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ABSTRACT
We continue our investigation into the non-linear evolution of the Goldreich–Schubert–Fricke
(GSF) instability in differentially rotating radiation zones. This instability may be a key player
in transporting angular momentum in stars and giant planets, but its non-linear evolution
remains mostly unexplored. In a previous paper we considered the equatorial instability,
whereas here we simulate the instability at a general latitude for the first time. We adopt a
local Cartesian Boussinesq model in a modified shearing box for most of our simulations,
but we also perform some simulations with stress-free, impenetrable, radial boundaries. We
first revisit the linear instability and derive some new results, before studying its non-linear
evolution. The instability is found to behave very differently compared with its behaviour at
the equator. In particular, here we observe the development of strong zonal jets (‘layering’
in the angular momentum), which can considerably enhance angular momentum transport,
particularly in axisymmetric simulations. The jets are, in general, tilted with respect to the
local gravity by an angle that corresponds initially with that of the linear modes, but which
evolves with time and depends on the strength of the flow. The instability transports angular
momentum much more efficiently (by several orders of magnitude) than it does at the equator,
and we estimate that the GSF instability could contribute to the missing angular momentum
transport required in both red giant and subgiant stars. It could also play a role in the long-term
evolution of the solar tachocline and the atmospheric dynamics of hot Jupiters.
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1 IN T RO D U C T I O N

Stably stratified radiation zones are unlikely to be quiescent, and
are potentially subject to a number of (magneto-) hydrodynamic
instabilities that can drive turbulence or wave activity. The resulting
mixing and angular momentum transport produced by these in-
stabilities is important for the evolution of the global properties
and the internal structures of rotating stars (e.g. Maeder 2009;
Maeder et al. 2013; Meynet et al. 2013; Aerts, Mathis & Rogers
2018). Radiation zones also couple with neighbouring convection
zones through the excitation, propagation, and dissipation of waves
(e.g. Rogers, Glatzmaier & Jones 2006; Lecoanet & Quataert 2013;
Rogers et al. 2013; Couston et al. 2018; Augustson & Mathis 2019;
Korre, Garaud & Brummell 2019) and via magnetic fields (e.g.
Spruit 1999; Zahn, Brun & Mathis 2007; Garaud & Garaud 2008;
Strugarek, Brun & Zahn 2011; Wood & McIntyre 2011; Fuller,
Piro & Jermyn 2019). Despite much research, the mechanisms
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responsible for mixing and for transporting angular momentum in
radiation zones remain poorly understood.

Observational advances in helio- and asteroseismology have
shown that our current understanding of transport processes in
radiation zones is inadequate. Unsolved problems include the
inferred internal rotation rates of red giant and sub-giant stars
(Beck et al. 2012; Mosser et al. 2012; Cantiello et al. 2014; Spada
et al. 2016; Eggenberger et al. 2016, 2017), whose cores rotate
slower than expected, and the formation and maintenance of the
solar tachocline (Thompson et al. 2003; Tobias 2005; Garaud &
Garaud 2008; Wood & McIntyre 2011; Gilman 2017, 2018). A
separate problem is the atmospheric dynamics of hot Jupiters,
particularly regarding whether the jets that advect heat from dayside
to nightside are subject to small-scale hydrodynamic instabilities
that are currently unresolved in global simulations (e.g. Goodman
2009; Showman et al. 2009; Dobbs-Dixon, Cumming & Lin 2010;
Li & Goodman 2010; Fromang, Leconte & Heng 2016; Mayne et al.
2017; Menou 2019).

The Goldreich–Schubert–Fricke (GSF) instability (Goldreich &
Schubert 1967; Fricke 1968) has long been considered as a possible
mechanism for angular momentum transport in the radiation zones
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of stars (or planets). It is essentially an axisymmetric centrifugal
instability that is facilitated by the action of thermal diffusion,
which neutralizes the otherwise stabilizing effects of buoyancy. The
instability grows if the differential rotation is sufficiently strong
(e.g. Acheson & Gibbons 1978; Knobloch & Spruit 1982; Caleo
& Balbus 2016; Caleo, Balbus & Tognelli 2016). In the simplest
case in which the thermal Prandtl number (the ratio of viscosity
to thermal diffusivity) is strictly zero, the instability occurs if the
angular momentum per unit mass decreases outwards from the
rotation axis, or if there is any non-zero gradient of the angular
velocity along the rotation axis. The latter is generally much easier
to satisfy. Until recently (Barker, Jones & Tobias 2019; hereafter
paper I), the non-linear development of this instability in stellar
interiors had only been studied in axisymmetric (2D) simulations by
Korycansky (1991) and briefly in small domains by Rashid (2010).
In paper I, we presented a comprehensive study into the non-linear
evolution of the equatorial GSF instability using both axisymmetric
and 3D simulations. We demonstrated that the linear and non-
linear equations governing the axisymmetric equatorial instability
are equivalent to those of salt fingering (for a certain diffusivity
ratio), where the angular momentum field plays the role of salinity
(see also Knobloch 1982). This analogy was found to be helpful to
interpret our results in light of much recent work on the salt fingering
problem (e.g. Traxler, Garaud & Stellmach 2011; Brown, Garaud
& Stellmach 2013; Garaud & Brummell 2015; Garaud 2018; Xie,
Julien & Knobloch 2019). However, the 3D non-linear evolution is
strictly not equivalent, even if it bears some similarities with salt
fingering.

In paper I, the equatorial GSF was typically observed to produce
homogeneous turbulence with enhanced transport properties. The
instability did not generally form large-scale structures such as
layering or strong zonal jets, and the properties of the instabil-
ity were found to be well explained by a simple single-mode
theory. This theory can in principle be applied straightforwardly
to predict the resulting angular momentum and heat transport
in stars when the equatorial instability produces homogeneous
turbulence. Meridional jets were observed in simulations with
shearing-periodic boundaries in small azimuthal domains, which
acted as barriers to transport. However, these jets were not typically
observed with stress-free conditions or in simulations with wider
azimuthal domains, so we speculate that they are unimportant for
stars.

The non-linear evolution of the GSF instability at a general
latitude has not yet been explored. There are several reasons why
the non-equatorial instability could differ in interesting ways from
the equatorial case. First, the differential rotation required for the
non-equatorial instability to onset is generally much weaker. The
criterion at the equator is particularly restrictive and requires the
presence of centrifugally unstable flows that violate Rayleigh’s
criterion. This corresponds to a very strong radial differential
rotation. On the other hand, at a general latitude, the instability
occurs if the variation in the angular velocity along the rotation axis
is sufficiently strong, which is usually a much easier criterion to
satisfy.

The GSF instability is related to the ‘secular’ shear instabilities
that have been proposed to contribute to the missing mixing in
stellar radiation zones (e.g. Zahn 1974, 1992). Standard shear
instabilities, in which perturbations are assumed to be adiabatic, are
not usually expected to develop in stellar radiation zones owing to
the strong stabilizing effect of the stratification. However ‘secular’
shear instabilities, which require finite-amplitude perturbations,
are believed to be important by producing thermally diffusive

shear-induced turbulence when the Richardson number Ri (which
measures the ratio of the strength of the stratification to the shear)
of the flow is large, provided the Péclet number Pe (which measures
the ratio of thermal diffusion to advection time-scales) is sufficiently
small. Simulations of these instabilities indicate that this is a
promising mechanism of angular momentum transport and mixing
in radiation zones (e.g. Prat & Lignières 2013, 2014; Prat et al.
2016; Garaud, Gagnier & Verhoeven 2017; Gagnier & Garaud 2018;
Kulenthirarajah & Garaud 2018; Mathis et al. 2018), which can be
expected when RiPe or RiPr (where Pr is the Prandtl number, the
ratio of viscosity to thermal diffusivity) is sufficiently small. The
GSF instability is, on the other hand, a linear instability, but we will
show in Section 3 that it also onsets when RiPr is sufficiently small
(<1/4). The effect of rotation on secular shear instabilities remains
to be explored, and we expect that the resulting flows will interact
with those generated by the GSF instability.

The GSF instability may also occur in astrophysical discs, where
it has been referred to as the Vertical Shear Instability or VSI
(e.g. Urpin & Brandenburg 1998; Nelson, Gressel & Umurhan
2013; Stoll & Kley 2014; Barker & Latter 2015; Lin & Youdin
2015; Latter & Papaloizou 2018). This may drive weakly turbulent
motions and stir solid material in regions of protoplanetary discs
that are not subject to the magnetorotational instability. Indeed,
simulations using a local model like the ones that we will present in
this paper but for parameters relevant for astrophysical discs, may
shed some light on the non-linear evolution of the VSI. This topic
is left for future work.

Our primary goal is to understand the non-linear evolution of
the GSF instability at a general latitude and to derive physically
motivated prescriptions for the transport of angular momentum, as
well as other quantities such as heat or heavy elements, that can
be implemented in stellar evolution codes. As we will demonstrate,
the instability behaves very differently from the equatorial case,
making it difficult to propose a simple prescription for the transport
that adequately describes all of our simulation results. This is
because the instability generates strong zonal jets (‘layering’ in the
angular momentum) and these significantly enhance the momentum
transport (particularly in axisymmetric cases – the effect is weaker
in 3D). We speculate that the interaction of the strong jets with
the turbulent transport may better be parametrized via a quasi-
linear turbulence/mean flow interaction theory (Diamond et al.
2005; Marston, Chini & Tobias 2016). Our paper I is structured
as follows: in Section 2 we describe our model and numerical
approach. In Section 3, we revisit the axisymmetric linear instability
and derive some new results, including a simple criterion for the
onset of instability, and analyse its properties. We then turn to
describe the results of a set of axisymmetric and 3D simulations
of the instability in Section 4. We compare our results with a
generalization of the theory presented in paper I in Section 5, and
discuss the astrophysical implications of our work in Section 6.
Finally, we conclude in Section 7.

2 LO C A L C A RT E S I A N MO D E L : SM A L L
PAT C H O F A R A D I AT I O N Z O N E

We consider a local Cartesian representation of a small patch of a
stably stratified radiation zone of a differentially rotating star (or
planet). Our coordinate axes (x, y, z) are defined such that x is the
local radial, y is the local azimuthal, and z is the other meridional
direction (see Fig. 1), and the box has size Lx × Ly × Lz. The star is
assumed to possess a ‘shellular’ differential rotation, such that the
angular velocity �(r) depends only on spherical radius r (e.g. Zahn
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Figure 1. Local Cartesian model to study the GSF instability at a general
latitude. For illustration, the dark orange region may represent a radiation
zone and the yellow region an overlying convection zone, so that the
Cartesian domain represents a small patch in the solar tachocline. The
rotation vector is inclined by an angle � from z, or by 90◦ − � from
the local radial direction (x). In general, when we are not at the equator, the
normal to the stratification surfaces (i.e. along the temperature gradient) eθ

is inclined relative to the local gravity vector eg = ex by an angle � that is
determined by the thermal wind equation.

1992), though our model can be readily extended to consider more
general profiles. The differential rotation can be locally decomposed
into a uniform rotation � = ��̂ and a linear (radial) shear flow
U0 = −Sxey , where S is the local value of −� d�

dr
, and � is the

cylindrical radius. At a general latitude �, �̂ = (sin �, 0, cos �),
where � = 0◦ at the equator and 90◦ at the pole.

