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Direct Statistical Simulation (DSS) solves the equations of motion for the statistics of
turbulent flows in place of the traditional route of accumulating statistics by Direct
Numerical Simulation (DNS). That low-order statistics usually evolve slowly compared
with instantaneous dynamics is one important advantage of DSS. Depending on the
symmetry of the problem and the choice of averaging operation, however, DSS is usually
more expensive computationally than DNS because even low-order statistics typically
have higher dimension than the underlying fields. Here we show that it is in some
cases possible to go much further by using a form of unsupervised learning, Proper
Orthogonal Decomposition (POD), to address the “curse of dimensionality.” We apply
POD directly to DSS in the form of expansions in the equal-time cumulants to second
order (CE2). We explore two averaging operations (zonal and ensemble) and test the
approach on two idealized barotropic models of fluid on a rotating sphere (a jet that
relaxes deterministically towards an unstable profile, and a stochastically-driven flow
that spontaneously organizes into jets). We show that the method offers the possibility
of parameter continuation, in the reduced basis, for the lower order statistics of the flow.
Order-of-magnitude savings in computational cost are sometimes obtained in the reduced
basis, potentially enabling access to parameter regimes beyond the reach of DNS.

1. Introduction

Statistical descriptions are appropriate for turbulent flows. In nature such flows are
rarely homogeneous and isotropic; instead they typically exhibit rich correlations that
reflect the presence of coherent structures, with statistics that evolve only slowly in
time, or not at all. The large range of spatial and temporal scales spanned by turbulent
flows often makes their Direct Numerical Simulation (DNS) computationally prohibitive
(Bauer et al. 2015; Tobias 2019). Fifty years ago Lorenz pointed to an alternative
approach that “consists of deriving a new system of equations whose unknowns are the
statistics themselves” (Lorenz 1967). Such Direct Statistical Simulation (DSS) has seen,
in recent years, a number of successful applications (Farrell & Ioannou 2007; Marston
et al. 2008; Marston 2010; Tobias et al. 2011; Marston 2012; Tobias & Marston 2013;
Constantinou et al. 2014; Marston et al. 2019; Laurie et al. 2014).
Many well-established approaches can be considered instances of DSS. For example

the probability distribution function can be obtained from the Fokker-Planck equation
by numerical methods, but this is limited to dynamical systems of at most a few

† Email address for correspondence: marston@brown.edu
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dimensions (Bergman & Spencer Jr 1992; Pichler et al. 2013; von Wagner & Wedig
2000; Naess & Hegstad 1994; Kumar & Narayanan 2006; Allawala & Marston 2016).
Another form of DSS, Large Deviation Theory (Varadhan 1966; Bouchet & Simonnet
2009; Laurie & Bouchet 2015; Bouchet et al. 2018), focuses on extreme or rare events.
Other methods such as those developed by Kolmogorov (Batchelor 1947), Kraichnan
(Frisch 1995), and others (Legras 1980; Holloway & Hendershott 1977; Huang et al. 2001)
provide an approximate description of some statistical properties of turbulent flows but
assume homogeneity and usually isotropy. Many flows in geophysics and astrophysics
spontaneously develop features such as coherent vortices and zonal banding (Marston
et al. 2019; Skitka et al. 2020). Furthermore, in engineering applications turbulence often
interacts with non-trivial mean flows (see e.g. Barkley 2016). Therefore, any statistical
method that can appropriately treat such systems needs to respect such asymmetries.
One such scheme of DSS that meets these requirements is that of low-order expansions
in equal-time (but spatially nonlocal) cumulants. Since low-order statistics are spatially
smoother than the corresponding dynamical fields (or instantaneous flow), the approach
can capture the macroscopic features of turbulent flows using fewer degrees of freedom.
An added benefit of such a cumulant expansion scheme is that the detailed time evolution
of the flow is replaced by a description of the statistics of most interest. The modes
associated with the low-order statistics may be described by a fixed point or a slow
manifold that can be quickly accessed.
It is important to note that naive implementations of expansions in cumulants may

