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Abstract 

This study reports the development and application of a digital image cross correlation based approach to resolve 

contiguous microstructural volumes of interest in X-ray microtomography data, collected in fluid suspensions that 

undergo significant microstructural changes over time, using fresh cementitious pastes as an example. This 

computational method provides a high precision both for cementitious pastes that sediment only slightly (i.e. are 

cohesive), and for those that undergo significant sedimentation and/or settlement within the first few minutes of 

reaction. The normalised cross correlation algorithm presented here enables the observation of an identical volume 

of interest, i.e., one which contains a contiguous particle group, from the first seconds of observation onwards with 

excellent accuracy. This method enables segmentation of the same cluster of particles to be almost entirely 

automated and resolved in large sets of sequentially collected data, therefore enabling particle reaction to be 

observed directly while removing effects due to sedimentation. 

Introduction 

Computerised micro-tomography provides a three dimensional stack of images that non-destructively reveal 

sequential cross-sections through the depth of a sample. Using this method, both slowly evolving or static [1, 2] and 

dynamic processes [3] may be observed on a micron to sub-micron length scale, and potentially at a very high 

acquisition rate when using advanced modern instrumentation [4]. This technique has been extensively shown to 

allow both the observation and quantification of the microstructure, and microstructural evolution, of geological [5], 

cementitious [6-8]  and biological [9, 10] specimens. However, it is difficult to accurately locate a particular particle, 

or group of particles, in hundreds of tomographic stacks describing the dynamically changing microstructure of a 

system that is fluid and reacting and/or sedimenting in-situ during an experiment. As the particulate component of a 

slurry or suspension settles within a capillary sample that is being tomographically analysed, material has a tendency 

to move significantly in all three coordinate axes as the sample rotates and particles are subjected to gravitational 

effects. It is therefore challenging to track a single region (particle or cluster) of interest across a large quantity of 

scans, particularly when a large number of particles are present within the sample volume. This raises a significant 

limitation in the ability to isolate and analyse the reaction of single particles which do not remain in a constant 

location within the overall sample.  

The hydration reaction of Portland cement is an ideal case study for a reaction process involving simultaneous 

reaction and sedimentation in a particulate suspension. Upon mixing cement powder and water, a fluid suspension is 

formed, and the hydration of the silicate and aluminate phases present within the cement begins immediately. The 

cement particles are relatively unrestricted in their movement within the localised geometry of the fluid suspension 

until they react and a significant quantity of new hydrous cementitious binder phases form, solidifying the paste. 

This movement becomes problematic when it is desirable to follow and analyse the reaction of a given particle 

(requiring segmentation of a contiguous target volume) via in an in-situ experiment during the first hours of reaction. 

It is incredibly challenging to accurately isolate and follow a particular particle or unique volume throughout the 
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desired duration using the human eye. To reduce problems of sedimentation and segregation during analysis of 

fresh cement pastes, chemical additives may be used to modify the viscosity of the paste and reduce segregation of 

particles [11]. However, to prevent admixtures from modifying chemico-physical interactions [12] within the reacting 

cement paste, and thus to ensure that the reaction process of the model system remains representative, the 

addition of such organic compounds may be undesirable. 

Additionally, when materials are analysed in-situ over a longer duration, or removed then re-inserted to and from 

the analysis position in an imaging instrument, movement of the specimen within the field of view of the instrument 

may also result in variations between successive data sets. It is inappropriate to assume that the target volume 

remains in the precisely the same location in all three axes over an extended testing timeframe. 

In this paper, a novel correction method to account for time-variable geometric features in particulate suspensions 

undergoing rapid spatial movement (i.e. sedimentation of cement grains and release of entrapped air) is presented. 

We apply the method to aiding in the tomographic analysis of materials which show large changes, and also those 

which stabilise more rapidly, and demonstrate that the proposed methodology can handle these magnitudes of 

deviations from the original suspension geometry.  

Digital Volume and Image Cross Correlation 

Digital volume correlation has been commonly applied for strain measurement in microtomographic data [13-15], 

and it might be possible that this method would allow for some kind of correction to take place where a large solid 

volume, which is easily identifiable, shifts within the stack of tomographic images. Alternatively, in a solidified matrix 

where the sample has reached significant dimensional stability, some kind of bulk correction may also be attempted. 

While a region may appear similar by eye, this is not necessarily the case below the isolated surface that can be 

viewed in a given tomographic slice, which may yield a false positive result where regression coefficients are 

calculated as a function of the entire depth. 

Digital image cross correlation, however, considers only an isolated region of interest (ROI) in a two-dimensional 

image slice, and so neglects all time-dependent variation in the depth both above and below the ROI. In the analysis 

of tomographic data this method has previously been used to assess displacement fields in non-homogeneous 

samples [16] which respond to loading inhomogeneously through their cross section. The calculation of an entire 

displacement field seems to introduce excessive computational demands, however, when attempting to isolate only 

individual groups of particles for which in-plane rotation of the particles is not expected to be significant.  