We adopt the Boussinesq approximation (Spiegel & Veronis
1960), which is valid for subsonic flows with length-scales that
are much shorter than a density or pressure scale height, both of
which are expected to be appropriate for the GSF instability. We
also assume �2� � g so gravity is in the radial direction,1 so
eg = ex . Perturbations to the shear flow U0, are governed by the
dimensional governing equations

Du + 2� × u + u · ∇U0 = −∇p + θex + ν∇2u, (1)

Dθ + N 2u · eθ = κ∇2θ, (2)

∇ · u = 0, (3)

D ≡ ∂t + u · ∇ + U0 · ∇, (4)

where u is the velocity perturbation and p is a pressure variable. We
use θ as our ‘temperature perturbation’, which has the units of an
acceleration and is related to the usual temperature perturbation T
by θ = αgT, where α is the thermal expansion coefficient and g is
the acceleration due to gravity. The background reference density
has been set to unity. We adopt a background temperature (entropy)
profile T (x), with uniform gradient αg∇T = N 2eθ , where eθ =
(cos �, 0, sin �), and N 2 > 0 in a radiation zone. We also adopt a
constant kinematic viscosity ν and thermal diffusivity κ .

At the equator (� = 0), the rotation is constant on cylinders
and surfaces of constant density and pressure are aligned. This is
equivalent to the shearing box model of an astrophysical disc with
radial stratification and shear. Studying this case was the focus of
paper I. Here we instead focus on cases with � �= 0, in which
surfaces of constant density and pressure are misaligned (� �= 0) in
general. We assume that the degree of misalignment is determined

1This assumption is straightforward to relax (e.g. Knobloch & Spruit 1982).

by the ‘thermal wind equation’

2�S sin � = N 2 sin �, (5)

which follows from the azimuthal component of the vorticity
equation for the basic flow, rather than by any external forcing
or transient phenomena. Our approach will be to choose values
of �,S,N 2 and �, so that equation (5) determines � i.e. the
degree of ‘baroclinicity’. An alternative viewpoint (taken by Rashid,
Jones & Tobias 2008) is to consider the temperature gradient
to be imposed, then the thermal wind equation determines the
corresponding differential rotation (i.e. the ‘baroclinic shear’).
Note that the thermal wind equation does not constrain the
‘barotropic shear’. For example, at the equator the thermal wind
equation is trivially satisfied and arbitrary profiles of �(� ) are
permitted.

As in paper I, we adopt �−1 as our unit of time and take the
length scale d to define our unit of length, where

d =
( νκ

N 2

) 1
4
. (6)

This length scale was chosen because the fastest growing modes
typically have wavelengths O(d), just like in other related double-
diffusive problems (e.g. Garaud 2018). We also define N = N /� to
be our dimensionless buoyancy frequency and S = S/� to denote
our dimensionless shear rate, which can be thought of as a Rossby
number. We also define the Prandtl number

Pr = ν

κ
. (7)

This problem has four remaining independent physical parame-
ters: S, Pr, N2, and �, in addition to the dimensions of the box, Lx,
Ly, and Lz in units of d. We also define the derived non-dimensional
parameters, including the Ekman number

E = ν

�d2
= Pr1/2N, (8)

and the Richardson number

Ri = N 2

S2
= E2Pr−1S−2. (9)

The non-dimensional momentum and heat equations can then be
written in the form

Du + 2�̂ × u − Sux ey = −∇p + θeg + E∇2u, (10)

Dθ + N2u · eθ = E

Pr
∇2θ, (11)

where we have scaled the time by �−1, lengths by d, velocities by
�d, and the temperature T = θ /gα by �2d/gα. We have not added
hats to denote non-dimensional quantities (i.e. ux, uy, uz, and θ )
to simplify the presentation. We use these dimensionless variables
when discussing our simulations results in Section 4.

Most of our simulations use a modified version of the Cartesian
pseudospectral code SNOOPY (Lesur & Longaretti 2005). This uses
a basis of shearing waves, which is equivalent to using shearing-
periodic boundary conditions in x. In real space, using un-sheared
coordinates, these would specify that

ux

(
−Lx

2
, y, z, t

)
= ux

(
Lx

2
, (y − SLxt)mod(Ly), z, t

)
, (12)

and similarly for the other variables. We adopt periodic boundary
conditions in y and z. The code uses a third-order Runge–Kutta
method for time-stepping, and the diffusion terms are accounted
for using an integrating factor. We have tested our modifications to
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GSF instability 1471

the code to ensure that it correctly captures the linear growth of the
GSF instability. We also ensure that each simulation is adequately
resolved by either running selected simulations at higher resolution
to ensure convergence of the bulk statistics, or by ensuring that
the relative spectral kinetic energy in the modes at the de-aliasing
wavenumber is smaller than 10−3 of the maximum. As in paper I, we
found it necessary to enforce the box-averaged velocity components
(i.e. the zero wavenumber mode) to be zero periodically (with a
typical period of between 1 and 20 time-steps) to avoid unphysical
growth of these quantities. This is explained in paper I, and is
particularly important when the flow is centrifugally unstable, since
this component can grow owing to small numerical errors.

We have performed a suite of both axisymmetric (y-invariant) and
3D simulations. Our typical simulation domain has Lx = Lz = 100d,
unless otherwise specified, which was found to be sufficiently large
to contain several wavelengths of the fastest growing linear mode.
Ly is varied separately in 3D simulations to explore the importance
of 3D effects. We initialize the flow using solenoidal random noise
of amplitude 10−3 for all wavenumbers in the range î, ĵ , k̂ ∈ [1, 21],
where kx = 2π

Lx
î, ky = 2π

Ly
ĵ , and kz = 2π

Lz
k̂.

We also present the results of several 3D simulations using the
spectral element code Nek5000 (Fischer, Lottes & Kerkemeier
2008), which allows us to consider different boundary conditions
to shearing-periodic conditions in x. These simulations solve equa-
tions (1)–(4) for the same linear shear flow and temperature gradient,
but we adopt impenetrable, stress-free, fixed temperature conditions
at the boundaries in x for these simulations. These specify that

θ = ux = ∂xuy = ∂xuz = 0 on x = ±Lx

2
. (13)

Nek5000 adopts E elements and within each element the velocity
components and the pressure are represented as tensor product
Legendre polynomials of the order of Np and Np − 2, respectively.
The total number of grid points is therefore EN 3

p . We also use a third
order mixed implicit–explicit scheme with a variable time-step.

3 AXISYMMETRIC LINEAR INSTA BILITY AT
A G E N E R A L L AT I T U D E

In this linear stability section we use dimensional quantities
throughout. We consider axisymmetric modes which have an
azimuthal wavenumber ky = 0, as these are known to be important
for GSF instability, and we may consider quantities to vary locally
as exp (ikxx + ikzz + st), where kx and kz are the wavevector
components along the radial and the other meridional direction. The
growth rate s can be shown to satisfy (e.g. Goldreich & Schubert
1967; Acheson & Gibbons 1978; Knobloch & Spruit 1982)

s2
ν sκ + asκ + bsν = 0, (14)

where sν = s + νk2, sκ = s + κk2, and

a = 2

�
(k̂ · �)(k̂ · (∇�)⊥), (15)

b = N 2
(

k̂ · e⊥
θ

)(
k̂ · e⊥

g

)
, (16)

where k̂ is the unit vector in the direction of the wavevector k =
(kx, 0, kz), and k = √

k2
x + k2

z is the wavenumber. We define several
vectors in the (x, z)-plane, starting with the local specific angular
momentum gradient ∇ = ∇(� 2�),

∇ = � (2�c� − S, 0, −2�s�),

= |∇|(cγ , 0, −sγ ), (17)

and its normal,

(∇)⊥ = � (2�s�, 0, 2�c� − S),

= |∇|(sγ , 0, cγ ), (18)

where the squared magnitude of the local angular momentum is
defined by

|∇|2 = � 2S2 + 4� 2�(� − Sc�). (19)

We have also introduced an additional angle γ , which defines the
direction of the local angular momentum gradient relative to x.
Furthermore, we have denoted cos � and sin � by c� and s�, respec-
tively, and similarly for other angles, to simplify the presentation.
We further define the local vector parallel to stratification surfaces
(normal to eθ ),

e⊥
θ = (−s�, 0, c�), (20)

and the vector perpendicular to gravity

e⊥
g = (0, 0, 1). (21)

Finally, we define the vector perpendicular to the rotation axis,
i.e. the local cylindrical radial direction:

�̂
⊥ = (c�, 0, −s�). (22)

Note that the ‘baroclinic shear’ is given by

�̂ · (∇) = −S�s�, (23)

and hence the angle between the rotation axis and the angular
momentum gradient is cos−1 (−Ss�/|∇|). It is helpful to also
define a modified Richardson number

R = N 2�

2�|∇| , (24)

which is one possible measure of the ratio of the stabilizing
effects of stratification to the destabilizing effects of the angular
momentum gradient (e.g. Knobloch & Spruit 1982). We can also
derive an alternative form of the thermal wind equation, by using
equation (23) to eliminate S from the thermal wind equation (5).
Then equation (24) gives

sγ−� = Rs�. (25)

We show all of the vectors and corresponding angles on the (x,
z)-plane in Fig. 2. In the case S > 0, corresponding to d�/dr <

0 as expected in stars, equation (17) implies that γ > � in the
Northern hemisphere, so equation (25) gives � > 0. In the Southern
hemisphere, the signs of all the angles in Fig. 2 are reversed.

3.1 Non-diffusive stability

We first consider non-diffusive (adiabatic) stability, meaning the
case with ν = κ = 0. The growth rate is determined by

s2 = −(a + b), (26)

and hence we have stability when

a + b > 0. (27)

As it stands, this expression involves the wavevector orientation, and
so must be manipulated to derive an expression that is independent
of k. This is best done by defining p = kx/kz, then equation (27) can
be written as a quadratic for p:

p2sγ s� + p(sγ+� − Rs�) + (Rc� + c�cγ ) > 0. (28)
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1472 A. J. Barker, C. A. Jones and S. M. Tobias

Figure 2. Illustration of the various vectors and corresponding angles in
the (x, z)-plane as defined in the text. The angles �, �, and γ are all positive
in the Northern hemisphere in the case S > 0, that is d�/dr < 0.

This is always satisfied if the left-hand side has no real roots, i.e. if

(sγ+� − Rs�)2 − 4sγ s�(Rc� + c�cγ ) < 0, (29)

and we have sγ s� > 0. This latter condition is always satisfied in the
Northern hemisphere, since then equation (17) implies sγ > 0, and
in the Southern hemisphere both sγ and s� reverse signs, so it holds
there too. Using equation (25) to eliminate R from equation (29),
sufficient conditions for stability reduce to

s�sγ+� > 0. (30)

This is equivalent to the Solberg-Høiland criterion (Solberg 1936;
Høiland 1941): that the angular momentum must increase outwards
on surfaces of constant entropy for adiabatic dynamical stability,
i.e. we require

(∇) · e⊥
θ < 0, (31)

when � > 0 (and the opposite inequality when � < 0). Using
equations (17) and (5), and noting that in a radiative zone c� =√

1 − s2
� > 0, the criterion equation (30) can also be written as

(
1 − 4�2S2s2

�

N 4

)1/2

>
S(S − 2�c�)

N 2
. (32)

In the case when S > 0 and the radial component of the angular
momentum points outwards, γ < π /2 in Fig. 2, and then equa-
tion (17) shows S < 2�c�, so equation (32) shows there is always
dynamical stability. In the opposite case, S > 2�c�, γ > π /2, we
can square the inequality to get (using equation 19)

� 2N 4 > S2|∇|2. (33)

The physical significance of equation (33) is that if the radial
component of the angular momentum gradient is inwards, we need a
sufficiently strong stable entropy gradient N 2 to ensure dynamical
stability. In this paper, we will primarily consider cases that are
adiabatically stable according to equation (30) but for which thermal
diffusion enables the GSF instability.