be much more expensive computationally than full DNS because the second cumulant
may have higher dimension than the underlying fields (depending on the symmetry
of the problem and choice of averaging operation). In this paper we investigate a
reduced dimensionality method for DSS, based on a Proper Orthogonal Decomposition
(POD) of the eigenvectors of the second moment. This is a form of unsupervised
learning,(Ghahramani 2003) with training based upon full resolution simulations. The
equations of motion (EOMs) for the cumulants are rotated into a sub-basis formed by the
eigenvectors of the second zonally-averaged moment after removal of eigenvectors with
small eigenvalues. We implement POD directly on the simplest non-trivial closure, one
that goes to second order in an expansion of cumulants (CE2), of two model problems
in fluid dynamics.
The rest of the paper is organized as follows. In Section 2 we introduce the two

different types of cumulant expansions. Although CE2 is often performed using a zonal
average (Marston et al. 2008, 2019) (Section 2.1), this has the drawback that scattering of
eddies off non-zonal coherent structures such as vortices are neglected (Tobias & Marston
2017b). We therefore also explore a variant of CE2 that is based upon an ensemble average
(Bakas & Ioannou 2011, 2013, 2014; Allawala & Marston 2016) (Section 2.2). Although
more accurate, ensemble-averaged cumulants have higher dimensionality compared with
those based upon the zonal average; this is partly overcome with our POD method as
discussed in Section 3. In Section 4 both types of CE2 are evaluated against DNS which
serves as the reference truth. We test the approaches on two different highly idealized
barotropic models of planetary atmospheres on a spherical geodesic grid: A deterministic
point jet relaxed toward an unstable profile (Section 4.1), and a stochastically-forced
jet (Section 4.2). The order of magnitude computational savings of DSS in a reduced
basis with little loss to accuracy promises a fast and accurate alternative to accessing
directly the low-order statistics of turbulent flows, and offers the possibility that flow
regimes inaccessible to DNS will come within reach. This speed-up is illustrated by a
continuation in parameter space, keeping the POD basis fixed, in Section 5. Section 6
concludes with some discussion.
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2. Cumulant Expansions

We carry out a non-equilibrium statistical closure of the low order equal-time statistics
of the flow (Marston et al. 2019, 2008). The approach can be more easily understood by
application to a simple toy model. We do so here by considering a barotropic (two-
dimensional) fluid on a rotating sphere of unit radius, where relative vorticity evolves
under the action of a bilinear Jacobian operator, J [A, B] = r̂ · (∇A×∇B), a linear op-
erator that contains frictional and hyperviscous terms L [A] ≡ −

[

κ− ν3(∇
2 + 2)∇4

]

A,
and either a deterministic forcing term F , stochastic forcing η, or both. The EOM of the
barotropic model is then given by:

ζ̇ = J [ζ + f, ψ] + L [ζ] + F + η, (2.1)

where ψ is the stream function, ζ = ∇2ψ is the relative vorticity, f = 2Ω cos(θ) is the
Coriolis parameter, θ is the co-latitude and φ is the azimuth angle. We set Ω = 2π and
thus the unit of time is the period of rotation, a day.

The cumulant expansion may then be implemented by Reynolds decomposing the
relative vorticity into the sum of an average vorticity field ζ and a fluctuation about that
average ζ ′ so that ζ(θ, φ) = ζ(θ, φ) + ζ ′(θ, φ). The choice of this averaging operation will
be postponed until later, but it will be required to satisfy the Reynolds averaging rules:

ζ ′(θ, φ) = 0, ζ(θ, φ) = ζ(θ, φ), ζζ = ζ ζ. (2.2)

The first three cumulants are centered moments, and on the surface of a sphere the first
two read:

c(θ1, φ1) ≡ ζ(θ1, φ1),

c(θ1, φ1; θ2, φ2) ≡ ζ ′(θ1, φ1)ζ ′(θ2, φ2). (2.3)

Since the Jacobian couples the relative vorticity and the stream function, it is useful
to define their correlations as auxiliary cumulants,

p(θ1, φ1) ≡ ψ(θ1, φ1),

p(θ1, φ1; θ2, φ2) ≡ ζ ′(θ1, φ1)ψ′(θ2, φ2). (2.4)

The EOMs of the cumulants are derived by applying the averaging operation to Equa-
tion (2.1). Refer to Marston et al. (2019) for a detailed derivation. The first cumulant
evolves as:

∂

∂t
c( ~Ω1) =

∫

J1

[

p( ~Ω1, ~Ω2), δ( ~Ω1 − ~Ω2)
]

dΩ2

+ J1

[

c( ~Ω1) + f(θ1), p( ~Ω1)
]

+ L1

[

c( ~Ω1)
]

+ F ( ~Ω1) (2.5)

where the subscript 1 on J and L indicates that these operators act upon the vector
coordinate ~Ω1 ≡ (θ1, φ1) and δ( ~Ω1 − ~Ω2) is the two-dimensional Dirac functional.

