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Abstract. In clinical studies or population imaging settings, cardiac
magnetic resonance (CMR) images may suffer from artifacts due to vari-
ability in the breath-hold position adopted by the patient during the
scan. Consistent orientation of image planes with respect to the cardiac
ventricles in CMR sequences forms a crucial step in the assessment of
cardiac function via parameters such as the Ejection Fraction (EF) and
Cardiac Output (CO) of both ventricles, which are the most immedi-
ate indicators of normal/abnormal cardiac function. In this paper, we
present a novel unsupervised approach for the realistic transformation of
acquired CMR images to a standard orientation using Cycle-Consistent
Adversarial Networks (Cycle-GANs). We tackle this challenge by split-
ting the problem into two principal subtasks. First, we consider a bidirec-
tional generator mapping between the re-oriented image and the original,
hence allowing direct comparison to the input image without the need
to resort to paired training data. Second, we devise a novel loss function
incorporating intensity and orientation terms, and aims to produce im-
ages of high perceptual quality. Extensive experiments conducted on the
CMR images in the UK Biobank dataset demonstrate that the images
rendered by our model can improve the accuracy of the image derived
cardiac parameters.

Keywords: Deep Learning · Cycle-Consistent Adversarial Networks ·

Cardiac Orientation · Ventricular Volume · MRI · Population Imaging.

1 Introduction

Cardiac anatomy and function are widely used in diagnosis and monitoring of
disease progression in cardiology, with CMR imaging arguably being one of the
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most wide-spread techniques for clinical diagnostic imaging of the heart. CMR
requires a carefully selected and consistent orientation of short-axis (SAX) image
planes with respect to the cardiac ventricles, particularly the basal slice (BS) and
apical slice (AS) plane which contain key anatomical structures [10]. If the plane
orientation deviates significantly from expected values, local image structure
may change enough to cause subsequent image feature-based algorithms to fail
in localizing key features required for further morphological and functional anal-
ysis. However, it is challenging and time-consuming, even for experienced MRI
operators, to manually find the correct imaging plane, particularly when it is
subject to subsequent patient movement. The task is highly operator-dependent
and requires a great amount of expertise. With the advent of CMRI, 2D SAX
slices can be acquired quickly with little training. But the problem of locating the
standard planes required for diagnostically important biometric measurements
remains. There is a strong need to develop automatic methods for 2D standard
plane generation from existing 2D slices to improve clinical workflow efficiency.

Image generation is a hot topic which has achieved great success on many
vision tasks such as text-to-image generation [8] and image style transformation
[5]. Conditional GAN [6] are more advanced image generators and more suitable
for image translation tasks. It is developed by adding an input condition vector,
which can include a vast amount of information, to the generator. Medical image
synthesis is currently an emerging area of interest for applying the latest image
generation techniques mentioned above. Zhou et al. [11] use a cycle consistency
loss as a way of mapping back the initially rendered image to the original image
to achieve unpaired image-to-image translation. They have shown impressive
results in rendering new realistic images. Nie et al. [7] proposed a context-aware
GAN by adding an image gradient difference term to the loss function of the
generator, to retain the sharpness of the generated images. Dar et al. [1] utilized
the image conditioned architectures Cycle-GAN and pix2pix to generate T1-
from T2-weighted MR contrast and vice versa.

Inspired by this idea, we propose a fully unsupervised approach based on
GANs that, given a SAX slice with incorrect plane orientation (IPO), automat-
ically generates images under the correct orientation. To train our model using
unlabeled data (i.e., our training data consists of query slices and slices with
correct orientation from other cardiac volumes), we propose a Cycle-GAN based
architecture that aims at producing new images of high perceptual quality [2] by
combining loss functions used in orientation transfer. The main contributions of
the standard plane synthesis GAN (SPSGAN) are highlighted:

(1) A novel deep architecture is proposed for generating SAX slices with
standard plane orientation. To achieve this, we devised a novel loss function
computed over the images from a Cycle-GAN for cardiac orientation transfer.

(2) We propose a fully unsupervised strategy trained without paired training
examples for image-to-image translation.