We can also show that equation (30) is equivalent to equation (31)
in Knobloch & Spruit (1982). The angles in their fig. 4 correspond (if
positive) to the caseS < 0, so angular velocity increasing outwards.
To recover their result we must set take our � < 0, in which case
our � > γ . Then if the various angles interchanged according to
their→our: � → �, θ → � + �, � → � − γ .

In the absence of stable stratification, i.e. if N 2 = 0, the thermal
wind equation (25) means that either γ = �, in which case the

angular momentum increases in the �̂
⊥

direction,

∇ · �̂
⊥

> 0, (34)

and so is stable by the Rayleigh criterion, or γ = � + π , in which
case angular momentum decreases outwards, which is the Rayleigh
unstable case. At the equator, the GSF instability occurs only if this
criterion is not satisfied. It is one of our primary goals to explore
the efficiency of the non-equatorial GSF instability in the regime of
weaker differential rotation in which this criterion (and equation 33)
is satisfied, but the system is none the less unstable to the (diffusive)
GSF instability.

Finally, we consider the case where the radial entropy gradients
are much larger than the latitudinal gradients, i.e. R � 1, as is
frequently the case in stars. In this limit, equation (25) implies � is
small, so in equation (28) the s� term is negligible and c� ≈ 1, so
the non-diffusive stability criterion at large R is

R >
s2
γ−�

4s�sγ

= S2�

8|∇|�, or Ri >
1

4
, (35)

using equations (24) and (9).

3.2 Diffusive (GSF) instability

Thermal diffusion enables instability even if the differential rotation
is adiabatically stable. This is referred to as the GSF instability, and
is the primary focus of this paper. We can derive a criterion for the
onset of steady modes (which are the relevant ones e.g. Knobloch
1982) by considering when the constant term in equation (14)
becomes negative, i.e. when

a + Prb + ν2k4 < 0. (36)

If the stratification is stabilizing b > 0, so for diffusive instability
a must be negative. Note that even though Pr is small, Ri might be
large, so the term Prb is not necessarily small. Following a similar
approach to equation (35), we obtain the following criterion for
instability in the strongly stratified limit (so that � ≈ 0):

RPr <
s2
γ−�

4s�sγ

= S2�

8|∇|�, or RiPr <
1

4
. (37)

This is equivalent to Knobloch & Spruit (1982) equation (34), and
it must be satisfied for the occurrence of the GSF instability at
a general latitude. Given that Pr � 1 in stars, this criterion can
easily be satisfied even when the non-diffusive stability criterion
equation (35) is satisfied. This criterion was derived by Rashid et al.
(2008) at the poles (� = 90◦), but we have just demonstrated that
this result holds for any latitude � �= 0 if we adopt a shellular profile
of differential rotation. At the equator, instability occurs if

κ2
ep = 2�(2� − S) < 0, (38)

which implies that much stronger differential rotation is required
there.

3.2.1 Limit as Pr → 0, with RiPr → 0

Since Pr is very small in stellar interiors, we now consider the
properties of the instability in the limit Pr → 0, with RiPr →
0. This may be relevant for rapidly rotating stars, since then Ri
is not so large, allowing RiPr to be small. In this limit, taking
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S ∼ O(�), a and b are O(�2), s ∼ O(�), and k2 ∼ O(�/
√

κν).
Then equation (14) reduces to

s2 = −a = −2�|∇|
�

(
k̂ · �̂

)(
k̂ · ˆ(∇�)

⊥)
, (39)

which indicates that stability is determined by the sign of a.
Marginal stability (s = 0) occurs when the wavevector is either
perpendicular to the rotation axis, meaning that k̂ · � = 0 (with
motions that are parallel to the rotation axis), or when the wavevector
is parallel to the angular momentum gradient (∇), meaning that
k̂ · (∇)⊥ = 0 (with corresponding motions that are perpendicular
to the angular momentum gradient, or along surfaces of constant
angular momentum). We will show below that in this scaling
the fastest growing modes have a wavevector angle that is half-

way between the two unit vectors �̂
⊥

and ˆ(∇), i.e. between the
rotation axis and a surface of constant angular momentum (see also
Knobloch & Spruit 1982).

In the limit of small Pr, the stabilizing effects of the stratification
have been eliminated and the growth rate is independent of Pr, N2,
and �. The fastest growing mode can be determined by maximizing
a with respect to the wavevector orientation (or w.r.t. both kx and
kz). We find

kz

kx

= −tan

(
1

2
(γ + �)

) (
or cot

(
1

2
(γ + �)

))
(40)

= Sc� − 2�c2� + |∇|/�
(S − 4�c�)s�

. (41)

This implies that the wavevector of the fastest growing mode in
this limit lies half-way between �⊥ and ∇. Note that at the pole,
kz/kx ≈ 4�/S in the limit �2 � S2, which agrees with Rashid
et al. (2008) equation (35) (noting that our kz/kx → −ky/kz in their
notation). At the equator, kz/kx → ∞, indicating that the instability
preferentially excites elevator modes with kx = 0, as shown in
paper I.

The growth rate of the fastest growing mode satisfying equa-
tion (40) is then

s2 = 2�|∇|
�

sin2

(
1

2
(γ − �)

)
, (42)

and this is maximal when the unstable wedge is as wide as possible.
This can be re-written as

s2 = �(|∇|/� + Sc� − 2�). (43)

At the equator, � = 0, therefore |∇|/� = 2� − S so that the
above expression reduces to s2 = −κ2

ep = 2�(S − 2�), which
agrees with the result derived in paper I.

By maximizing equation (14) with respect to k2 in this limit
(noting that a and b only depend on the wavevector orientation and
not its magnitude), we may show that

k4 = 1

2d4
sin2

(
γ + �

2

)
, (44)

independently of Pr. This is consistent with the results of paper I
at the equator, where k → 2−1/4d−1. We have therefore obtained
asymptotic expressions for the fastest growing wavenumber k, the
wavevector orientation kz/kx, and the corresponding growth rate s
for the case of small Pr and finite Ri. We will later use these results.

In Appendix A, we present a complementary asymptotic analysis
to explore the limit as Pr → 0 with RiPr = O(1). This analysis
extends Rashid et al. (2008) to a general latitude.

Figure 3. Logarithm of the linear growth rate (log10s/�) for the axisym-
metric GSF instability on the (kx, kz)-plane with S = 2, � = 30◦, N2 = 10,
Pr = 10−2. The solid red lines demarcate the region of linear instability,
and are parallel to the vectors �⊥ and ∇). Unstable modes are contained
within the wedge bounded by these two vectors.

3.2.2 Properties of the instability; an illustrative case

Fig. 3 shows the base 10 logarithm of the growth rate from
solving equation (14) on the (kx, kz)-plane with S = S/� = 2, � =
30◦, N2 = N 2/�2 = 10 and Pr = 10−2. For these parameters, Ri =
2.5 and E = 10−0.5. The red solid lines are parallel to the vectors �̂

⊥

and (∇), which represent the boundaries of the unstable region, in
accordance with our above discussion. The fastest growing modes
with growth rates O(1) are observed to lie along the line that is
approximately half-way between these two vectors, as expected.
The corresponding velocity perturbation for the fastest growing
mode in the (x, z)-plane is perpendicular to this, since k · u = 0.
This figure also shows that the wavelength of the fastest growing
modes in this case are O(d). Note that this value of S would be
marginally stable at the equator even if N2 = 0. The presence of
instability here illustrates that weaker shears are required to excite
the GSF instability at non-equatorial latitudes.

Non-axisymmetric disturbances tend to orient themselves along
the gradient of �, and therefore these modes becomes stable after
some point in their evolution, and hence ultimately decay (e.g. Latter
& Papaloizou 2018). Hence, we have focused on axisymmetric
disturbances in this section, since they are likely to be the most
important linear modes. Non-axisymmetric modes are likely to be
essential for the non-linear evolution however.

One might suppose that the GSF instability will saturate by
transporting angular momentum to modify the mean flow, to the
extent that the boundary conditions allow this, such that (∇)⊥

coincides with �̂ i.e. by eliminating the unstable wedge, driving
the system towards marginal stability. We will later show that our
simulations provide some support for this hypothesis.

4 I LLUSTRATI VE N ON-LI NEAR R ESULTS
WI TH � = 3 0 ◦

Our primary aim is to understand the non-linear evolution of
the non-equatorial GSF instability, and to quantify its angular
momentum transport. In this section we present some illustrative
non-linear axisymmetric and 3D simulations with � = 30◦, using
dimensionless quantities throughout. We will assume Pr = 10−2,
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1474 A. J. Barker, C. A. Jones and S. M. Tobias

Table 1. Table of the various angles and parameters for all simulations
performed with � = 30◦, Pr = 10−2, N2 = 10. The latter three columns
give the growth rate (units of �) and the angle and the magnitude (units of
d−1) of the wavenumber of the fastest growing mode.

S Ri � γ γ − � smax θ k k

1 10 5.74◦ 53.8◦ 23.8◦ 0.065 40.0◦ 0.55
1.5 4.44 8.63◦ 76.9◦ 46.9◦ 0.24 49.9◦ 0.67
2 2.5 11.54◦ 105◦ 75◦ 0.49 64.2◦ 0.74
2.5 1.6 14.5◦ 127.5◦ 97.5◦ 0.78 77.8◦ 0.77
3 1.11 17.5◦ 141.7◦ 111.7◦ 1.08 87.0◦ 0.78

N2 = 10 and consider a range of values of S, noting that we
are once again using the non-dimensional quantities specified in
Section 2. We will also vary Ly to probe the importance of 3D
effects, and we will take Lx = Lz = 100 except where specified
otherwise. With these parameters, the critical values of S delineating
the various regimes are: Solberg-Høiland stability (equation 33) if
S < 4.01 (Ri > 0.622) and GSF instability (equation 37) if S >

0.633 (Ri < 25). In the absence of stable stratification, we would
also have Rayleigh stability (equation 34) if S < 2.31 (Ri > 1.87).
We consider the evolution for a number of cases in the various
regimes. In the GSF-unstable cases with weak shears (that would
be Rayleigh-stable), we have S = 1, 1.5 and 2 (Ri = 10, 4.4, and
2.5). In the GSF-unstable regime with stronger shears (that would
be Rayleigh-unstable) we have S = 2.5 and 3 (Ri = 1.6 and 1.11).
Note that, S > 2 would be required for instability at the equator
(� = 0). Table 1 lists the various angles from linear theory for
these simulations, as well as predictions for the maximum growth
rate and corresponding wavenumber. Table B1 lists the simulation
parameters.