As averages of the product of two fields do not generally equal the product of their
separate averages, the quadratic nonlinearity leads to the well-known closure problem
with the equation of motion of the first cumulant depending on the second cumulant.
Likewise, the equation of motion for the second cumulant involves the first, second and
third cumulant. A closure should be performed at the lowest order possible; this may
be achieved by decoupling the third cumulant from the EOM of the second cumulant,
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known as the CE2 approximation:

ζ ′( ~Ω1) ζ ′( ~Ω2) ψ( ~Ω3) ≃ c( ~Ω1, ~Ω2) p( ~Ω3) (CE2). (2.6)

With this approximation the EOM for the second cumulant closes to give

∂

∂t
c( ~Ω1, ~Ω2) = 2

{

J1

[

c( ~Ω1) + f(θ1), p( ~Ω2, ~Ω1)
]

+ 2J1

[

c( ~Ω1, ~Ω2), p( ~Ω1)
]

+ L1

[

c( ~Ω1, ~Ω2)
]

}

+ 2Γ ( ~Ω1, ~Ω2), (2.7)

where the symmetrization operator {· · ·} performs an average over all interchanges of

the field points. Here Γ ( ~Ω1, ~Ω2) is the covariance of the Gaussian stochastic forcing

η( ~Ω, t) that is assumed to be δ-correlated in time. CE2 neglects interaction between
two fluctuations to produce another fluctuation because of the decoupling of the third
and higher cumulants (Herring 1963; Schoeberl & Lindzen 1984). Thus the fluctuation-
fluctuation scattering process is neglected, making it formally equivalent to a quasi-
linear approximation (O’Gorman & Schneider 2007; Herring 1963). This confers upon the
CE2 approximation two attractive properties: conservation up to quadratic order (Legras
1980) (angular momentum, energy and enstrophy) in the limit of no forcing or dissipation,
and physical realizability (Hänggi & Talkner 1980; Kraichnan 1980; Salmon 1998) with
a positive-definite second cumulant. These properties ensure numerical stability. Both
the DNS and DSS performed here are carried out in a basis of spherical harmonics (see
Marston et al. (2019)) with the spectral decomposition:

ζ(θ, φ) =

L
∑

ℓ=1

|m|6min(ℓ,M)
∑

m

ζℓm Y m
ℓ (θ, φ). (2.8)

Spectral cutoffs L and M are specified below.†

2.1. Zonal Average

Common choices for the DSS averaging operation, · · ·, are temporal, spatial and
ensemble means. For models with zonal symmetry such as idealized geophysical or

astrophysical flows the zonal spatial average, defined as q(θ) ≡ 1
2π

∫ 2π

0
q(θ, φ)dφ. is often

the simplest and most natural. Henceforth · · · will be used to only denote such a zonal
average. Since the fluctuations q′ with respect to a zonal average now represent eddies
that may be classified by zonal wavenumber, zonal CE2 allows for the interaction between
a mean flow and an eddy to produce an eddy, and also for the interaction between two
eddies to produce a mean flow as shown in Figure 1(a). An important virtue of the zonal
average is that it reduces the dimension of each cumulant by one in the zonal direction,
reducing computational complexity. The first cumulant depends only on the co-latitude,
c( ~Ω1) = c(θ1), and the second cumulant depends only on the two co-latitudes of either

points and the difference in their longitudes, c( ~Ω1, ~Ω2) = c(θ1, θ2, φ2 − φ1). Since c( ~Ω1),

p( ~Ω1) and f(θ1) do not vary with longitude, the second term in Equation (2.5) vanishes.