(3) This is the first paper to exploit deep learning method, especially GANs,
for orientation based cardiac slice generation, which is an important step after
quality control (QC) and before quantitative CMR analysis.
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2 Methodology

2.1 Problem Formulation

To produce realistic standard orientation transformations of an input slice while
retaining the intensity appearance, we use a single SAX slice as input and train
a GAN model using an unsupervised approach. Formally, we seek to learn the
mapping (xi

t, fθo , fγo
) → xi

o between an image xi
t ∈ R

H×W×Z in a volume with
incorrect orientation < θt, γt > and the image xi

o ∈ R
H×W×Z of the same

volume with the correct orientation < θo, γo >. Orientations are represented by
< θ, γ >, where θ indicates the deflection angle in the xoy plane and γ indicates
the deflection angle in the z direction of the 3D coordinate system. The subscripts
o and t denote the correct and transformed orientations, respectively. The model
is trained using an unsupervised approach with training samples {xi

o,x
j
t}

N
i,j=1,

which do not include the ground-truth image xj
o.

2.2 Unsupervised SPSGAN

Figure. 1 shows the structure of our SPSGAN model consisting of five main mod-
ules: (1) The real orientation features [fθ, fγ ] are learned from different cardiac
volumes and concatenated with the features in the generator to better generate
an image with the desired orientation. (2) A generator G(x |(fθ, fγ )) that maps
one given slice under an incorrect orientation to an output slice under the stan-
dard orientation with the same cardiac identity. G is used twice in our network,
first to map the input image xi

tr → xi
og and then render the latter back to the

initial orientation xi
og → x̂i

tg; (3) A regressor R responsible of estimating the
slice orientation of a given image. Note that R is different from the pre-trained
regression net for feature extraction in (1); (4) A discriminator D that tries to
discriminate the generated and real images; (5) A loss function that is computed
without ground-truth and aims to preserve the cardiac intensity. To address this
challenge, we propose a novel loss function that enforces the intensity content
similarity of xi

tr and x̂i
tg, and orientation similarity between xi

og and xj
or. In the

following, we describe in detail each of the five modules.
Orientation Feature Embedding: The orientations of all volumes are

linearly distributed and categorized with two parameters < θ, γ >. Since the loss
of the orientation regressor can be fast and well converged during the training
process, we can easily learn each orientation feature cluster from all the training
data by k-means clustering, and compute the feature in the center of the cluster
as a condition to generate images in desired orientation. The feature of each
orientation in an image xi

t ∈ R
H×W×Z is represented as a probability density

map f computed over the entire image domain as:

f = Γ (series({xn}
N
n=1)) (1)

where the operator Γ (·) is to extract the feature of the input image x and N is
the defined number of slices.
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Fig. 1. The structure of our SPSGAN to generate the standard plane of the cardiac
MRI in SAX view. Our model consists of five main components: a generator G, a
discriminator D, an orientation regressor R, the transfer net T and the pretrained
orientation features. Str is the original (IPO) image, Sog is the synthesized image,
Stg is the rendered back image, Sor is the image with correct orientation of different
volume. Neither ground-truth image is considered.

Generator: Given an input image x with incorrect orientation, the genera-
tor G(x |(fθ, fγ )) aims to render x in a standard orientation with < θo, γo >. To
condition the generator with the orientation features we consider the concate-
nation (x, fθ, fγ) ∈ R

H×W×Z and feed this into a feedforward network, which
generates output images of the same size as x. To achieve improved image-to-
image translation results, we adopt the network variation from [4] to construct
the generator.

Image Discriminator: We adopt the PatchGAN [3] network as the dis-
criminator D(x), which maps from the input image x to a matrix Ys ∈ R

26×26.
The discriminator then classifies each 26× 26 patch in an image as real or fake.
Since a smaller PatchGAN can generate high perceptual quality images with
fewer parameters and less time [3], we run the discriminator across the image in
a convolutional manner and average all responses to provide the final output D.

Orientation Regressor: D distinguishes the generated samples from the
real images. We simultaneously use an orientation regressor R to regress the
inferred slice with correct orientations. R is implemented with the ResNet ar-
chitecture described in [11].

2.3 Optimisation

We have three terms to be optimized for the full loss function. 1) A generative
adversarial loss that enforces the distribution of the generated images to be
similar to that of the training images. 2) An orientation regression loss that
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enforces the orientation of the generated images to be similar to the standard
orientation. 3) The transfer loss that preserves the cardiac identity between the
generated and the input images. Next, we will describe each of these in detail.

