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Abstract

It is well known that linearized gravity in spacetimes with compact Cauchy sur-

faces and continuous symmetries suffers from linearization instabilities: solu-

tions to classical linearized gravity in such a spacetime must satisfy so-called

linearization stability conditions (or constraints) for them to extend to solu-

tions in the full non-linear theory. Moncrief investigated implications of these

conditions in linearized quantum gravity in such background spacetimes and

found that the quantum linearization stability constraints lead to the require-

ment that all physical states must be invariant under the symmetries generated

by these constraints. He studied these constraints for linearized quantum grav-

ity in flat spacetime with the spatial sections of toroidal topology in detail.

Subsequently, his result was reproduced by the method of group-averaging. In

this paper the quantum linearization stability conditions are studied forN = 1

simple supergravity in this spacetime. In addition to the linearization stability

conditions corresponding to the spacetime symmetries, i.e. spacetime transla-

tions, there are also fermionic linearization stability conditions corresponding

to the background supersymmetry.We construct all states satisfying these quan-

tum linearization stability conditions, including the fermionic ones, and show

that they are obtained by group-averaging over the supergroup of the global

supersymmetry of this theory.

Keywords: linearization stability conditions, group averaging, supergravity,

quantum gravity
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1. Introduction

In physics, the equations of interest are frequently non-linear and difficult to solve. Typi-

cally only a small number of solutions are known and these exploit special symmetries. To

extract further physics from the known solutions, a common strategy is to perturbatively

expand small deviations around the known background solutions. At lowest order in per-

turbation one obtains linear equations for the perturbations, which are typically easier to

analyse. However, it is not guaranteed that all solutions to the linearized equations actually

arise as first approximations to solutions of the non-linear equations of the system. Let us

illustrate this point in a simple example [1]: for (x, y) ∈ R2, consider the algebraic system

x(x2 + y2) = 0, of which the exact solutions are (0, y), where y is any real number. On the

other hand, if we consider the linearized equations for perturbations δx and δy around a back-
ground (x0, y0), these satisfy δx(x20 + y20)+ x0(2x0δx + 2y0δy) = 0. If we let the background

be (x0, y0) = (0, 0), then any pairs (δx, δy) satisfy the linearized equation of motion, but those

with δx �= 0 cannot have arisen as linearizations of solutions to the non-linear equation. One

characterizes this phenomenon as the equation x(x2 + y2) = 0 being linearization unstable

at (0, 0).

A well-known field-theoretic system with linearization instabilities is electrodynamics in

a ‘closed Universe’, i.e. in a spacetime with compact Cauchy surfaces [2, 3]. Consider, for

example, the electromagnetic field coupled to a charged matter field in such a spacetime. Note

that the conserved total charge of the matter field must vanish in this system. This fact is a

simple consequence of Gauss’s law �∇ · �E ∝ ρ, where �E and ρ are the electric field and charge

density, respectively. The integral over a Cauchy surface of the charge density ρ gives the

total charge but the integral of �∇ · �E vanishes because the Cauchy surface is compact. At the

level of the linearized theory about vanishing background electromagnetic and matter field the

theory is non-interacting. Since the matter field is non-interacting, there is no constraint on

the total charge in the linearized theory, but a solution to the linearized (i.e. free) matter field

equation does not extend to an exact solution to the full interacting theory unless its total charge

Qe vanishes. The linearization stability condition (LSC) in this case is Qe = 0. If a solution

to the linearized equations satisfies this condition, then it extends to an exact solution to the

full theory. It is useful to note here that the charge Qe generates the global gauge symmetry

of the free charged matter field.

In gravitational systems, it is known that such linearization instabilities occur for any pertur-

bations around a backgroundwhich has both Killing symmetries and compact Cauchy surfaces

[2, 4–12]. The LSCs which need to be imposed on such a closed Universe are that the gener-

ators Q of the background Killing symmetries must vanish when evaluated on any linearized

solution. For example, if the spacetime possesses time and space translation symmetries, then

the corresponding conserved charges are the energy and momentum, respectively.