4.1 S = 2 with shearing-periodic BCs: axisymmetric case

We begin by presenting an axisymmetric simulation with S =
2. Note that this case is Solberg–Høiland stable, and would also
be marginally Rayleigh-stable in the absence of stratification, but
here it is GSF-unstable due to the presence of thermal diffusion.
Figs 4 and 5 show the temporal evolution of various volume-
averaged quantities in these simulations, along with results from
several 3D simulations with Ly = 30, 50, and 100, which will be
discussed further in the next section. Fig. 4 shows the kinetic energy
K = 1

2 〈|u|2〉, where 〈·〉 denotes a volume average, and the RMS
velocity components vy = 〈u2

y〉1/2 and vz = 〈u2
z〉1/2. We have found

vx = 〈u2
x〉1/2 to be slightly larger, though comparable, with vz, so

we have omitted showing this. Fig. 5 shows the momentum flux
components (Reynolds stresses) 〈uxuy〉 and 〈uyuz〉, as well as the
radial buoyancy flux −〈uxθ〉. Note that for our purposes we consider
any systematic mean flows, such as azimuthal jets, to contribute to
the Reynolds stress i.e. we do not decompose the flow into a mean
flow plus turbulent fluctuations to define the Reynolds stress. The
corresponding azimuthal flow uy is shown on the (x, z)-plane in
Fig. 6 at several different times in the axisymmetric simulation:
during the linear growth phase at t = 22, the initial non-linear
saturation at t = 50, and finally at two later stages in the non-linear
evolution at t = 100 and t = 300.

The linear growth phase is dominated by modes that have a
slanted structure, as we show in the top panel of Fig. 6, consisting
of finger-like motions along a direction (indicated by the solid black
line) that lies approximately halfway between the rotation axis and
a surface of constant angular momentum (parallel with (∇)⊥) –

Figure 4. Temporal evolution of K, vy and vz in a set of simulations with
S = 2, � = 30◦, N2 = 10, and Pr = 10−2, with various different Ly.
The axisymmetric simulation exhibits much stronger flows than the 3D
simulations, but there is only a weak dependence on Ly �= 0. We have also
plotted a simulation performed with stress-free radial boundaries in the top
and bottom panels (labelled ‘Nek’), which will be discussed in Section 4.3.

both of these directions are indicated by black dashed lines – as
explained in Section 3. At t ∼ 50, the linear growth has saturated,
and the initial finger-like motions have begun to merge into a number
of zonal (uy) jets that extend across the box. At this stage, these jets
possess a similar orientation to the linear modes.

At later times, the jets undergo further mergers, which strengthens
them and enhances the momentum transport. By t ∼ 100, there are
two jets along z (or x), but by t ∼ 300 the jets have merged until
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GSF instability 1475

Figure 5. Temporal evolution of 〈uxuy〉, 〈uyuz〉, and −〈uxθ〉 in a set of
simulations with S = 2, � = 30◦, N2 = 10, and Pr = 10−2, with various
different Ly. The axisymmetric simulation transports momentum and heat
much more efficiently than the 3D simulations, but there is only a weak
dependence on Ly �= 0. We have also plotted a simulation performed with
stress-free radial boundaries in the top and middle panels (labelled ‘Nek’),
which will be discussed in Section 4.3.

there is only one wavelength along z (or x), after which this state is
observed to persist. The strengthening of zonal jets as they merge
can be clearly observed in the rapid transitions in the kinetic energy
in the top panel of Fig. 4. As we show in the top two panels of Fig. 5,
the momentum transport is enhanced with each successive merger,
such that 〈 uxuy〉 has grown to be approximately five times larger
than in the initial non-linear phases. We also observe non-negligible

〈 uyuz〉, though this is somewhat smaller than 〈 uxuy〉. In Fig. 7 we
show a snapshot of uxuy on the (x, z)-plane at t = 300, which shows
that the interfaces between steps with oppositely signed zonal flows
dominantly contribute to 〈 uxuy〉.

At t = 300, the bottom right-hand panel of Fig. 6 shows that
the jet is no longer aligned with the linear modes. The maximum
|uy| ∼ 50, which is comparable in strength with the background
flow (|U0| ≤ 100), indicating that the instability has significantly
modified the (total) flow. It is interesting to note that the angle of the
jets (measured from the x-axis) increases towards the rotation axis,
as we might expect if the instability modifies the flow by ‘shrinking
the wedge’ in Fig. 3. In other words, the instability appears to drive
the flow towards marginal stability so that the surfaces of constant
angular momentum (for the total flow) have a tendency to coincide
with the rotation axis. However, the boundary conditions in our
setup do not allow the flow to be modified at the boundaries, so by
this final stage, the boundaries are certainly constraining the flow.
In Section 4.3, we will describe a complementary simulation with
stress-free boundaries, and in Section 4.6 we will describe how the
box size and aspect ratio affect the transport and the flow.

We can further analyse the flow by computing the Fourier
spectrum of the velocity field. In Fig. 8, we show log10 Re[ûy û

∗
y]

on the (kx, kz)-plane, where hats denote quantities in spectral space,
during the same times in the simulation as Fig. 6. The first panel
is at t = 22, and the remaining three panels are averaged over 15
snapshots (spaced every time unit) starting at t = 40, 100, and 300,
respectively. Note that the modes with non-negligible energies at
t = 22 are those within the unstable wedge shown in Fig. 3, where

the solid red lines indicate the directions of �̂
⊥

and ∇. We have
also found log10 Re[ûx û

∗
y] (the spectrum of the Reynolds stress)

to exhibit similar features, indicating that the strong zonal jets are
primarily responsible for the momentum transport. The peak of the
spectrum at t = 300 has shifted towards the left red solid line,
indicating again that the instability acts to drive the system towards
marginality.

4.2 S = 2 with shearing-periodic BCs: 3D cases

Three-dimensional effects play a key role in the equatorial GSF
instability (paper I), so we now turn to explore whether they are
also important for the non-equatorial instability with S = 2. The
time-evolution of volume-averaged flow quantities for several 3D
simulations is presented in Figs 4 and 5 for cases with Ly = 30,
50, and 100. All of the 3D simulations develop much weaker flows,
having approximately one quarter of the energy of the axisymmetric
case in the non-linear state, but there is only weak dependence on
Ly between these different 3D simulations.

Fig. 9 shows the spatial structure of the y-averaged zonal flow (uy)
in a 3D simulation with Ly = 100 at t = 100 and 1000, which can be
compared with Fig. 6. This demonstrates that strong zonal jets are
also produced in three dimensions, but that the velocity magnitude
of the jets (and of the GSF-driven turbulent flows, according to
Fig. 4) is somewhat weaker than in the axisymmetric case by
approximately a factor of 2. These jets merge and strengthen just as
in the axisymmetric case. The corresponding momentum transport,
shown in Fig. 5, does not appear to be enhanced as significantly by
the jet mergers in 3D however, and increases by less than a factor
of 2 from t ∼ 100 to t ∼ 1000. Indeed, contrary to the axisymmetric
case, 〈uxuy〉 in the 3D simulations remains at a level similar to its
value at the initial saturation, even once the jets have merged to
fill the box. This may be related to the weaker zonal flows here
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1476 A. J. Barker, C. A. Jones and S. M. Tobias

Figure 6. Snapshots of uy in the (x, z)-plane for an axisymmetric simulation with S = 2, � = 30◦, N2 = 10, and Pr = 10−2, at various times. The top panel
shows the linear growing modes, which are slanted along the black solid line, which is half-way between the rotation axis and a surface of constant angular
momentum (shown as black dashed lines). The remaining panels show the formation of zonal jets that merge and strengthen until they occupy the full extent
of the box.

compared with those presented in Section 4.1. As a result, the
transport is smaller by approximately a factor of 5 compared with
the axisymmetric case once jets have merged by t ∼ 300. The
strength of the jets doesn’t depend strongly on Ly �= 0, as is shown
in the middle panel of Fig. 4. The radial buoyancy flux is also larger
in the axisymmetric simulation (bottom panel of Fig. 5), further
indicating that the zonal jets do not enhance transport as efficiently
in 3D. Note that the jets appear to enhance the buoyancy flux here,
which is the opposite behaviour to the meridional jets produced
by the equatorial instability presented in paper I. This difference is
presumably due to their different orientation with respect to x.

In summary, this illustrative set of simulations highlights that the
non-equatorial GSF instability produces strong zonal jets, which can
be thought of as ‘layering’ or ‘staircasing’ of the angular momen-
tum. The mechanism for the formation of these jets is complicated,
as for other systems where layering occurs. Physically it is plausible
that the instability saturates by a combination of modifying the
large-scale state of the system (both in terms of temperature and

angular momentum) and increasing the dissipation (via the presence
of turbulent interactions). Because the overall gradients remain
fixed, the system may only mix locally saturating with layers where
the shear profile has been mixed, interleaved with layers where
the overall shear is stronger; this leads to the formation of jets.
However the turbulence also modifies the underlying temperature
field, which is not aligned with that of angular momentum and so
the saturation is complicated. The jets transport angular momentum
and appear to drive the system towards marginal stability, as far as
this is allowed by the boundary conditions. The jets are observed
to merge until they grow to the box size, superficially similar
to the behaviour of layers in salt fingering (e.g. Garaud 2018).
In axisymmetric cases, the momentum transport is significantly
enhanced by these strong jets, though their effects are somewhat
weaker in 3D. This suggests that 3D simulations are probably re-
quired for evaluating the astrophysical importance of the instability.
Since the momentum and heat transport in 3D simulations remains
similar to the initial saturated value, this suggests that a simple

MNRAS 495, 1468–1490 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/495/1/1468/5837090 by U
niversity of Leeds user on 29 M

ay 2020



GSF instability 1477

Figure 7. Snapshot of uxuy in the (x, z)-plane at t = 300 in the axisymmetric
simulation with S = 2, � = 30◦, N2 = 10, and Pr = 10−2. Comparing this
with Fig. 6 shows that momentum transport is dominated by the interfaces
between layers.

single-mode mode theory for homogeneous GSF-driven turbulence
may approximately explain the transport in our 3D simulations.
We will turn to make this comparison in Section 5. However,
whenever these jets form, they could play an important role in
enhancing angular momentum transport in stellar interiors. How are
these results affected by the shearing-periodic boundaries? In Sec-
tion 4.3, we turn to analyse a complementary simulation performed
with stress-free, impenetrable, radial boundaries to answer this
question.

4.3 S = 2: 3D case with stress-free BCs

Here we present a 3D simulation performed using Nek5000 with
stress-free, impenetrable, fixed temperature boundaries in x, with
Ly = 30 (using E = 20 × 3 × 20 elements and Np = 10 and 15 for
non-linear terms – a simulation with six elements in y was also
performed that gave essentially the same results). Our smallest
3D domain in y was chosen for computational efficiency, and
was motivated by the weak dependence of our 3D simulations
on Ly. The time-evolution of volume-averaged flow quantities for
this simulation is also presented in Figs 4 and 5 as the magenta
dashed lines. We observe that the kinetic energy is approximately
a factor of 2 smaller than in the corresponding simulation with
shearing-periodic boundaries, though the x-velocity magnitude is
similar. As shown in the top panel of Fig. 5, 〈uxuy〉 is approximately
20 per cent smaller than in the corresponding case with shearing-
periodic boundaries by a similar factor, while 〈uyuz〉 is similar.

Fig. 10 presents snapshots of the y-averaged uy flow component
in the (x, z)-plane, which can be compared with Fig. 9. The flow
is broadly similar to the shearing-periodic case plotted in Fig. 9,
though it is approximately half the strength. Throughout the bulk of
the flow, the tilt angle of the zonal flows is similar at t = 100, with
the flows being primarily aligned along the direction of the fastest
growing mode, but by t = 1000 they exhibit a steeper tilt angle.
The flow does differ near the inner boundary however, and exhibits
a much steeper tilt angle than for shearing box calculations even
at t = 100, as we show in Fig. 10. This is presumably because the
boundary conditions prevent radial flow. They also allow the basic
flow to be modified by the instability at the boundaries.