Generative Adversarial Loss: To optimize the parameters of generator G
and learn the distribution of the training data, we perform a standard minmax

game between G and discriminator D. G and D are jointly trained with the
objective function Ls(G,D,x, fθ, fγ) where D tries to maximize the probability
of correctly classifying original and rendered images while G tries to fool D.

Ls(G,D,x, fθ, fγ) = E[logD(x)] + E[log(1−D(G(x |(fθ, fγ) )] (2)

Orientation Regression Loss: G must not only maximise the loss of D,
but also must reduce the error produced by the orientation regressor R. In this
way, while learning to produce realistic samples, G also learns how to generate
images with the standard orientation < θ, γ >. This loss is defined by:

Lo(G,R,x, fθ, fγ) = ‖R(G(x |(fθ, fγ )))− < fθ, fγ >‖
2
2 (3)

Transfer Loss: With the two previously defined losses Ls and Lo, G is
enforced to generate realistic slices with correct orientation. However, in the
absence of ground-truth supervision, there is no constraint to ensure appearance
identity. We derive inspiration from the previously introduced content-style loss
to maintain high perception quality in image style transfer [2]. The loss mainly
consists of two parts, one retains intensity similarity and the other transfers
orientation similarity. Inspired by this idea, we define two sub-losses to maintain
the identity between the input slice xi

tr and the rendered slice xi
og.

For the intensity term, we define that G should be able to render-back the
initial slice xi

tr given the generated slice xi
og and the original orientation features

< fθt , fγt
>, that is x̂i

tg ≈ xi
tr, where x̂i

tg = G(G(xi
tr |(fθo , fγo

)) |(fθt , fγt
)). How-

ever, it is difficult to handle high frequency details by directly comparing xi
tr

and x̂i
tg using Patch-GAN at a pixel level, which will lead to overly-smoothed

images. Instead, we compare them based on their intensity content. Formally,
we define the intensity loss to be:

Lintensity =
∥

∥Tl(x
i
tr)− Tl(x

i
tg)
∥

∥

2

2
(4)

where Tl(·) represents the feature representation at the lth layer of the network.
In order to transfer the standard orientation information from the real slice

to the synthesized one, we take over the spatial extent of the feature maps to
design the feature space for capturing texture information. Previous work [2]
implements this by computing the Gram matrix Ml ∈ R

U×U , where Ml is the
inner product between the vectorised feature maps of xi

og. The orientation loss is
then computed as the mean square error between visible pairs of Gram matrices
of the same joint in both images xi

og and xj
or:

Lorientation =
1

L

L
∑

l=0

(

Mi,l
og −Mj,l

or

UV

)2

(5)
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where Mi,l
og and Mj,l

or are the orientation representations in the layer l of the
generated and real image with standard orientation, respectively. In layer l,
there is Ul feature maps each of size Vl, where Vl is the height times the width
of the feature map. Finally, we define the transfer loss as the weighted sum of
the intensity and orientation losses:

LTS = Lcontent(T,x
i
tr, x̂

i
tg) + λLorientation(T,x

i
tr,x

i
og,x

j
or) (6)

where the parameter λ controls the relative importance or the two components.
Full Loss: We take the full loss as a linear combination of all previous loss

terms:

LSPS = argmin
G

max
D,R,T

{Ls(G,D,x, fθ, fγ) + αLo(G,R,x, fθ, fγ) + LTS} (7)

where α is the weighting factors for image adversarial and orientation regression
loss (α = 400 and λ = 0.2 in this work).

3 Experiments and Analysis

Materials and Evaluation Metrics: We used a series with the first 5,000
CMR subjects available from the UK Biobank (UKBB) imaging resource, with
each volumetric sequence containing about 50 cardiac phases. Based on analysis
of the in-plane orientation angle distribution for the 5,000 subjects for which
manual segmentations are available (and therefore θ, γ can be computed), we
found that θ has the median value of 132.8◦ and standard deviation of 8.0◦,
while γ has the median value of 7.1◦ with standard deviation of 3.9◦. Among
them, there are 302 cases under standard cardiac orientations (θ = 135◦, γ = 0◦).
The set of orientation labels were chosen from these realistic distributions and
trained in a regression net to obtain the real orientation features.