In the late seventies Moncrief studied the rôle of these conditions in linearized quantum

gravity in spacetimes with compact Cauchy surfaces. He proposed that they should be imposed

as physical-state conditions as in the Dirac quantization [11, 12], i.e.

Q |phys〉 = 0 . (1.1)

Since the conserved charges Q generate the spacetime symmetries (in the component of the

identity), he concluded that quantum linearization stability conditions (QLSCs) imply that all

physical states must be invariant under the spacetime Killing symmetries. He argued that these

constraints can be viewed as a remnant of the diffeomorphism invariance of the non-linear

theory.
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Imposing the invariance of the physical Hilbert space under the full background symme-

tries (in the component of the identity) as required by the QLSCs would appear too restrictive.

This problem is exemplified by de Sitter space, a spacetime which is physically relevant for

inflationary cosmology. This spacetime has Cauchy surfaces with the topology of the three-

dimensional sphere, which is compact. Therefore, the QLSCs imply that all physical states

of linearized quantum gravity on a de Sitter background ought to be invariant under the

full SO0(4, 1) symmetry group, i.e. the component of the identity of SO(4, 1), of the space-

time. However, this would appear to exclude all states except the vacuum state, which would

make the Hilbert space for the theory quite empty [3, 12].

However, there are non-trivial SO0(4, 1) invariant states that have infinite norm and, hence,

are not in the Hilbert space. Moncrief suggested that a Hilbert space consisting of these

invariant states could be constructed by dividing the infinite inner product by the infinite vol-

ume of the group SO0(4, 1). This suggestion was taken up in reference [13]. In that work a

new inner product for SO0(4, 1)-invariant states was defined by what would later be termed

group-averaging, which is an important ingredient in the refined algebraic quantization [14]

and has been well studied in the context of loop quantum gravity. (The group-averaging pro-

cedure was also proposed in [15].) In this approach, one defines the invariant states |Ψ〉 by
starting with a non-invariant state |ψ〉 and averaging against the symmetry group G, assumed

here to be an unimodular group such as SO0(4, 1), to obtain

|Ψ〉 =
∫

G

dg U(g) |ψ〉 , (1.2)

where U is the unitary operator implementing the symmetry on the states. The state |Ψ〉 can
readily be shown to be invariant, i.e. 〈φ|U(g)|Ψ〉 = 〈φ|Ψ〉 for any state |φ〉 in the Hilbert

space by the invariance of the measure dg. If the volume of the symmetry group is finite,

the inner product of the invariant states |Ψ1〉 and |Ψ2〉 obtained from |ψ1〉 and |ψ2〉 as in

(1.2) is

〈Ψ1|Ψ2〉 = VG

∫

G

dg 〈ψ1|U(g)|ψ2〉 , (1.3)

where VG is the volume of the groupG. IfG has infinite volume, e.g. if it is SO0(4, 1), then one

needs to redefine the inner product on the invariant states by removing a factor of the group

volume to make them normalizable. Thus, one defines the inner product on the new Hilbert

space by

〈Ψ1|Ψ2〉ga =
∫

G

dg 〈ψ1|U(g) |ψ2〉 . (1.4)

By this group-averaging procedure one obtains an infinite-dimensional Hilbert space of

SO0(4, 1) invariant states for linearized gravity in de Sitter space [3, 13]. The group-averaging

procedure was carried out for this spacetime also for other free fields [16, 17] to obtain

Hilbert spaces of invariant states. The QLSCs in de Sitter space were also studied in the

context of cosmological perturbation [18, 19]. The group-averaging procedure has also been

studied extensively in the context of constrained dynamical systems (see e.g. [20–23]). This

method was extended to non-unimodular groups in [24].