2.2. Ensemble Average

In systems where the eddy-eddy scattering processes dominate, or where non-zonal
coherent structures dominate, zonal CE2 can give an inaccurate reproduction of the

† A program that implements the computations is available on the Apple Mac App Store at
URL https://apps.apple.com/us/app/gcm/id592404494?mt=12.
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Figure 1. (a) Retained (left) and discarded (right) triadic interactions in zonal CE2. Solid
lines denote the amplitude of the zonal mean flow. Wavy lines represent eddies with zonal
wavenumber m that is unchanged by the interaction with the zonal mean flow. (b) Same as
(a) but for ensemble CE2. Solid lines indicate the coherent part of the flow, and dashed lines
represent the incoherent parts. The zonal wavenumber now generally changes when the coherent
and/or incoherent components interact.

statistics (Tobias & Marston 2013). An alternative version of the cumulant expansion
that does not entirely neglect these processes can be formulated by replacing the zonal
average with an ensemble average, to be denoted in the following with 〈· · ·〉. Formally
the triadic interactions that are retained in ensemble CE2 are identical to those in zonal
CE2 as shown in Figure 1(b) except for the addition of a diagram with three mean fields.
This addition reflects the fact that, for ensemble averaging, the mean field may contain
non-zonal coherent structures (Bakas & Ioannou 2011, 2013, 2014; Allawala & Marston
2016) instead of only the zonal mean; the fluctuations about this average represent
incoherent perturbations, instead of eddies, that may interact. The coherent part of
the flow, c(θ, φ) = 〈ζ(θ, φ)〉, may for instance consist of long-lived vortices rather than
zonal jets (Tobias & Marston 2017a) in which case departures from the zonal mean do
not necessarily constitute a fluctuation, and some of the eddy + eddy → eddy scattering
processes (where eddies are defined as deviations from the zonal mean) are retained. On
the other hand, because only the first two cumulants are retained, ensemble-averaged
CE2 is equivalent to the requirement that the probability distribution function be purely
Gaussian – an approximation known to be poor for some flows such as isotropic and
homogeneous turbulence.
It is well known that for ergodic flows, the average over an infinite ensemble of

realizations should equal a long-time average (in the limit of the averaging time going
to infinity). For such flows one therefore expects that the statistics in ensemble CE2
typically flow to a single fixed point — this would be guaranteed if there were no closure
approximation — and those for zonal CE2 to match this behaviour. However in flows
where long-lived coherent structures such as vortices and jets play an important role
(Frishman et al. 2017), reducing the chaoticity of the flow, it is not true that the two
versions of CE2 described here should yield the same results. If ensemble CE2 is initialised
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with non-zonally symmetric initial conditions then we find that it oftn flows to a fixed
point. By contrast zonal CE2 often does not flow to a fixed point; instead the statistics
may oscillate in time (Marston et al. 2019).

3. Proper Orthogonal Decomposition

The zonal average second cumulant is a three-dimensional object, one dimension higher
than that of the underlying dynamical fields; for ensemble averages the second cumulant
is of dimension four. This “curse of dimensionality”(Bellman 1957, 1961) can be tamed by
application of Proper Orthogonal Decomposition (POD) (Holmes et al. 1998; Muld et al.

2012) directly to the low order statistics. Traditionally, POD has been applied directly
to the instantaneous master PDEs; instead, here we apply these methods directly to the
statistical formulation and find improved performance. Because the two operations of
formulating DSS, and reducing dimensionality, do not commute, a given number of POD
modes may better represent the DSS statistics than they would the full instantaneous
dynamics. In the reduced basis the two-point function may be efficiently evolved forward
in time without encountering the instabilities that plague DNS in POD bases (Resseguier
et al. 2015). Here we illustrate how the procedure keeps dimensionality in check without
significant loss of accuracy.
A new basis of lower dimensionality that represents the first and second cumulants

may be found by Schmidt decomposition of the zonally-averaged second moment:

ζ( ~Ω1) ζ( ~Ω2) = c( ~Ω1, ~Ω2) + c(θ1)c(θ2)

=
∑

i

λi ξi( ~Ω1) ξi( ~Ω2) . (3.1)

Here ξi( ~Ω1) is an eigenvector of the second moment with eigenvalue λi that is both real
and non-negative (Kraichnan 1980). Eq. 3.1 can equivalently be expressed in the space
of spherical harmonics where the second moment mℓℓ′m ≡ ζℓmζ

∗
ℓ′m is block-diagonal in

the zonal wavenumber m and

mℓℓ′m = cℓℓ′m + cℓcℓ′δm,0 =
∑

i

U
(m)
ℓi λ

(m)
i U

†(m)
iℓ′ . (3.2)