Since our model is trained using the unsupervised approach and there is no
ground-truth for the test images, we need to generate the slices with correct
orientation as reference samples to evaluate the synthetic images. The reference
images are resampled from the interpolated 3D cardiac volumes by Paraview1.
The resampled slices are chosen with correct orientations and the same position
(i.e., the distance to base and apex) compared with the original images.

Experimental Settings: We verify the effectiveness of the unsupervised
SPSGAN model through two groups of experiments. In the first experiment,
the synthetic slice is evaluated against the reference image using rotation an-
gles between the planes. Image similarity of the planes is also measured using
peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In the sec-
ond experiment, we evaluate synthetic slices against the corresponding reference
slices on the tasks of LV segmentation and the measurement of cardiac function
based on blood volumes. Four parameters are used for performance evaluation,
including two commonly used indexes of the cardiac function derived from such

1 https://www.paraview.org/
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Fig. 2. Synthesized images by SPSGAN and corresponding original (IPO) images with
orientation angles, PSNR and SSIM values, compared to the references.

Table 1. Effect of IPO on the ED, ES, SV and EF. Values are shown as mean ±

standard deviations.

Reference
Image

Synthetic
Image

Effect(%) IPO Image Effect(%)

LVEDV(ml) 159.6±32.7 151.5±34.9 -5.1% 142.9±31.5 -10.5%
LVESV(ml) 72.4±23.1 68.3±20.3 -5.7% 64.3±22.4 -11.2%
LVSV(ml) 87.2±17.6 83.2±18.4 -4.6% 78.6±17.9 -9.9%
LVEF(%) 54.6±0.08 54.9±0.09 +0.5% 55.0±0.08 +0.7%

volumes, stroke volume (SV) and EF, and similarly report differences between
real and imputed image data.

Performance of Image Synthesis. We train the SPSGAN model using
the 302 subjects with correct orientation and the same number of cases with in-
correct orientations in UKBB, and test the model on another 100 subjects with
incorrect orientations with comparisons to the corresponding resampled refer-
ence slices. Training images are only associated to the original slices with correct
and incorrect orientations. No reference images are considered during training.
Several typical images with real and synthetic slices are shown in Fig. 2. We
can observe that our synthetic images show a slight difference from their cor-
responding original images, but similar to their corresponding reference images.
This is because the local image structure in planes with different orientations
will change. The orientation angles, SSIM and PSNR between synthetic, origi-
nal and reference slices are also shown in Fig. 2. These results imply that our
trained SPSGAN model is reasonable, and the synthetic CMR images have an
acceptable representation in the standard planes.
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Cardiac Functional Parameters Calculation. To assess the impact of
synthetic images in real applications, such as the measurement of cardiac func-
tion based on blood volumes, we design an experiment to measure the differences
between volumes derived from the reference volumes, synthetic volumes and orig-
inal volumes with incorrect cardiac orientation. The experimental results across
four different cardiac parameters using the LV segmentation method described
in [9] are reported in Table 1. For this experiment, we compute blood pool vol-
umes at the End-diastolic (ED) and End-systolic (ES) phases, and from these,
we obtain SV and EF. The average volumes and indexes are computed across
the sample, comparing the reference volumes, synthetic volumes and incomplete
volumes. Table 1 shows that the incorrect plane orientation reduces ED and ES
volumes by an average of 11%. In contrast, the synthetic images provide val-
ues which are much closer than the reference values, with only 5.1% and 5.7%
reductions in volume at ED and ES phases. These results clearly demonstrate
synthetic images generated by SPSGAN model convey relevant information and
possess clinical utility.

4 Conclusion

We have presented a novel approach for generating cardiac cine MRI slices under
a standard ventricle plane orientation using a GAN model that can be trained
using a fully unsupervised approach. Finding the correct standard plane is highly
operator-dependent and requires a great amount of expertise. To tackle this
challenge, we proposed a fully unsupervised framework that aims to transfer
the plane orientation and retaining the cardiac intensity of the original image
without depending on the corresponding ground-truth. Extensive experimental
results showed that our model could achieve satisfactory performance in standard
cardiac slice generation compared to other methods. In the future, we plan to
further apply our approach to other datasets and to different modalities for
which supervision is not possible.
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