to the deepest
representation provides better performance than using top hidden layer.

2.3 Radial distance loss

The use of Dice loss for medical segmentation tasks was first proposed by Milletari et
al. [10]. They showed that Dice loss outperformed other losses, especially in severe data-
imbalance situations [10]. More recently, Hausdorff distance loss and contour loss were
proposed for localization and segmentation tasks [11, 12]. Dice loss measures volumetric
variation, and Hausdorff distance loss and contour loss measure the distance between
boundaries. However, no losses were specifically designed for tubular structures. In
this work, we propose a novel radial distance loss (RD loss) for tubular structures.
The motivation of our proposed loss is to capture the geometric topology loss believed
to be more important than volume loss in the tubular-structure segmentation.

The proposal of RD loss is inspired by the centerline overlap (CO) metric used
for evaluating blood vessel segmentation [13]. Wang et al. used the CO metric to
give a more accurate description of tiny blood vessel segmentation than conventional
Dice similarity coefficient (DSC). To take advantage of the CO metric while keeping
a volumetric measurement, our proposed RD loss is defined as

L=−
1

2

1
∑

k=0

Wk

(

2
∑N

i pi,kdi,k
∑N

i p2i,k+
∑N

i d2i,k

)

, (2)
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where pi∈P and di∈D denote the i-th voxel predicted binary result and the radial
distance map. Voxel index i∈ [1,N ]. k∈ [0,1] denote class. Class weights W is defined
as reciprocal volume ratio of each class. Notice that Eq. 2 is similar to traditional
Dice loss [10] except that we use radial distance map D instead of binary ground
truth G. D is defined as:

D=−
1

max(F)
F+1, (3)

where F = {fi, i ∈ N} denotes a distance map created by a Euclidean distance
transformation from the centerline of ground truth. F is defined as:

fi=

{

min{d(fi,sj);sj=1}, if sj=0,

0, if sj=1 or gi=0.
(4)

Here, sj ∈S denotes the j-th voxel of centerline data S extracted from G. Finally,
we obtained radial distance map D by normalizing F from 0 to 1 using a simple
monomial form. An example of a radial distance map is shown in Fig. 3. RD loss
can be weighted combination of centerline loss and Dice loss.

3 Experiments and Results

To evaluate our proposed method, we performed bronchus segmentation experiments
on 3D clinical CT scans acquired with a standard dose. The sizes of CT slices were
512×512 pixels with a resolution of 0.63−0.97 mm. The number of CT slices ranged
from 238 to 851 with varying thickness of 0.63−1.00 mm. Monte Carlo cross-validation
(MCCV) was conducted three times. All 38 CT images were randomly divided into
training and validation subsets containing 35 and 3 cases. The model with the best
validation accuracy is tested on three unseen datasets acquired in a different hospital
than those used for training.

Since we chose U-Net as our backbone FCN, we performed comparison experi-
ments using U-Net with Dice loss as a baseline. U-Net with only RCL structures and
U-Net with only radial distance loss were also validated to prove the effectiveness of
each proposal. We also compared our proposed method with two other methods, one

(a) DSC
′ (b) CO

′ (c) CO
′′

Fig. 4. Validation results. Dot markers represent actual validation scores. For a
clearer visualization, we plot smoothed results in dashed line using Gaussian filter.
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Ground truth U-Net (Dice loss)

U-Net (RD loss) Our proposed

Case 1

Ground truth U-Net (Dice loss)

U-Net (RD loss) Our proposed

Case 2

Fig. 5. Volume rendering of segmentation results of two validation cases. No post-
processing was performed. Trained models at 300th iteration were used for prediction.

is a variant U-Net architecture, V-Net [10] (Dice loss and RD loss), and the other
is 3D voxelwise residual networks, VoxResNet [14].

In training phase, for each epoch, 4 sub-volumes with a size of 64× 64× 64
voxels were randomly cropped from each CT image for all 35 training cases. No data
augmentation was performed in our experiments. Random cropping was performed
in this work. The initial learning rate was set to 0.01, and it decayed by 0.2 every
150 epochs. The optimization was realized via stochastic gradient descent (SGD).