The group-averaging procedure can also be explicitly carried out for perturbative quan-

tum gravity in static space with topology of R× T3, where the spatial Cauchy surfaces are

copies of T3, the three-dimensional torus, to find the states satisfying the QLSCs. The classi-

cal [2] and quantum theory [11, 25] of this model have been studied and the group-averaging

procedure can be carried out to obtain a physical Hilbert space of states invariant under the

3
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R× U(1)3 symmetry group of the background.Now, if one considers four-dimensionalN = 1

simple supergravity [26, 27] on this background spacetime, it is not difficult to see that there

are additional fermionic LSCs. The purpose of this paper is to find all states satisfying the

bosonic and fermionic QLSCs and show that a Hilbert space of these states can be constructed

using the group-averaging procedure over the supergroup of symmetries of the linearized

theory.

Let us describe how the LSCs arise for supergravity in this spacetime. Recall that the

energy and momentum of a system in general relativity can be expressed as an integral over

a two-dimensional surface at infinity of a Cauchy surface (the ADM mass and momentum)

in asymptotically-flat spacetime. In classical perturbation theory about Minkowski space, this

fact implies that the total energy and momentum of the linearized fields can be expressed as a

surface integral at infinity of perturbations of the next order. Then, one expects that in pertur-

bation theory in the flat R× T3 background, the total energy and momentum of the linearized

fields vanish because there is no spatial infinity. This is indeed the case, and the vanishing of

the total energy and momentum of the linearized field is expressed as the LSCs. Note here

that the expression for the total energy, or the Hamiltonian, in this spacetime is not positive

definite and, therefore, can vanish for non-trivial field configurations. Now, in supergravity

there is a spinor supercharge Qα, α = 1, 2, 3, 4, associated with a global supersymmetry vari-

ation, and it is known that this supercharge can be written as an integral over two-dimensional

surface at infinity of a Cauchy surface in asymptotically-flat spacetime [28]. This fact again

implies that in static three-torus space there are quadratic constraints on the linearized the-

ory corresponding to the vanishing of the supercharge, which are the fermionic LSCs. In this

paper we study these fermionic LSCs together with the bosonic ones in linearized quantum

supergravity.

The remainder of this paper is organized as follows. In section 2 we present a derivation of

the (classical) bosonic and fermionic LSCs forN = 1 simple supergravity in the background

of flat R× T3 spacetime. We show that these conditions are of the form that the conserved

Noether charges of the linearized theory vanish. In section 3 we discuss linearized supergravity

in this spacetime and express the LSCs in terms of the classical analogues of annihilation and

creation operators. In section 4 we impose the bosonic QLSCs on the states and recall how

this can be understood in the context of group-averaging over the bosonic symmetry group. In

section 5 we describe how all physical states satisfying both the bosonic and fermionic QLSCs

are found and how a Hilbert space of physical states is constructed. Then we show that the

procedure of finding the physical Hilbert space can be interpreted as group-averaging over the

supergroup of global supersymmetry. We summarize and discuss our results in section 6. In

appendix A we present a gauge transformation of the vierbein field that is proportional to the

Lie derivative of a vector field, though it is not necessary for this work. In appendix B we

illustrate our derivation of the LSCs in the simple example of electrodynamics in flat R× T3

spacetime. In appendixCwe present the proof of some identities used in this paper. In appendix

D we discuss some aspects of the zero-momentum sector of the gravitino field. Appendix E

presents an example of a two-particle state satisfying all QLSCs. We follow the conventions

of reference [29] throughout this paper.

2. The linearization stability conditions

The action for the four-dimensionalN = 1 simple supergravity [29, 30] with 8πG = 1 is

S =
1

2

∫
d4x e

[
R−Ψμγ

μνρDνΨρ + X(4Ψ)

]
, (2.1)

4
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where X(4Ψ) consists of terms quartic in Ψμ (see e.g. [30] for the explicit form of X(4Ψ)).