Here U
(m)
ℓi are unitary matrices (

∑

ℓ U
†(m)
iℓ U

(m)
ℓj = δij) that are composed of the eigen-

vectors of the second moments:
∑

ℓ′ mℓℓ′mU
(m)
ℓ′j = λjU

(m)
ℓj . The dimension of the EOMs

for the cumulants may now be reduced by setting a cutoff for the eigenvalues, λc, and
discarding all eigenvectors with eigenvalues below this value. The truncation generally
breaks conservation of angular momentum, energy, and enstrophy, but for driven and
damped systems this will generally not cause divergences as long as the truncation is not
too severe. Positivity of the second cumulant is maintained by periodically projecting
out eigenvectors with negative eigenvalues.
The zonally-averaged second moment is accumulated after spin-up to a statistical

steady state. For each type of simulation (DNS, zonal CE2, or ensemble CE2) we
first compute the second moment in the full basis, perform the POD decomposition,
and implement the corresponding reduced-dimensionality version of CE2. Figure 2, for
instance, shows the second cumulant for the stochastically-forced jet (defined below) as
calculated by zonal CE2 at different levels of truncation. A severe truncation that retains
only the six eigenvectors with largest eigenvalues is still able to reproduce most features
of the cumulant.
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Figure 2. The reconstituted second cumulant of the stochastic jet with varying number of
retained eigenmodes (out of a total of 441) as found by zonal CE2. The jet is spun up for 300 days
and then the second cumulant is time-averaged for a subsequent 700 days. The reference point
(black dot) for one of the two coordinates appearing in the second cumulant, Equation (2.3), is
on the central meridian (φ2 = 0) at co-latitude of θ2 = 45◦. The 6 largest eigenvalues paired

with their corresponding zonal wavenumber are: (m, λ
(m)
i ) = (0, 19.43), (8, 2.197), (7, 2.062),

(4, 1.110), (8, 0.838), and (9, 0.676).

4. Tests

We first implement unreduced ensemble CE2 and zonal CE2 on two idealized barotropic
models on a rotating unit sphere. After comparing these two variants of CE2 against the
statistics gathered by DNS that are used as the reference truth, we study the efficacy
of dimensional reduction of the two forms of DSS using the POD procedure outlined in
Section 3.

4.1. Point Jet

We study a deterministic point jet that relaxes on a timescale τ toward an unstable
retrograde jet with meridional profile ζjet(θ) = −Ξ tanh((π/2 − θ)/∆θ). Parameters
Ξ = 0.6Ω and ∆θ = 0.05 are chosen to correspond with the jet previously examined
in Marston et al. (2008). The flow is damped and driven by the terms that appear in
Equation (2.1), i.e.

L [ζ] + F =
ζjet − ζ

τ
(4.1)

with η = 0. Spectral simulations are performed at a modest resolution of 0 6 ℓ 6 L and
|m| 6 min{ℓ,M} with L = 20 andM = 12. For a short relaxation time of τ = 2 days the
flow is dominated by critical-layer waves and eddies are suppressed by the strong coupling
to the fixed jet. For a longer relaxation time of τ = 20 days the flow is turbulent and well-
mixed near the equator. Since zonal CE2 neglects eddy-eddy interactions it increasingly
differs from DNS as τ grows. Here we set τ = 20 days to demonstrate that ensemble-
averaged CE2 captures features of the non-zonal coherent structures that zonal average
CE2 misses. Figure 3(a) shows that ensemble CE2 accurately reproduces the zonal mean
absolute vorticity, whereas zonal CE2 overmixes the absolute vorticity at low latitudes
(Marston et al. 2008). Figure 4 shows that whereas zonal CE2 has power only in the
zonal mean m = 0 mode, and a single eddy of wavenumber m = 3, the power spectrum
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Figure 3. (a) Zonal mean absolute vorticity ζ + f of the point jet as a function of latitude for
DNS, ensemble CE2 and zonal CE2. (b) – (d) Comparison of all modes retained against different
levels of truncation for DNS, ensemble CE2 and zonal CE2 respectively. Each run is evolved
until a statistically-steady state is reached.

of ensemble CE2 matches that found by DNS. DNS statistics are accumulated from time
500 to 1000 days after spin-up of 500 days. Ensemble CE2 reaches a statistical steady-
state by 400 days and no time-averaging is required. Whereas the second cumulant of the
vorticity field as determined by zonal CE2 exhibits artificial reflection symmetry about
the equator (Marston et al. 2008), ensemble CE2 does not have this defect; see Figure
4(b, d, f).
We turn now to model reduction via POD truncation. Figure 3(b)-(d) show the first

cumulants, or zonal mean absolute vorticity, at different levels of truncation. While POD
offers a substantial dimensional reduction for DNS and ensemble CE2 with slight loss of
accuracy, extreme truncation of zonal CE2 down to just a few modes is possible. This is
consistent with the spectrum of the eigenvalues of the second moment shown in Figure
5(a). The steep decay of the eigenvalues of zonal CE2 reflects the fact that only the
m = 3 eddy has power.