After initially discovering the challenge present in fully analysing these data it was quickly realised that template 

matching by fast normalised cross correlation [17] could be an effective method by a correction may be successfully 

carried out, while neglecting the geometric changes below the cross section of the reacting particle itself. By the fast 

normalised cross correlation method, a two-dimensional ROI (a template image) is slid across a two dimensional 

target slice, and a matrix correlation coefficient 𝑅 for each position in the 𝑥, 𝑦 surface computed. In the typical 

application of the algorithm, the maximum value within the resulting two dimensional array is determined, which 

yields the location at which the best match is located on the 𝑥, 𝑦 surface. In a tomographic stack consecutive slices 

are produced through the entire depth of the volume within the field of view of the instrument, and so a slight 

extension to the traditional approach was required for this work.  

Taken as a starting point for this study, digital image cross correlation methods have been successfully and 

extensively implemented and documented in a number of programming languages. In the Python language, scikit-

image [18] allows for rapid implementation of the method in a semantic high-level programming language. Statically 

typed compiled languages such as C++ may allow for a higher execution speed, and in these cases normalised cross 

may be executed using, for example, the OpenCV library[19]. For the most rapid testing of the discussed method we 

opted here to develop the algorithm entirely using the scikit-image toolkit [18] in the Python language. Code for the 

entire procedure is provided as Supplementary Information. 
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Imaging the Cementitious Suspension 

The cementitious precursors selected were a Hanson Ribblesdale Works CEM I 52.5N ordinary Portland cement (PC) 

and a Hanson REGEN blast furnace slag (BFS), which were blended in ratios of 100% PC and 25% PC/75% BFS. No 

water reducing admixtures or viscosity modifying agents were used. A water/solids mass ratio of 0.47 was selected 

to allow straightforward compaction into a 3.0 mm diameter borosilicate glass capillary without causing fracture of 

the 10 µm-thick wall. This value was found to be the lowest reasonable water/solids ratio at which the capillary 

could be loaded, and remains within the typical limits provided by BS 8500 for the water/cement ratio of 

conventional concretes [20]. Potable water was used to hydrate the cements. The coarsest fraction of the BFS 

(contributed by the Calumite in the blended BFS material) was removed from the powder blend prior to mixing with 

water, using a 500 µm sieve, to allow placement of the material without restriction at the entry. The cement mix was 

compacted by briefly applying an oscillating head to the side of the capillary, although the ability of the cement 

pastes to retain air, and the narrow diameter of the capillary, complicated the compaction process significantly, and 

therefore regions of entrapped air remained within the matrix. These moved toward the top of the capillary during 

analysis of the fluid pastes, which caused the suspension to displace the rising volume and fall vertically through the 

stack. This is the most notable effect causing the movement of particles within the tomographic stack as successive 

images were collected, and which was corrected for in this paper. 

The demonstration of this method is based on data collected at the 2-BM microtomography beamline at the 

Advanced Photon Source of Argonne National Laboratory [21], and analyses tomographic images acquired from 

tomographic data collected in-situ of reacting Portland cement-based materials. Here, we present a working 

correction for any geometric deviation in all materials studied. The application of this methodology to additional 

paste formulations is described in detail elsewhere [22], as the focus of this paper is the presentation and 

demonstration of the methodology. 

The hydrating materials were rapidly scanned during the first minutes of the reaction before geometric stability was 

apparent, and during which sedimentation of the pastes was most evident. Acquisitions were scheduled at a time 

interval of approximately 10 seconds; for each, 600 radiographic projections were acquired by a pco.edge Dimax 

sCMOS high speed camera at 2000 fps, where this high frame rate was used to minimise the movement within the 

sample during each acquisition. Data were periodically discharged to magnetic storage for reconstruction off-line. 

The configuration provided a voxel size of 2.0 µm. Reconstruction was carried out using the TomoPy toolkit [23] 

developed in-house at the Advanced Photon Source synchrotron. Acquisitions were corrected for dark current and 

open beam artefacts, and were de-striped using the Fourier wavelet method[24]. Reconstruction was subsequently 

carried out using the Fourier grid reconstruction algorithm [25], for rapid implementation and code debugging. 

Once reconstruction was completed, a single region of interest of 250 µm x 250 µm was manually selected from the 

first scan of each sample, as shown in Figure 2. Figure 2(a) shows the plain Portland cement material, while 2(b) 

Figure 1 - Selected regions of interest from the 100% PC (a) and the 25% PC/75% BFS binders (b), 5 minutes after initiation of hydration. 
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shows the cement with 75% BFS. Regions were isolated in the first reconstructed dataset, selected to be no less than 

5 µm from any entrapped air or the capillary wall, to prevent a region being selected where the presence of a 

surface results in excessive rotation of particles within the volume of interest. This was verified in the x, y, and z axes 

after selection of the volume.  

The procedure used is shown in Figure 2. Following manual selection of the target region of interest, a correlation 

coefficient was determined in every 𝑥, 𝑦 location in every slice (𝑧) in every stack (𝑡), in the manner described above. 