Here, eaμ are the vierbein fields, e := det(eaμ), and Ψμα, α = 1, 2, 3, 4, is the gravitino field,

which is a Majorana spinor. The 4× 4 gamma matrices γa, a = 0, 1, 2, 3, satisfy the Clifford

relation {γa, γb} = 2ηab, where ηab = diag(−1, 1, 1, 1). The indices a, b, c, . . . .are raised and

lowered by the flat metric ηab whereas the spacetime indices μ, ν, σ, . . . .are raised and low-

ered by the spacetime metric gμν = eaμeaν . The matrices γa have the properties γ0† = −γ0 and

γ i† = γi, i = 1, 2, 3. One defines γμ := eμaγ
a and γμνρ := γ[μγνγρ], where [· · ·] indicates total

anti-symmetrization. The Riemann tensor is given by

Rμν
ab := ∂μω

ab
ν − ∂νω

ab
μ + ω ac

μ ω b
νc − ω ac

ν ω b
μc , (2.2)

and the curvature scalar is R := eμae
ν
bRμν

ab. The spin connection ω ab
μ = ω [ab]

μ is expressed in

terms of eaμ as

ω ab
μ = eaν∂[μe

b
ν] − ebν∂[μe

a
ν] −

1

2
(eaνebσ − ebνeaσ)ecμ∂νecσ . (2.3)

One also defines Ψ = Ψ
TC, where C is a unitary matrix satisfying CT = −C and γμT =

−CγμC−1. The Majorana condition satisfied by Ψμ reads (Ψ†
μ)α = i(Cγ0Ψμ)α [30]. We later

choose a Majorana representation for γa in which C = iγ0. In this representation we have

(Ψ†
μ)α = (Ψμ)α. The gravitino covariant derivative in (2.1) is given by

DμΨν = ∂μΨν +
1

4
ωμabγ

ab
Ψν . (2.4)

The action (2.1) is invariant under a local supersymmetry transformation of the form

∆ǫe
a
μ =

1

2
ǫγaΨμ , (2.5)

∆ǫΨμ = Dμǫ+ Yμabγ
abǫ , (2.6)

where Yμab is quadratic in Ψμ and where ǫ is a spacetime dependent Grassmann variable with

four components. (See, e.g. [30] for the explicit form of Yμab).

We consider this theory on a purely bosonic static background whose spatial sections are

flat three-dimensional tori. For the background geometry we therefore take

ds2 = ημνdx
μdxν = −dt2 + dx2 + dy2 + dz2 , (2.7)

where the spatial coordinates x, y and z are periodic with periods L1, L2 and L3 respectively,

and we let V = L1L2L3 denote the spatial volume.

Let us first discuss the bosonic LSCs for this theory, which are well known as we described

in section 1. The diffeomorphism transformation in the direction of a vector ζμ of the vierbein
field eaμ and gravitino field Ψμ is

2

δζe
a
μ = ζν∂νe

a
μ + eaν∂μζ

ν , (2.8)

δζΨμ = ζν∂νΨμ +Ψν∂μζ
ν . (2.9)

2The transformation obtained as the commutator of two supersymmetry transformations is different from the dif-

feomorphism transformation presented here (see, e.g. [29]). The former takes the form δ′ζe
a
μ = δζe

a
μ − ζρω ab

ρ eb μ,

δ′ζΨμ = δζΨμ − ∂μ(ξ
ρ
Ψρ) to first order in the fields ẽaμ defined by (2.10) and Ψμ. It can be shown that the LSCs

corresponding to these two transformations are identical.

5
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Now, we write the vierbein field as

eaμ = δaμ + ẽaμ . (2.10)

That is, we write eaμ as the sum of its background value δaμ and perturbation ẽ
a
μ. Then,

δζ ẽ
a
μ = δaν∂μζ

ν
+ ζν∂ν ẽ

a
μ + ẽaν∂μζ

ν . (2.11)

It is important to note here that the part of δζ ẽ
a
μ that is independent of ẽaμ vanishes if ζμ is a

constant vector, i.e. a Killing vector of the flat background3.