4.2. Stochastic Jet

Jets that form spontaneously in the presence of rotation and small scale random forcing
provide another, perhaps more stringent, test of DSS. An idealized barotropic model that
has been much studied (Farrell & Ioannou 2007; Tobias et al. 2011; Tobias & Marston



Dimensional Reduction of DSS 9

Figure 4. Power spectra (left) and second cumulant of relative vorticity field (right) of the
point jet for (a-b) DNS, (c-d) ensemble CE2 and (e-f) zonal CE2. DNS is evolved until 1000
days with time-averaging over the last 500 days. Ensemble and zonal CE2 are evolved until 400
days without time-averaging. The reference point (black dot) for one of the two coordinates
appearing in the second cumulant, Equation (2.3), is on the central meridian (φ2 = 0) at
co-latitude of θ2 = 75◦. Ensemble CE2 matches the statistics obtained by accumulation from
DNS whereas zonal CE2 exhibits an artificial symmetry of reflection about the equator not
present in the statistics obtained from DNS.

2013; Constantinou et al. 2014; Marston et al. 2019) is governed by:

L [ζ] = −
[

κ− ν3(∇
2 + 2)∇4

]

ζ, (4.2)

with F = 0. We examine this model for the set of parameters used in (Marston et al.

2019); friction κ = 0.02 with hyperviscosity ν3 set such that the mode at the smallest
length scale decays at a rate of 1. The covariance of the Gaussian white noise of the modes
that are forced stochastically is Γℓℓ′m = 0.1δℓℓ′ for 8 6 ℓ 6 12 and 8 6 |m| 6 ℓ, and set the
stochastic renewal time to be τr = 0.1. For this experiment, the forcing is concentrated
at low latitudes, enabling an evaluation of the ability of different DSS approximations
to convey angular momentum towards the poles (Marston et al. 2019, 2016). Spectral
simulations are performed at a resolution of 0 6 l 6 L and |m| 6 min{l,M} with L = 30
for M = 20. After a spin-up time of 300 days, statistics are accumulated for a further
700 days.
Figure 6(a) compares the zonal mean zonal velocity as a function of latitude for

ensemble CE2, zonal CE2, and DNS. Owing to the neglect of eddy-eddy scattering in
zonal CE2, there is no mechanism to transport eddy angular momentum from the equator,
where the forcing is concentrated, towards the poles, and the method underestimates
the mean zonal velocity at high latitudes. Ensemble CE2 does somewhat better, but
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Figure 5. (Top) Spectrum of eigenvalues of the second moment of the point jet in descending
order for DNS, ensemble CE2, and zonal CE2. The eigenvalues decay most quickly for zonal

CE2; only zonal wavenumbers m = 0 and m = 3 have non-zero eigenvalues λ
(m)
i , consistent with

the power spectra shown in Figure 4. (Bottom) Spectrum of eigenvalues for the stochastic jet.
The eigenvalues decay exponentially, though less rapidly than for the point jet.

the match at high latitudes remains poor. (Higher-order closures do much better – see
Marston et al. (2019) – but for simplicity we do not study them here.) The second
vorticity cumulant is shown in Figure 7(b,d,f). Vorticity correlations are non-local in
space, and zonal CE2 exaggerates the range of the correlations because the waves are
coherent, again owing to the lack of eddy-eddy scattering. Ensemble CE2 more closely
matches DNS.
We now examine the reduction in dimensionality of DSS by POD. Figure 6(b)-(d) shows

the zonal mean zonal velocity as a function of latitude at different levels of truncation
for DNS, ensemble CE2 and zonal CE2. It is apparent that both types of CE2 are better
suited to the POD method than DNS. Zonal CE2 in particular allows for a more severe
truncation compared with ensemble CE2 and DNS, a fact that can again be explained
by the spectrum of eigenvalues shown in Figure 5(b). The eigenvalues decay more slowly
for the stochastically-forced jet than for the point jet. It can be seen that statistics
accumulated from DNS do not converge monotonically in truncation level toward those
of the full simulation; those obtained from the cumulant expansions are better behaved.
Convergence of the second cumulant with increasing number of retained modes is also
evident; see Figures 8 and 9.
The number of operations required for a POD reduced CE2 time step scales with