DSC and CO were used for quantitative validation. To validate the general
segmentation ability of each method,DSC′ was measured on the segmentation results

Table 1. Quantitative comparison results. All measurement was shown with mean
± standard values.
Method Dataset DSC

′ (%) DSC
′′(%) Se (%) CO

′ (%) CO
′′ (%)

(1) In-house dataset

Yun et al. [3] Train: 59
Test:8 89.9±8.9 - - - -

Meng et al. [5] Train: 30
Test:20 86.6 - 79.6 - -

(2) Our bronchus dataset

VoxResNet (Dice loss) [14] 79.6±3.7 90.0±3.4 72.3±5.0 39.2±2.7 31.0±2.1
V-Net (Dice loss) [10] 65.4±9.9 91.0±2.0 69.0±2.0 28.3±3.9 19.8±1.1
V-Net (RD loss) 83.3±2.0 88.4±0.7 76.3±4.6 53.8±1.0 66.6±4.9
U-Net (Dice loss) [9]

MCCV
Test:3

64.0±19.5 92.4±1.6 82.9±5.7 47.2±18.1 54.3±9.0
Our proposed 88.7±1.2 94.5±0.8 86.5±1.0 76.6±6.0 80.6±5.6
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(a) Test case 1 (b) Test case 2 (c) Test case 3

Fig. 6. Segmentation results of three test data. For a clearer visualization, we
removed outliers under volume size of 10 voxels.

with no post-processing, and DSC′′ was only measured on thick branches (before 2nd

generation of dichotomous branching). We computed CO scores on the results with
two post-processing strategies. One is measured on the largest connected component
extracted from the segmentation results. The other one is measured on tiny bronchi
after the 2nd generation of dichotomous branching and masked by a dilated ground
truth with 5 voxels to remove false positives. These two measures are denoted CO′ and
CO′′. CO′ measures the ability to segment tubular structures, while CO′′ measures
the ability of tiny structures. Figure 4 shows validation results. Volume rendering of
two validation cases are shown in Fig. 5. Quantitative comparison results are shown in
Table 1. Other than DSC and CO, we also compute sensitivity (Se). To demonstrate
robustness of method, segmentation results of three test data are shown in Fig. 6.

4 Discussion and Conclusions

In this work, we proposed 3D recurrent convolutional layer and radial distance loss, and
demonstrated the implementation of these proposals in a widely used U-Net architec-
ture. As experimental results showed, our proposed approaches achieved significant im-
provement over our baseline architecture, and obtained competitive results with state-
of-the-art methods. Our proposed extensions, viz. 3D RCL and radial distance loss, are
generic and flexible component that they can be easily incorporated in other deep learn-
ing architectures. We demonstrated an application on V-Net architecture using our
RD loss, remarkable improvement was obtained comparing with the one use Dice loss.

Figure 5 and 6 show thick bronchi are under-segmented. This is a side effect
of radial distance loss, since we decreased the weight of the most peripheral voxels.
The normalization strategy in Eq. 3 can be improved to use more complex functions
beyond a simple monomial. However, from Table. 1, DSC′′ shows our segmentation
accuracy of thick branches is still better than baseline U-Net. Segmentation results
of three unseen datasets acquired in different hospital illustrated the robustness of
our method. Visually, good segmentation accuracy was achieved.

In conclusion, we choose the challenging bronchus segmentation task to prove the
effectiveness of our proposed method regarding general tubular structure segmenta-
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tion. Experimental results showed that our proposed approaches are proven to be
effective in bronchus segmentation task. However, we only evaluate the segmentation
performance on bronchus segmentation. Our approaches should theoretically work
on blood vessel segmentation problem. Application on blood vessel segmentation will
be one of our future works. Additionally, more state-of-the-art networks incorporated
with our approaches need to be investigated.
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8. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning
dense volumetric segmentation from sparse annotation. In: MICCAI. pp. 424–432 (2016)

9. Roth, H., Oda, M., Shimizu, N., Oda, H., Hayashi, Y., Kitasaka, T., Fujiwara, M.,
Misawa, K., Mori, K.: Towards dense volumetric pancreas segmentation in CT using
3D fully convolutional networks. In: SPIE MI 2018. vol. 10574, p. 105740B (2018)

10. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks for
volumetric medical image segmentation. In: 2016 Fourth International Conference on
3D Vision (3DV). pp. 565–571 (2016)
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