This example illustrates that the non-linear evolution of the GSF
instability is not strongly affected by modifying the radial boundary
conditions from shearing-periodic to stress-free and impenetrable.
The main difference observed is that the flow near the boundaries
is modified with stress-free conditions, which results in a slightly
weaker turbulent energy and transport because the flow can evolve
to better match the marginal state in this case.

4.4 Two further weak shear cases (S = 1, 1.5)

The differential rotation in stars is not always expected to be strong
enough to violate Rayleigh’s criterion, but the GSF instability can
still operate on weaker shear. Here we explore two further weak
shear cases that would be Rayleigh-stable (if N2 = 0), with S =
1 and S = 1.5, including axisymmetric and 3D simulations with
various Ly. In Figs 11 and 12 we show the time-evolution of
various volume-averaged quantities, similar to Figs 4 and 5. We
immediately observe that axisymmetric simulations develop much
stronger flows (Fig. 11) and lead to much more efficient transport
compared with 3D cases (Fig. 12), and that the 3D cases exhibit
only a weak dependence on Ly. These results are consistent with
those in Sections 4.1 and 4.2.

In Fig. 13, we present a snapshot of uy during the linear growth
phase in the axisymmetric simulation with S = 1 at t = 160 (top
panel), as well as uy during a subsequent non-linear phase based
on averaging over 10 time snapshots from t = 1500 to t = 1510
(middle panel). We also show log10 Re[ûy û

∗
y] on the (kx, kz)-plane

in the bottom panel of the same figure. The flow in the linear growth
phase consists of slanted finger-like jets along the direction expected
from Section 3 in each case. In the later non-linear phases, these
jets have merged to form strong larger-scale zonal jets approaching
the size of the box, similar to those observed in Section 4.1 and
Section 4.2. The middle and bottom panels of Fig. 13 both indicate
that the preferred direction of the flow is no longer aligned with the
linear prediction, and is driven instead towards marginality, with
the total flow being modified by the instability. As a result of the
strong zonal jets in the axisymmetric simulations with S = 1 and
S = 1.5, the transport is nearly as efficient as in the simulations with
S = 2 presented in Fig. 5. This surprising result is a consequence
of the strong zonal jets that develop. The 3D simulations exhibit
very similar behaviour to the axisymmetric cases except that the
zonal jets are considerably weaker and do not enhance the transport
as efficiently. The flow is qualitatively similar with S = 1.5, so
we omit showing snapshots for this case. These examples indicate
that the evolution described in Sections 4.1 and 4.2 may be generic
for cases with weaker shear (which here correspond with Rayleigh
stable cases).

4.5 Strong shear cases (S = 2.5 and S = 3)

Our next set of simulations with � = 30◦ explores stronger shear
cases with S = 2.5 and 3 that would be Rayleigh-unstable in the
absence of stratification. These simulations differ significantly from
those with weaker shears presented previously. The evolution of
volume-averaged quantities is presented in Figs 14 and 15, and a
snapshot of uy in the axisymmetric simulation with S = 2.5 at t = 700
is shown in the top panel of Fig. 16. The latter shows that the flow
primarily consists of finger-like jets, which are comparable in scale
with the linear modes, unlike the large-scale zonal jets that were
produced in the weaker shear cases, and the flow remains closer
to a homogeneous turbulent state. As a result, the flow remains
statistically steady with sustained transport properties, exhibiting a
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Figure 8. Fourier spectrum of log10 Re[ûy û∗
y ] on the (kx, kz)-plane for an axisymmetric simulation with S = 2, � = 30◦, N2 = 10, and Pr = 10−2, at various

times. The black line indicates the direction of the fastest growing mode, and the red lines indicate �̂
⊥

and ∇, and demarcate the boundaries of the linear
GSF-unstable region (see Fig. 3). This shows that the modes are preferentially oriented along the linearly unstable direction until the later non-linear phases
(by t ∼ 300), when the total flow is significantly modified.

weaker dependence on Ly than the cases with smaller S presented
previously. These simulations are superficially similar to those at
the equator in paper I except that the finger-like jets have a preferred
direction that is tilted from the x-axis. The modes continue to exhibit
a preferential tilt angle that is similar to the prediction from linear
theory even during later non-linear phases. This is shown in the
bottom panel of Fig. 16, where the uy spectrum is presented, based
on an average of 100 snapshots from t = 700 to t = 800 in the
turbulent state from the axisymmetric simulation with S = 2.5.

The axisymmetric and 3D simulations behave in a qualitatively
similar way. The main quantitative difference is that the 3D cases
saturate with energies and Reynolds stresses that are smaller by
approximately a factor of 2. Results for both S = 2.5 and S = 3
are observed to become approximately independent of Ly once this
exceeds 30. Presumably these cases differ from those with weaker
shears in that the unstable modes instead saturate due to the action
of parasitic shear instabilities which limit their amplitudes. These
shear instabilities are expected to be weaker in cases with smaller
S, and may require sufficiently large amplitude to onset that jet
mergers occur before they become important. This may be related
to the stability of GSF-unstable modes in astrophysical discs as a
function of Ro as studied by Latter & Papaloizou (2018).

4.6 Evolution in larger boxes and different aspect ratios for
S = 1 and S = 2

The zonal jets in the weaker shear cases (S = 1, 1.5, 2) with Lx =
Lz = 100 are observed to grow until they become comparable with
the size of the box in x and z (as is most clearly seen in Fig. 6). Does
this behaviour continue as we increase Lx and Lz, and how does
the evolution differ in bigger boxes? To answer these questions, we
have performed four additional simulations with Lx = Lz = 200 that
have either S = 1 or S = 2, and each for both an axisymmetric and
a 3D case with Ly = 200.

We show the time history of K and 〈 uxuy〉 for these new
simulations in Fig. 17, where we have compared our results with
the axisymmetric and 3D cases with Lx = Lz = 100 (and Ly = 100
in 3D). Snapshots of the uy flow in each of these simulations are
presented in Fig. 18. We observe that the axisymmetric flow kinetic
energy and corresponding transport grow to be substantially larger
in the bigger box, with the final saturated value, after undergoing
several ‘jumps’, being approximately a factor of 2 larger. Fig. 18
shows that the zonal jets in both cases with a bigger box have
grown to be comparable in size with the box in x and z, having a
wavelength that is twice as large compared with the smaller box
snapshots in Figs 6 and 13. The flows in these bigger boxes are
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Figure 9. Snapshots of y-averaged uy in the (x, z)-plane for the 3D
simulation with Ly = 100, and S = 2, � = 30◦, N2 = 10, Pr = 10−2,
at two different times. This illustrates that qualitatively similar non-linear
behaviour is obtained in 3D.

also much faster. These results suggest that the axisymmetric GSF
instability behaves qualitatively like Boussinesq salt fingering (or
double-diffusive convection), in which layers merge until they grow
to the size of the box (Garaud 2018).

The 3D cases behave in a strikingly different manner, at least
for the run times considered here. Fig. 17 shows that the 3D cases
in the biggest box saturate with a similar energy to the smaller
box (in fact slightly smaller for the case with S = 2). The mean
value of the transport 〈 uxuy〉 is almost identical between the two
box sizes in 3D, though the turbulent fluctuations are smaller.
Inspection of the flow in Fig. 18 suggest the key difference with the
axisymmetric cases: the zonal jets are not able to grow to the size
of the box in 3D, at least for the run times explored here. This may
be because the smaller scale jets are subject to non-axisymmetric
‘parasitic’ shear instabilities that limit their amplitudes in 3D. Such
non-axisymmetric modes are of course ruled out in axisymmetric
simulations. The convergence with increasing Lx = Lz in 3D is
promising, and suggests that further simulations with larger boxes
may not be necessary for our purposes. This can be confirmed

Figure 10. Snapshots y-averaged uy in the (x, z)-plane at y = 0 for the 3D
simulation with stress-free, impenetrable radial boundaries with Ly = 30,
S = 2, � = 30◦, N2 = 10, and Pr = 10−2, at two different times. This
illustrates that qualitatively similar behaviour is observed using stress-free
and shearing-periodic boundary conditions.

conclusively only with much longer duration simulations however,
since the largest scale may only emerge on a time-scale proportional
to L2

x/ν.
We speculate that the axisymmetric simulations behave qualita-

tively differently from the 3D cases because axisymmetric shear
instabilities that act on the zonal jets are inhibited by rotation for
small flow amplitudes (and presumably only set in if u��/k, where
u is the velocity amplitude and k is the wavenumber of the flow, by
analogy with Latter & Papaloizou 2018), allowing them to reach
much larger amplitudes than they could if non-axisymmetric modes
were permitted. On the other hand, non-axisymmetric parasitic
modes (which are likely to be more important than in the Keplerian
case in Latter & Papaloizou 2018, at least for weaker S) are likely
to operate in 3D for somewhat weaker flow amplitudes. As a result,
we may expect the 3D cases to saturate with weaker flows than the
axisymmetric cases.

Finally, we briefly explore the effect of varying the aspect
ratio Lx/Lz in simulations with S = 2. This quantity might be
considered important because zonal jets grow to sizes comparable
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Figure 11. Same as Fig. 4 but for simulations with S = 1 and 1.5.

with the box, so that the dynamics of the jets could be affected by
the periodic boundary conditions. For example, the dynamics of
double-diffusive intrusions, in which similar (though not directly
analogous) large-scale inclined structures are generated (Simeonov
& Stern 2007; Medrano, Garaud & Stellmach 2014), is affected
by the degree of inclination of the box relative to the intrusions. In
Fig. 19 we show the time evolution of 〈uxuy〉 and K in four additional
simulations (both axisymmetric and 3D) with Lx = 100, Lz = 200,
and Lx = 200, Lz = 100 together with those with Lx = Lz = 100

Figure 12. Same as Fig. 5 but for simulations with S = 1 and 1.5.

and Lx = Lz = 200 already presented. Axisymmetric simulations
are affected by the aspect ratio, both in their kinetic energy and
transport properties. On the other hand, while the kinetic energy
in the 3D simulations can differ by ∼ 50 per cent as we vary the
aspect ratio from 1/2 to 2, the Reynolds stress components such as
〈uxuy〉 are not significantly affected (other components not shown
but behave similarly). This suggests that the aspect ratio (and hence
the orientation of the box to the natural angle for the jet formation)
does not significantly affect the transport properties that we have
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Figure 13. Snapshots of uy in the (x, z)-plane for an axisymmetric
simulation with S = 1, � = 30◦, N2 = 10, and Pr = 10−2, at t = 160
(top) and an average over 10 slices from t = 1500 − 1510 (middle). Bottom:
Fourier spectrum of log10 Re[ûy û∗

y ] on the (kx, kz)-plane using the same
snapshots as the middle panel. The black and red lines are similar to those
in previous figures but for the parameters of this simulation.

observed in 3D, and further indicates that they are less affected by
the jets than the axisymmetric cases.