The original slice was used as the template, and each interrogated slice as the searched plane, within the depth of 

the reconstructed volume. Once calculated, the maximum for each slice was subsequently written to a three 

dimensional array which contained the location in the 𝑥, 𝑦 plane at which the region was located, and the 𝑅 score at 

said maximum. The argument to the maximum of the 𝑅 score contained within this array was then determined. This 

revealed the 𝑧 location of the best match. The stored locations at this maximum score provide the position of the 

region of interest in all axes.  

 

 

Figure 2 - The template matching procedure described in this paper. 

In order to debug code and for a rapid verification of the method, scanning for the selected region of interest was 

back-applied to the first stack; this should provide a score of precisely unity at the location from which the subset 

was originally segmented, as in this position the template image and slice data must be identical. As expected, this 

was indeed found to be the case for the implementation described here. 

Each stack was entirely analysed in approximately 3.5 minutes on a desktop workstation (Intel Core i7 4770K, 32 GB 

RAM, GNU/Linux 5.1.9).  
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Results and Discussion 

Results from the slag-containing cementitious blend (25% PC/75% BFS) are shown in Figure 3. The regions shown are 

cropped directly from the stack, with corrected regions in (a) and uncorrected regions in (b). The images shown are 

250 µm by 250 µm in cross sectional dimension. Part (c) shows the regression coefficient in each resolved location, 

and (d) the absolute degree of movement of the region of interest within the overall sample. 

 

Figure 3 - Results from the BFS-containing cement blend. 

The suspended particles in the region of interest have been located in the longer-time scans approximately 100 µm 

vertically below the position at which they were originally located. The correlation coefficients are high, and Figure 

3a shows a clear similarity between the identified region at all time intervals, indicating that differential 

sedimentation of particles is not problematic for the application of this technique, within the particle size range 

present in the cementitious blend and observable by tomography here. The movement in this case occurs during the 

first seconds of the experimental time-frame, and the material reaches stability within the glass capillary as air rises 

and solid material falls. From the data here the same volume has been segmented from the stack; the application of 

the method has been successful.  

Having established that this technique is reliable when analysing a relatively stable material, the next logical step is 

to carry out the analysis on a material which shows a more considerable movement of the region of interest within 

the stack. Figure 4 shows the application of the correction to the case of sedimentation of the pure PC suspension, 

which exhibits more significant particle movement through the volume of the sample, as the paste is less viscous and 

particle sedimentation is significant. 
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Across the duration of the reaction, no significant rotational variation is observed as the region of interest drops 

through the capillary. This allows, in the case of this material, for straightforward cropping of the desired particle 

volume by array slicing. Again, there is little differential movement of particles of different sizes within the 

timeframe studied. 

The application of the method appears to have yielded a correct identification of the region of interest in both of 

these key test cases. All peak correlation coefficients extracted remain above 0.92. The method has revealed what 

appears to be a statistically probable match in all cases.  

 

 

Figure 4- Results from the pure Portland cement sample. 

Our method significantly reduces the human input requirement of high volume data segmentation, and additionally 

eliminates human bias. Without the assistance of a validated algorithm, this process would remain at best 

challenging, or more likely impossible. 

Further to this, we predict that some modification to this analysis will result in a decrease in execution time, if 

correctly carried out. Knowing the density of the constituents of the suspension in the capillary, it may be possible to 

predict the direction of movement of the sample, and subsequently neglect regions into which movement of the 

sample is unlikely or not possible. Isolation of the movement of particles of specific size fractions as a function of 

time in dynamically moving suspensions may also offer the opportunity to assess the characteristics (e.g. viscosity) of 

the interstitial fluid via Stokes’ Law or other comparable relationships, where this information is otherwise difficult 
to access. 

Understanding some kind of mechanism by which the maximisation of the coefficient may be reliably characterised, 

will enable material below the isolated volume of interest to be neglected in cases where a good match has been 

previously identified, to further accelerate the calculation. This approach, and/or repeated calculations with re-
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windowing of the region of interest in the x and/or y dimensions, may also reduce the likelihood of hitting a local 

maximum in the correlation coefficient that would give a spurious identification of the particle(s) of interest. 

However, such instances were not identified in the application of this method to the case studies presented in this 

paper, nor in any of the broader study of the authors where the methodology is ongoingly being applied to different 

cementitious pastes. 

Conclusions 

Our results demonstrate the full implementation and verification of an automated volume tracking methodology for 

analysing in-situ computed tomography data collected in suspensions containing highly reactive particles, in this case 

Portland cement. The method could similarly be applied to other colloidal suspensions with similar characteristics, if 

imaged in a time-resolved manner. This analysis has allowed us to track a unique region of interest across the first 

minutes of the experiment, providing us with access to data which would otherwise be impossible to isolate as 

particle locations move within a stack of tomographic slices displaying a complex microstructure. Without such a 

correction for the sedimentation and/or settlement of the material, tomographic scans collected prior to the 

material reaching stability would be either discarded, or it would remain impossible to isolate a precise particle 

group across the entire duration.  
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