the size of the retained basis Nret as O(N3
ret). Therefore a dimensional reduction from
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Figure 6. (a) Comparison of the zonal mean zonal velocity of the stochastically-driven jet as a
function of latitude for DNS, ensemble CE2 and zonal CE2. Ensemble CE2 matches DNS better
than zonal CE2 because it retains some of the eddy-eddy scattering process which transports
eddy angular momentum poleward. (b)-(d) Comparison of the zonal mean zonal velocities of the
non-truncated system against different levels of truncation for DNS, ensemble CE2 and zonal
CE2 respectively.

Nret = 441 to Nret = 13 would naively equate to a speed up of order 104. In the case
of unreduced zonal CE2, however, zonal symmetry may be exploited to decrease the
number of operations per time step (Marston et al. 2019) to O(L3M) << O((LM)3).
Nevertheless, the speed up is considerable. A machine with a 2.6 GHz quad-core Intel
Core i7 processor runs 28× faster for reduced zonal CE2 with Nret = 13 in comparison
to full unreduced zonal CE2, with little loss in accuracy.

5. Continuation In Parameter Space

The test problems studied in the preceding section show that it is possible to implement
DSS in a subspace of reduced dimensionality, supporting the idea that relatively few
modes are required for a description of the low-order statistics. The reduced statistical
simulations still, however, require a full resolution training run for POD. Thus, from
a practical point of view, the reduced simulations do not offer a speed-up. In order to
address this, we show here that it is possible to fix the reduced basis obtained from a
single training run, alter model parameters, and still obtain good agreement with both
DNS and CE2 in a reduced basis. Thus, the reduced basis obtained from one training
run can be used to perform DSS for a range of parameters.

We illustrate the continuation by reducing the relaxation time of the point jet. This
parameter controls the relative degree of turbulence to mean flow in the jet and is related
to the Kubo number, which is a measure of the degree of applicability of the quasilinear
approximation (Marston et al. 2016). We utilize the τ = 20 days jet as a training run for
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Figure 7. Second cumulant of relative vorticity field of the stochastic jet for (a) DNS, (b)
ensemble CE2, and (c) zonal CE2. The reference point for the second cumulant (black dot)
is positioned along the central meridian at a co-latitude of 45◦. Zonal CE2 shows exaggerated
coherent waves in comparison to DNS and ensemble CE2.

POD on the ensemble CE2 solution, and calculate the reduced basis for this parameter
set. Figure 10 shows the (zonally averaged) first cumulant for ensemble CE2 in this
reduced basis of 40 retained modes for τ = 10 and 5 days. Note that the dynamics (and
indeed the statistics) does change significantly when this parameter is altered. For τ = 10
days the agreement is exceptionally good. However, as the parameter τ is reduced further
away from the training run to τ = 5 days the agreement between reduced ensemble CE2
with full ensemble CE2 and DNS worsens as expected. Even here, qualitative agreement
is retained. Continuation to values of τ greater than that of the training value is also
possible. The bottom panel of Figure 10 shows the statistics for the τ = 20 days jet as
calculated by reduced ensemble CE2 with a basis determined by a τ = 10 days training
run. Excellent agreement is obtained.
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Figure 8. Comparison of the second vorticity cumulants of the stochastic jet in the statistical
steady state of DNS for different truncation levels. The non-truncated statistics are shown in
panel (d).

Figure 9. Comparison of the second vorticity cumulants of the stochastic jet in the statistical
steady state of ensemble CE2 for different truncation levels. The non-truncated statistics are
shown in panel (d).
.

Comparison of power spectrum in Figure 11 with Figure 4(c) shows that second-
order statistics show qualitative agreement as τ is continued from 10 to 20 days. The
reduction in dimensionality simplifies the spectrum of the reduced ensemble CE2 spectra
in comparison with the full-resolution simulation as expected. This initial exploration of
parameter continuation shows a promising direction for future research.