4.7 Summary

We have also performed an extensive suite of simulations in which
� is varied. Qualitatively similar behaviour was found at these
other latitudes to the cases presented in this section. In particular:
cases with weaker shears that are here Rayleigh-stable form strong
zonal jets which enhance the transport in axisymmetric cases, and
simulations with stronger shears remain closer to a statistically

Figure 14. Same as Fig. 4 but for simulations with S = 2.5 and S = 3.

steady and homogeneous turbulent state. There are significant
differences between axisymmetric and 3D simulations, indicating
that only the latter should be used to infer the transport properties
for application to astrophysics. Since the stronger shear cases (that
are here Rayleigh-unstable) saturate in a state of homogeneous
turbulence, we might expect a generalization of the simple single-
mode theory in paper I to apply to these, whereas this may not be
expected to work when large-scale zonal jets are important. In the
next section, we turn to a comparison of the transport properties of

MNRAS 495, 1468–1490 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/495/1/1468/5837090 by U
niversity of Leeds user on 29 M

ay 2020



1482 A. J. Barker, C. A. Jones and S. M. Tobias

Figure 15. Same as Fig. 4 but for simulations with S = 2.5 and S = 3.

the flow with the predictions of a simple single mode theory that is
straightforward to compute (e.g. in stellar evolution codes).

5 TH E O RY FO R S AT U R AT I O N O F TH E G S F
INSTABILITY

For astrophysical applications we would like to quantify the angular
momentum transport produced by the GSF instability in a simple
way so that its effects can be incorporated in stellar evolution codes.

Figure 16. Top: snapshots of uy in the (x, z)-plane for an axisymmetric
simulation with S = 2.5, � = 30◦, N2 = 10, and Pr = 10−2, at t = 700 during
the later non-linear phases. Bottom: Fourier spectrum of log10 Re[ûy û∗

y ] on
the (kx, kz)-plane from averaging 100 slices from t = 700–800. The black
and red lines are similar to those in previous figures but for the parameters
of this simulation.

For simplicity, we develop the theory introduced in paper I (based
on analogy with salt fingering in Brown et al. 2013) so that it should
apply to homogeneous turbulence driven by the instability. A quasi-
linear theory may be required though to explain the transport in the
presence of strong zonal jets.

Following paper I (see also Brown et al. 2013 for salt fingering),
we assume that the flow is dominated by the fastest growing
linear mode, and that this mode saturates when its growth rate
balances its non-linear cascade rate. However, we must refine
our previous arguments away from the equator, since the fastest
growing modes have a preferential tilt in the (kx, kz)-plane, with an
angle

θk = −tan−1

(
kz

kx

)
(45)

below the x-axis (e.g. Fig. 3). This is readily calculable from linear
theory once we have determined the fastest growing mode. To do
this numerically, we solve equation (14), in addition to the two
equations obtained by differentiating equation (14) with respect to
kx and kz and setting these equal to zero. In the limit Pr → 0, the
tilt angle can be obtained from equation (41). The velocity vector
of the fastest growing mode is tilted in the (x, z)-plane by an angle
θu = ±π /2 − θ k.

The fastest growing mode (with shearing-periodic BCs) is an
‘elevator mode’, which is a 1D shear flow (u�) along this preferred
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Figure 17. Temporal evolution of 〈uxuy〉 and K in a set of simulations with
S = 1 or S = 2, and � = 30◦, N2 = 10, Pr = 10−2, comparing cases with
two different box sizes Lx = Lz = 100 and Lx = Lz = 200. Cases with
S = 1 are shown as dashed lines. This shows that 3D cases do not strongly
depend on the box size, whereas axisymmetric cases are stronger in larger
boxes.

direction, with a perpendicular wavenumber k⊥ = √
k2

x + k2
z . We

expect parasitic instabilities to saturate these modes whenever s ∼
u�k⊥. As in paper I, we define a constant of proportionality A, which
should only weakly depend on the parameters of the system if the
theory is approximately correct, such that

u‖ ≡ As

k⊥
. (46)

We then relate this to ux by |ux| = |u�cos θu| = |u�sin θ k|. This
model reduces to the theory in paper I at the equator, where θu = 0
and kx = 0.

For a single linear mode, the Fourier amplitudes of perturbations
are related by

uy =
(
S − 2�(cos � + kx

kz
sin �)

)
sν

ux, (47)

uz = −kx

kz

ux, (48)

θ =
−N 2(cos � − kx

kz
sin �)

sκ

ux, (49)

in terms of the radial velocity ux. Using equations (47)–(49) for a

single mode, we can construct2:

〈uxuy〉 = 1

2sν

(
S − 2�(cos � + kx

kz

sin �)

)
|ux |2, (50)

〈uyuz〉 = − kx

2sνkz

(
S − 2�(cos � + kx

kz

sin �)

)
|ux |2, (51)

〈uxuz〉 = − kx

2kz

|ux |2, (52)

〈uxθ〉 = −
N 2(cos � − kx

kz
sin �)

2sκ

|ux |2, (53)

〈uzθ〉 =
kxN 2(cos � − kx

kz
sin �)

2kzsκ

|ux |2. (54)

We may now obtain simple predictions for the flow and its resulting
transport (such as 〈uxuy〉) in terms of the linear mode properties
and a single constant A, which we determine by comparison with
numerical simulations. Our next task is to explore the validity of
this simple theory.

In Fig. 20 (top panel), we show 〈uxuy〉 with error bars based on one
standard deviation as a function of S from a range3 of axisymmetric
(2D; blue circles) and 3D simulations (blue crosses, showing results
with several different Ly) with � = 30◦. In the bottom two panels we
show

√
〈u2

y 〉 and
√

〈u2
z 〉. In each panel we indicate the line RiPr = 1

4 as
the green-dashed line (equation 37), Rayleigh stability (equation 34)
as the red dashed line and Solberg-Høiland stability (equation 33) as
the light blue dashed line. We also plot the theoretical prediction for
these quantities according to the theory discussed above as the solid
blue line, and a version based on the limit Pr → 0 (using equations 40
and 43) as the dashed blue line (which might be expected to provide
the most efficient transport in the GSF unstable regime). Finally,
the prediction according to the theory validated against simulations
in paper I at the equator is plotted as the solid black line.

First, we notice that the instability is much more efficient at
transporting angular momentum, and drives much stronger flows,
at non-equatorial latitudes compared with at the equator. The GSF
instability at the equator requires S > 2, whereas at other latitudes
we only require RiPr < 1

4 (corresponding with S > 0.633), which
is much less restrictive. Secondly, we also observe here that the
axisymmetric (2D) simulations typically produce stronger flows,
and provide more efficient transport (by approximately a factor of 2),
than the 3D simulations. This indicates that 3D simulations are prob-
ably required for understanding the instability in stellar interiors.

The simple single-mode theory with A ≈ 5 does a reasonable job
of capturing the transport in the stronger shear cases (that are here
Rayleigh-unstable), albeit only for a narrow range of S values. It
does not work well for all S however. Indeed, we might expect the
theory to fail in the weaker shear cases in which strong zonal jets
are generated. The top panel in Fig. 20 indicates the value of 〈uxuy〉
for the 3D simulations after the initial saturation but before strong
zonal jets have formed with green squares (note that simulations
with various Ly are plotted for certain S values, as listed in Table B1).
These values lie closer to the simple theoretical predictions, as we
might expect. We have additionally indicated cases with strong

2Note that these relations are unchanged when we consider latitudinal
differential rotation or moderate centrifugal effects in which eg �= ex , and
only s, kx, kz, and � are modified in this case.
3The values from simulations are taken as an average over the entire
simulation after the linear growth phase, i.e. they do not show the value
during each layered state to avoid further cluttering the figure.
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1484 A. J. Barker, C. A. Jones and S. M. Tobias

Figure 18. Snapshots of uy in the (x, z)-plane for a set of simulations with Lx = Lz = 200, with either S = 1 or S = 2, and � = 30◦, N2 = 10, Pr = 10−2, at
various times for both axisymmetric and 3D simulations (where the latter have Ly = 200).

zonal jets, defined as those simulations in which
√

〈u2
y 〉 (based on a

time-average of this quantity after the linear growth phase) exceeds
SLx/20 by overplotting these points with red stars in the top panel of
Fig. 20. This clearly demonstrates that the cases where the theory
underpredicts the transport are those in which strong zonal jets have
developed. Presumably a quasi-linear theory is required to explain
the transport in these cases, which is a topic worthy of exploration
in future work.

The main result in Fig. 20 is that the transport is enhanced over
the simple single-mode theory, by up to several orders of magnitude
in the weakest shear cases dominated by zonal jets. Note that the
largest values of S considered are such that Ri = O(1), where we
also expect the simple theory to no longer apply based on our
observations in paper I.

We show a similar comparison for 〈uxuy〉 using simulations (not
previously presented) at � = 60◦ and 90◦ (north pole) in Fig. 21.
These also show that the transport is significantly enhanced over
the simple single-mode theory, due to the presence of strong zonal
jets. The transport is also observed to be more efficient at higher
latitudes. These figures indicate that A may depend weakly on �,
and so does not appear to be a universal constant for the non-
equatorial GSF instability. One possibility to improve the match
between simulations and theory would be to incorporate multiple-
modes (rather than just the single fastest growing mode i.e. by
instead fully accounting for the shape of the growth rate contours in
k-space). For example, such an approach is required to apply rotating

mixing length theory to explain the bulk properties of convection
(Currie et al. 2020). However, the strong zonal jets that form in
the current problem may prevent this approach from removing the
discrepancy. Further work is required to understand theoretically
the transport by the GSF instability with weaker shears. We believe
that such a theory may involve examining the quasi-linear response
of the shear and temperature fields to the Reynolds stresses and
heat fluxes – or the generalized quasi-linear versions of the same
theories (Tobias, Dagon & Marston 2011; Marston, Qi & Tobias
2014; Marston et al. 2016).

6 A STRO PHYSI CAL I MPLI CATI ONS

We now turn to estimate the astrophysical relevance of the GSF
instability. However, we should note that uncertainties remain,
particularly regarding the lack of a theory to describe the turbulent
transport in weak shear cases with strong zonal jets. As in paper I,
we must convert quantities from our dimensionless units to obtain
the physical rates of angular momentum transport. We note that

〈uxuy〉real = �2d2〈uxuy〉code, (55)

which relates the Reynolds stress in physical units (subscript ‘real’)
with the output from our simulations (subscript ‘code’). For a
crude estimate, we assume that the GSF instability transports
angular momentum radially in the form of an eddy diffusion with a
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Figure 19. Temporal evolution of 〈uxuy〉 and K in simulations with S = 2,
and � = 30◦, N2 = 10, Pr = 10−2, comparing cases with different aspect
ratios. This shows that the transport in 3D is not significantly affected by
varying the aspect ratio Lx/Lz, whereas axisymmetric cases are strongly
affected.

diffusivity νE. An appropriate effective viscosity is given by

νE = 〈uxuy〉real

S = νS−1N−1Pr−1/2〈uxuy〉code, (56)

and an effective viscous time-scale for angular momentum transport
over a distance L is

tν = 1

〈uxuy〉code

L2

d2
S�−1.

Our simulations indicate that at non-equatorial latitudes, 〈uxuy〉code

≈ 10 − 100, at least for Pr = 10−2 for the S and N2 values considered
in this work. This is typically much more efficient than instability at
the equator. In the absence of strong zonal jets, we speculate that the
transport will not strongly depend on Pr (for a partial justification,
see Section 5 and the discussion in paper I). However, the dynamics
of the zonal jets, how the resulting transport depends on Pr, and
whether they attain an ultimate size and strength, remain to be
established.

6.1 Red giant and subgiant stars

Our first example is the application of our results to red giant
stars, for which the models of Eggenberger et al. (2017) suggest
an additional viscosity of ν = 103 − 104cm2s−1 is required to
explain their observed weak core–envelope differential rotations.
We adopt the numbers from paper I (following e.g. Caleo et al.
2016; Eggenberger et al. 2017), to estimate an effective viscosity

Figure 20. Comparison of 〈uxuy〉,
√〈u2

x〉, and
√

〈u2
y〉 against the simple

theory, as a function of S, showing a set of simulations with � = 30◦,
N2 = 10, Pr = 10−2, for both axisymmetric (labelled 2D) and 3D cases.
This shows that the weaker shear cases that are Rayleigh-stable have much
larger flows and transport angular momentum more efficiently than predicted
by the simplest homogeneous single-mode theory, by up to two orders of
magnitude.

due to the non-equatorial instability,

νE ≈ 500 cm2s−1 〈uxuy〉code

100
, (57)

which is slightly smaller than the required value. This crude estimate
nevertheless indicates that the GSF instability could provide an
important contribution to the ‘additional viscosity’ required in red
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Figure 21. Comparison of 〈uxuy〉 against the simple theory, as a function
of S, showing a set of simulations with � = 60◦ and � = 90◦, with N2 =
10, Pr = 10−2, for both axisymmetric (labelled 2D) and 3D cases.

giant stars. We advocate further work to explore the implementation
of the theory in Section 5 in stellar evolution codes incorporating
rotation to explore whether this mechanism can work in practice.

In a similar study to the above-mentioned work on red giant
stars, Eggenberger et al. (2019) suggest an additional viscosity of
ν = 103 − 104cm2s−1 is required to explain the observed weak
core–envelope differential rotations of subgiant stars. The above
crude estimate indicates that it would be worthwhile to explore
further whether the GSF instability could also be important in the
evolution of these stars.

6.2 Solar Tachocline

As already discussed, the stably stratified layers in the lower parts of
the solar tachocline may be GSF-unstable (away from the equator)
– even if this instability is not expected in the bulk of the radiation
zone of the current Sun (Rashid et al. 2008; Caleo et al. 2016).
Using the numbers from paper I, we estimate

νE ≈ 5 × 105cm2s−1 〈uxuy〉code

100
, (58)

giving an effective viscous time-scale

tν ≈ 0.03Myr

(
L

0.01R�

)2 1

〈uxuy〉code/100
, (59)

to transport angular momentum over the radial extent of the
tachocline region (assumed to have L = 0.01R�). This estimate

supports the suggestion in paper I that the GSF instability could
be important for the long-term angular momentum transport in the
tachocline. This mechanism may also be important in providing
turbulent diffusion at mid-latitudes, which could play a crucial role
in models of the tachocline (e.g. Gough & McIntyre 1998; McIntyre
2007; Wood & McIntyre 2011). This mechanism is also expected
to have been even more important in the past, when the Sun was
rotating more rapidly, so it may have played a role in the evolution
of the internal rotation of Sun (Menou & Le Mer 2006).

6.3 Hot Jupiter atmospheric jets

The atmospheric jets that advect heat from dayside to nightside on
hot Jupiters occur in stably stratified surface layers. The jets that are
observed in simulations are often transonic (or possibly supersonic),
with strong radial and latitudinal shear. Their atmospheres are also
likely to have very small Pr and have effective thermal diffusion.
These are conditions in which the GSF instability could operate, as
first speculated by Goodman (2009). For a crude estimate, adopting
numbers from Menou (2019), we find N ≈ 2 × 10−3s−1, the local
rotation period is of the order of 1 day assuming synchronous
rotation, i.e. � ≈ 7 × 10−5s−1, and we adopt a jet of shear strength
S/� ≈ 140. At P ≈ 0.01 bar, κ ≈ 1011cm2s−1 (Menou 2019), and
we estimate ν ≈ 104cm2s−1 (Li & Goodman 2010). We therefore
obtain

d ≈ 1 km, (60)

indicating that this instability occurs on short length scales. This
is impossible to resolve in global simulations (e.g. Showman et al.
2009; Dobbs-Dixon et al. 2010; Fromang et al. 2016; Mayne et al.
2017), so the effects of this instability on limiting jet strengths and
modifying their profiles would not previously have been captured.
The resulting effective viscosity is estimated to be

νE ≈ 3 × 106cm2s−1 〈uxuy〉code

100
. (61)

This crude estimate suggests that this mechanism may be weaker
than the related one discussed using order-of-magnitude esti-
mates by Menou (2019), presumably because the GSF instability
preferentially excites short-wavelength modes. Nevertheless, the
consequences of this instability for the dynamics of hot Jupiter
atmospheres should be explored further. The resulting vertical
mixing could also be important for their atmospheric chemistry.

7 C O N C L U S I O N S

We have presented the first exploration into the non-linear evolution
of the GSF instability at a general latitude in a star (or planet),
building upon our initial study at the equator in paper I (Barker
et al. 2019). This instability can provide an important contribution
to angular momentum transport in the stably-stratified radiation
zones of differentially rotating stars (or giant planets), but its
non-linear evolution has not been explored in this general case
previously (except for the weakly non-linear analysis in Knobloch
1982). We first revisited the linear instability (see also Acheson &
Gibbons 1978; Knobloch & Spruit 1982), discussed its properties
in detail, and derived several new results. In particular, we derived
the following simple criterion for onset of (diffusive) axisymmetric
instability: RiPr < 1

4 , where Ri is the local (gradient) Richardson
number and Pr is the (thermal) Prandtl number. At the equator
the flow must instead violate Rayleigh’s criterion for centrifugal
instability, which is typically much more restrictive.

MNRAS 495, 1468–1490 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/495/1/1468/5837090 by U
niversity of Leeds user on 29 M

ay 2020



GSF instability 1487

We presented the results from a suite of hydrodynamical simu-
lations using a local Cartesian model (with both shearing-periodic
and impenetrable, stress-free, radial boundaries) to explore the non-
linear evolution of this instability at a range of latitudes (� =
30◦, 60◦ , and 90◦) for various shear strengths, spanning the range
from cases that would be Rayleigh-stable to those that would
be Rayleigh-unstable in the absence of stable stratification. The
GSF instability exhibits interesting dynamics at a general latitude,
particularly in the weaker shear cases, where strong zonal jets were
observed to develop. These jets propagate with a preferred direction
in the meridional plane, which initially corresponds with that of the
fastest growing linearly unstable modes. They subsequently merge
and strengthen until they occupy a large fraction of our simulation
domain, after which the tilt angle of these flows can depart from the
linear prediction if they are sufficiently strong. When these jets form,
they are observed to significantly enhance the turbulent transport,
particularly in axisymmetric simulations. On the other hand, the
strong shear cases exhibit a state that is closer to homogeneous
turbulence, consisting of smaller scale jets closer to the length
scale (and with the preferred direction) of the fastest growing linear
modes.

The large-scale zonal jets can be thought of as angular momentum
‘layering’, by analogy with the layering in the density field observed
in other stably stratified flows such as salt fingering (e.g. Garaud
2018). Similarly with other double-diffusive problems, these jets
are observed to merge until they occupy the full-extent of the box
in our axisymmetric simulations. As with other double-diffusive
problems in which layers are observed to form, their long-term
evolution and ‘ultimate’ scale and strength are not currently well
understood theoretically. However, the 3D simulations behave
qualitatively differently, leading to zonal jets of finite size and
strength that do not appear to continue to merge in larger boxes.
Further work should explore the origin and dynamics of these jets to
confirm whether they do indeed attain an ultimate scale and strength
in 3D.

The GSF instability transports angular momentum much more
efficiently at non-equatorial latitudes than it does at the equator,
often by several orders of magnitude. We have compared the
transport produced by our non-equatorial simulations with the
predictions from a generalization of the simple single-mode theory
that we validated against equatorial simulations in paper I. We found
that this theory significantly underpredicts the transport in the weak
shear cases in which strong zonal jets are produced, potentially
by more than an order of magnitude, though it may approximately
apply in strong shear cases. The strong zonal jets in cases with weak
differential rotation enhance the prospect that the GSF instability
could provide efficient turbulent transport in stellar and planetary
interiors.

We estimate that the GSF instability could play an important
role in transporting angular momentum in red giant (e.g. Beck
et al. 2012; Eggenberger et al. 2016, 2017) and subgiant stars
(e.g. Eggenberger et al. 2019), which could contribute to the ‘addi-
tional viscosity’ required to explain their observed core rotation
rates. It could also play a role in the formation and evolution
of the solar tachocline, and in the dynamics of atmospheric jets
on hot Jupiters. It would be worth exploring the astrophysical
consequences of the GSF instability further with stellar evolution
codes incorporating rotation.

We have also found axisymmetric simulations to overpredict the
transport and flow kinetic energy, compared with 3D simulations.
This indicates that 3D simulations are probably required to deter-
mine the transport properties for astrophysical applications. How-

ever, astrophysically relevant values of Pr are currently impossible to
achieve in simulations, which requires us to extrapolate our results,
as with many other problems involving astrophysical fluids.

Topics worthy of exploration in future work include the incor-
poration of gradients in heavy elements (e.g. Knobloch & Spruit
1983), the influence of magnetic fields (e.g. Menou, Balbus & Spruit
2004), and the investigation of smaller Pr fluids. It would also be
worthwhile to perform global simulations to explore the evolution
of the GSF instability in spherical geometry, and in particular the
dynamics of the resulting zonal jets, though this will be a very
challenging numerical problem. Finally, the derivation and analysis
of an asymptotically reduced model of the GSF instability (along the
lines of e.g. Xie et al. 2019) may shed some light on the low Pr limit,
and potentially also on the origin and evolution of the zonal jets.
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APPENDI X A : THE GSF INSTA BI LI TY I N TH E
LI MI T OF SMALL PRANDTL NUMBER W ITH
T H E PRO D U C T O F R I C H A R D S O N A N D
PRANDTL N UMBERS O( 1 )

In this appendix, we extend Section 3 by presenting a complemen-
tary asymptotic linear analysis of the GSF instability in the limit
as Pr → 0, with RiPr ∼ O(1). For slow rotators, the Richardson
number can be large, so that although Pr is small, Ri can be
so large that RiPr remains finite in the limit Pr → 0. This limit
was considered at the poles by Rashid et al. (2008), but here we
consider general latitudes. The appropriate scaling in this case is
now a ∼ O(�2), b ∼ O(�2/Pr), s ∼ O(�) and k2 ∼ O(�/ν), where
S ∼ O(�) throughout. Note that the scaling for k2, as well as the
scaling for b, is different from that required to derive the results
in Section 3.2.1. The cubic dispersion relation equation (14) here
reduces to

κk2s2 + s(2νκk4 + b) + ν2κk6 + aκk2 + bνk2 = 0. (A1)

Let the wavenumber

k = (k cos θk, 0,−k sin θk), (A2)

with magnitude k and angle θ k below the x-axis. Now

a = 2�|∇|
�

sin(� − θk) sin(γ − θk), (A3)

which is negative in the unstable case, so θ k lies between γ and �.
At large Ri, � is small, so b simplifies to

b = N 2 sin2 θk. (A4)

We define

λ = κνk4

b
, (A5)

and maximize s over k2 by applying k2∂/∂k2 to equation (A1), noting
∂s/∂k2 = 0, and subtracting equation (A1) to obtain

s = 2νk2λ

1 − 2λ
(A6)

showing that for instability, s > 0, 0 < λ < 1/2. Substituting this
into equation (A1) to eliminate s gives

4aλ2 − (4a + Prb)λ + a + Prb = 0, (A7)

which can be written

(1 − 2λ)2a = (λ − 1)Prb. (A8)

We now maximize s over θ k . Equation (A6) can be written

(1 − 2λ)s = 2Pr1/2λ3/2b1/2. (A9)

Taking the log of this, differentiating with respect to θ k and setting
∂s/∂θ k = 0 gives

(2λ − 3)b
∂λ

∂θk

= λ(1 − 2λ)
∂b

∂θk

. (A10)

Taking the log of equation (A8) and differentiating with respect to
θ k, using equation (A10) to eliminate ∂λ/∂θ k, gives

(2λ − 1)
∂a

∂θk

= Pr
∂b

∂θk

. (A11)
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Using equations (A3) and (A4), this can be written

(1 − 2λ) sin(� + γ − 2θk) = RPr sin 2θk, (A12)

In general, the two equations equations (A7) and (A12) for λ and
θ k must be solved numerically, since a, b, and λ depend on θ k. The
growth rate s can then be found using equation (A6). However, there
are two limits within this scaling which shed light on the nature of
the solutions.