6. Discussion and conclusion

Proper Orthogonal Decomposition (POD) can be used to reduce the dimensionality of
second order cumulant expansions (CE2) by discarding modes that are unimportant for
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Figure 10. Zonal mean absolute vorticity ζ + f , of the point jet as a function of latitude for
DNS, full ensemble CE2 and reduced ensemble CE2 for different jet relaxation times τ (see Eq.
4.1). The reduced basis is fixed and obtained by POD from ensemble CE2 for a single training
run on the jet at a different value of τ . In each case 40 modes are retained. Top: The point
jet with τ = 10 days with a reduced basis obtained from a training run at τ = 20 days. The
basic absolute vorticity of the point jet, ζjet + f , is shown for comparison; the region around
the equator is well mixed by the eddies. Middle: The point jet τ = 5 days from a training
run at τ = 20 days. As parameter τ is continued away from the training run with τ = 20
the agreement between reduced ensemble CE2 with full ensemble CE2 and DNS deteriorates.
Bottom: The point jet with τ = 20 days where the reduced basis is obtained from a training
run at τ = 10 days.
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Figure 11. Power spectra for the τ = 20 day jet as calculated by reduced ensemble CE2 with 40
retained modes, with the fixed basis determined by training on the τ = 10 days jet. Comparison
should be made to Figure 4(c).

the low-order statistics. For one of the two idealized models that we studied, the first and
second cumulants can be accurately reproduced with relatively few modes, permitting a
substantial reduction in dimensionality, and an increase in computational speed. This is
particularly true for zonal CE2. The degree of truncation and hence computational saving
that can be made while maintaining accuracy depends on the specifics of the system, as
demonstrated by our results for the two different test problems.
It would be interesting to explore dimensional reduction of Direct Statistical Simulation

(DSS) for more realistic models such as those explored in Ait-Chaalal et al. (2016).
Dimensional reduction by POD has been tested in a quasilinear model of the ocean
boundary layer (Skitka et al. 2020). It would also be interesting to determine whether
or not a dimensional reduction algorithm could be constructed that acts dynamically on
DSS, bypassing the step of first acquiring statistics for the full non-truncated problem, as
in the current work. With such an advance it may be possible for DSS to access regimes
that cannot be reached by DNS. We note that CE2 by itself has already been used for
a dynamo problem to access lower magnetic Prandtl number than is possible by DNS
(Squire & Bhattacharjee 2015). As reduced-dimensionality DSS is able to quickly describe
some fluid dynamical systems via parameter continuation of the low-order statistics,
the combination of POD with cumulant expansions offers a good prospect for other
simulations to reach beyond DNS.
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Resseguier, Valentin, Mémin, Etienne & Chapron, Bertrand 2015 Stochastic Fluid
Dynamic Model and Dimensional Reduction. In International Symposium on Turbulence
and Shear Flow Phenomena (TSFP-9), pp. 1–6. Melbourne.

Salmon, Rick 1998 Lectures on geophysical fluid dynamics. Oxford University Press.
Schoeberl, Mark R & Lindzen, Richard S 1984 A numerical simulation of barotropic

instability. Part I: Wave-mean flow interaction. Journal of the atmospheric sciences 41 (8),
1368–1379.

Skitka, Joseph, Marston, J. B. & Fox-Kemper, Baylor 2020 Reduced-order quasilinear
model of ocean boundary-layer turbulence. Journal of Physical Oceanograph (in press)
arXiv:1906.11671 .

Squire, J & Bhattacharjee, A 2015 Generation of Large-Scale Magnetic Fields by Small-
Scale Dynamo in Shear Flows. Physical Review Letters 115 (17), 175003.

Tobias, Steven 2019 The Turbulent Dynamo. arXiv e-prints p. arXiv:1907.03685, arXiv:
1907.03685.

Tobias, SM, Dagon, K & Marston, JB 2011 Astrophysical fluid dynamics via direct
statistical simulation. The Astrophysical Journal 727 (2), 127.

Tobias, SM & Marston, JB 2013 Direct statistical simulation of out-of-equilibrium jets.
Physical review letters 110 (10), 104502.

Tobias, SM & Marston, JB 2017a Direct statistical simulation of jets and vortices in 2d
flows. Physics of Fluids .

Tobias, S M & Marston, J B 2017b Direct statistical simulation of jets and vortices in 2D
flows. Physics of Fluids (1994-present) 29 (11), 111111–9.

Varadhan, SR Srinivasa 1966 Asymptotic probabilities and differential equations.
Communications on Pure and Applied Mathematics 19 (3), 261–286.

von Wagner, Utz & Wedig, Walter V 2000 On the calculation of stationary solutions of
multi-dimensional Fokker–Planck equations by orthogonal functions. Nonlinear Dynamics
21 (3), 289–306.