A1 Limit RiPr → 0, λ → 1/2

First we consider

1 � RiPr � Pr > 0. (A13)

Since S ∼ O(�), RPr is also small, and since b/a ∼ O(R), bPr �
a. So in this limit equation (A8) reduces to (1 − 2λ)2 → 0, i.e. λ

→ 1/2. Then from equation (A6), s � νk2 and from equation (A5),
b → 2νκk4 which means equation (A1) reduces to equation (39),
so s → √−a and the limit λ → 1/2 is the same limit as discussed
in Section 3.2.1. Now expanding in powers of the small parameter
(RPr)1/2, and using equations (A3), (A4), and (A8)

bPr

a
= RPr sin2 θk

sin(� − θk) sin(γ − θk)
→ −2(1 − 2λ)2, (A14)

so (1 − 2λ) is O((RPr)1/2). Then equation (A12) gives sin (� + γ

− 2θ k) ∼O((RPr)1/2), so

θk → � + γ

2
(A15)

as RPr → 0, which is the same result as in equation (40) in
Section 3.2.1. equation (A14) then becomes

(1 − 2λ)2 → RPr sin2
(

γ+�

2

)
2 sin2

(
γ−�

2

) , (A16)

giving λ in terms of the small parameter (RPr)1/2 accurate to first
order in the small parameter.

A2 Limit RiPr → 1/4, λ → 0

The second limit of interest is λ → 0 (recall that 0 < λ < 1/2). We
will see below that this limit corresponds to RiPr → 1/4. Taking λ

→ 0, equation (A7) becomes

a + Prb → 0, (A17)

and equation (A12) becomes

sin(� + γ − 2θk) → RPr sin 2θk. (A18)

Using equations (A3), (A4), and (24) these give

sin � sin γ cot2 θk − sin(� + γ ) cot θk + cos � cos γ → −RPr

(A19)

and

1

2
sin(� + γ )(cot θk − tan θk) − cos(� + γ ) → RPr. (A20)

Eliminating RPr between these leads to

sin � sin γ (1 + cot2 θk) → 1

2
sin(� + γ )(cot θk + tan θk).

Dividing by 1 + cot2 θk gives

cot θk → 1

2
(cot γ + cot �), (A21)

providing θ k in this limit. Since the cot function is monotonic
between 0 < θ k < π this implies that θ k again must lie in the
wedge of instability between γ and �, but it is no longer exactly
half way between them. Inserting this into equation (A3),

a → −�|∇|
2�

sin2(γ − �)

sin γ sin �
sin2 θk. (A22)

From equations (9) and (24), R/Ri = S2�/2�|∇|, and using
equation (17)

R

Ri
= sin2(γ − �)

sin γ sin �
(A23)

and inserting this into equation (A4)

b = 4 Ri
�|∇|

2�

sin2(γ − �)

sin γ sin �
sin2 θk. (A24)

From equations (A17), (A22), and (A24),

ε = a + Prb

a
→ 1 − 4RiPr → 0, (A25)

defining the small parameter ε and justifying the earlier statement
that the limit λ → 0 is the same limit as RiPr → 1/4. So we see
that within the Pr � 1 but RiPr ∼ O(1) scaling, the two limits at the
ends of the available range of 1/2 > λ > 0 correspond to the two
limits RiPr → 0 and RiPr → 1/4, respectively. Intermediate values
of RiPr correspond to intermediate values of λ. Ignoring squares of
the small parameter ε, equation (A7) gives

λ → a + Prb

3a
= ε

3
, (A26)

so from equations (A5) and (6)

k4 → ε N 2 sin2 θk

3νκ
= ε sin2 θk

3d4
, (A27)

so k4 is now small compared to the value given by equation (44)
(i.e. the instability in this case prefers larger wavelengths). Using
this, and equation (9), to eliminate k2 in equation (A6) gives the
growth rate,

s2 → 1

27
ε3S2 sin2 θk. (A28)

As expected, as RiPr approaches 1/4 from below, the growth rate
decreases from O(�) to zero, since for RiPr > 1/4 the system is
stable to axisymmetric diffusive modes. This extends the study of
instability at the pole by Rashid et al. (2008) to general latitudes.
We have also confirmed each of the analytical results in this section
by solving numerically equation (14) for appropriate parameter
choices.

APPENDI X B: TABLE OF SI MULATI ONS
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Table B1. Table of simulation parameters. All simulations have Pr = 10−2, N2 = 10, Lz = Lx, and Nx = Nz, unless otherwise specified.
Time averages are based on the entire simulation after the initial linear growth. The eighth and ninth column give the number of Fourier
modes in each direction. Simulations with Nek5000 have ‘N’ in their Nx and Ny column entries and these numbers give the total number
of grid points in each direction for Nx and Ny, computed using an element distribution with Np = 10 points in each element (15 fully
de-aliased). Simulation parameters not listed in this table are given in Section 2. The data listed to the right of the vertical lines are
derived from the simulation results. Our simulation units are determined by setting � = d = 1. The two cases labelled with a � have
Lz = 200 (i.e. Lx/Lz = 1/2) and Nz = 512, and those labelled with a † have Lz = 100 (i.e. Lx/Lz = 2) and Nz = 256.

� � S Ri RiPr Lx Ly Nx Ny 〈uxuy〉
√

〈u2
y〉

30◦ 4.13◦ 0.72 19.3 0.19 100 0 256 1 2.72 ± 0.0001 4.80 ± 0.0001
30◦ 4.13◦ 0.72 19.3 0.19 100 100 256 256 2.71 ± 0.03 4.79 ± 0.01
30◦ 5.74◦ 1 10 0.1 100 0 256 1 23.6 ± 13.3 14.6 ± 6.2
30◦ 5.74◦ 1 10 0.1 100 50 256 256 5.41 ± 0.89 4.31 ± 0.52
30◦ 5.74◦ 1 10 0.1 100 100 256 256 7.04 ± 1.81 6.42 ± 1.61
30◦ 8.63◦ 1.5 4.44 0.044 100 0 256 1 50.17 ± 19.3 23.2 ± 6.9
30◦ 8.63◦ 1.5 4.44 0.044 100 50 256 256 9.97 ± 1.44 7.11 ± 0.57
30◦ 8.63◦ 1.5 4.44 0.044 100 100 256 256 9.29 ± 1.83 11.75 ± 2.10
30◦ 11.54◦ 2 2.5 0.025 100 0 256 1 42.68 ± 9.47 18.8 ± 3.82
30◦ 11.54◦ 2 2.5 0.025 100� 0 256 1 43.38 ± 7.89 19.27 ± 2.94
30◦ 11.54◦ 2 2.5 0.025 200† 0 512 1 51.16 ± 16.9 21.73 ± 6.01
30◦ 11.54◦ 2 2.5 0.025 200 0 512 1 81.17 ± 28.65 39.6 ± 13.4
30◦ 11.54◦ 2 2.5 0.025 100 30 256 128 12.44 ± 1.35 9.06 ± 0.57
30◦ 11.54◦ 2 2.5 0.025 100 50 256 256 11.36 ± 1.23 7.91 ± 0.64
30◦ 11.54◦ 2 2.5 0.025 100 100 256 256 10.73 ± 1.34 10.69 ± 2.06
30◦ 11.54◦ 2 2.5 0.025 100� 100 256 256 11.1 ± 1.24 11.3 ± 1.74
30◦ 11.54◦ 2 2.5 0.025 200† 100 512 256 10.64 ± 0.88 9.97 ± 1.68
30◦ 11.54◦ 2 2.5 0.025 200 200 512 512 10.49 ± 0.82 7.93 ± 0.94
30◦ 11.54◦ 2 2.5 0.025 100 30 200N 60N 6.21 ± 1.12 6.84 ± 0.97
30◦ 11.54◦ 2.5 1.6 0.016 100 0 256 1 24.69 ± 2.60 8.70 ± 0.46
30◦ 14.48◦ 2.5 1.6 0.016 100 30 256 128 11.97 ± 0.92 4.83 ± 0.23
30◦ 14.48◦ 2.5 1.6 0.016 100 50 256 256 10.19 ± 0.48 4.22 ± 0.13
30◦ 14.48◦ 2.5 1.6 0.016 100 30 200N 60N 14.83 ± 1.24 9.45 ± 0.34
30◦ 17.46◦ 3 1.11 0.011 100 0 256 1 54.32 ± 5.90 13.6 ± 0.70
30◦ 17.46◦ 3 1.11 0.011 100 100 256 256 24.18 ± 1.17 6.71 ± 0.18
30◦ 20.49◦ 3.5 0.82 0.0082 100 100 256 256 73.51 ± 7.51 12.34 ± 0.57

90◦ 11.54◦ 1 10 0.1 100 0 256 1 40.83 ± 3.90 15.34 ± 1.21
90◦ 11.54◦ 1 10 0.1 100 100 256 256 13.79 ± 2.92 7.94 ± 1.90
90◦ 17.46◦ 1.5 4.44 0.044 100 0 256 1 90.7 ± 13.1 16.08 ± 1.48
90◦ 17.46◦ 1.5 4.44 0.044 100 100 256 256 19.54 ± 1.37 7.89 ± 0.86
90◦ 23.58◦ 2 2.5 0.025 100 0 256 1 30.59 ± 1.72 7.93 ± 0.23
90◦ 23.58◦ 2 2.5 0.025 100 100 256 256 36.83 ± 1.62 9.34 ± 0.15
90◦ 30◦ 2.5 1.6 0.016 100 100 256 256 148.6 ± 15.1 20.2 ± 1.71
90◦ 36.87◦ 3 1.1 0.011 100 100 256 256 317.4 ± 273.1 33.77 ± 9.87

60◦ 9.97◦ 1 10 0.1 100 100 256 256 8.95 ± 0.97 6.21 ± 1.05
60◦ 15.06◦ 1.5 4.44 0.044 100 100 256 256 13.69 ± 2.36 8.20 ± 2.08
60◦ 20.27◦ 2 2.5 0.025 100 100 256 256 20.76 ± 3.79 8.14 ± 0.98
60◦ 31.31◦ 3 1.1 0.011 100 100 256 256 96.65 ± 5.46 13.08 ± 0.29
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