Since the action (2.1) is invariant under the diffeomorphism transformation given by (2.9)

and (2.11), we have

δζ ẽ
a
μ

δS

δẽaμ
+ δζΨμ

δS

δΨμ
= ∂μ(

√−gJμ(ζ)) , (2.12)

for some vector field J
μ
(ζ), which is linear in ζμ. Here the variation δS/δΨμ is a left-variation,

i.e.

δS =

∫
d4x δΨμ

δS

δΨμ
. (2.13)

We adopt left-variations for fermionic fields throughout this paper.We then expand δζ ẽ
a
μ, δζΨμ,

δS/δẽaμ, δS/δΨμ and
√−gJμ(ζ) according to the order in the fields ẽaμ and Ψμ, i.e. the number

of these fields in the product, as

δζ ẽ
a
μ = δ(0)ζ ẽaμ + δ(1)ζ ẽaμ , (2.14)

δζΨμ = δ(1)ζ Ψμ , (2.15)

δS

δẽaμ
= E(1)μ

a + E(2)μ
a + · · · , (2.16)

δS

δΨμ
= E (1)μ

+ E (2)μ
+ · · · , (2.17)

√−g Jμ(ζ) = J
(0)μ
(ζ) + J

(1)μ
(ζ) + J

(2)μ
(ζ) + · · · , (2.18)

Recall that the background metric is flat. We note that E(0)μ
a = 0 and E (0)μ = 0 because the flat

spacetime with Ψμ = 0 satisfies the field equations. That is, δS/δẽaμ = 0 and δS/δΨμ = 0 if

ẽaμ = 0 and Ψμ = 0.

The identity (2.12) must be satisfied order by order. The first- and second-order equalities

read

(δ(0)ζ ẽaμ)E
(1)μ
a = ∂μJ

(1)μ
(ζ) , (2.19)

(δ(0)ζ ẽaμ)E
(2)μ
a + (δ(1)ζ ẽaμ)E

(1)μ
a + (δ(1)ζ Ψμ)E (1)μ

= ∂μJ
(2)μ
(ζ) . (2.20)

3 If the background has non-zero curvature, δξ ẽ
a
μ does not necessarily vanish at lowest order even if ξ is a Killing

vector of the background metric. One needs to consider a transformation modified by an infinitesimal local Lorentz

transformation in this case to make δξ ẽ
a
μ vanish at lowest order. This is done in appendix A.

6
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We emphasize here that these identities hold for any vector ζμ and for any field configuration.
Now, if the vector field ξμ is a constant vector, then δ(0)ξ ẽaμ = 0 as can readily be seen from

(2.11). Hence, by (2.19), the current J
(1)μ
(ξ) is conserved. Then the charge

P
(1)
(ξ) :=

∫
d3�x J(1)0(ξ) , (2.21)

is conserved for any field configuration. In particular, it is conserved even if the fields are

smoothly deformed to 0 in the past or future of the t = constant Cauchy surface where the

integral is evaluated. Since P
(1)
(ξ) = 0 if the fields vanish, the conservation of this charge implies

that

P
(1)
(ξ) = 0 , (2.22)

for any field configuration if ξμ is a constant vector. The compactness of the Cauchy sur-

faces is crucial for this conclusion because this charge is not necessarily conserved if the

field configuration is time-dependent at infinity for the case where the Cauchy surfaces are

non-compact.

Now, suppose one attempts to solve the field equations for ẽaμ and Ψμ order by order.

Let (ẽ(1)aμ ,Ψ(1)
μ ) be a solution to the linearized equations and (ẽ(2)aμ ,Ψ(2)

μ ) be the second-order

correction. Then,

E(1)μ
a [ẽ(1)] = 0 , (2.23)

E (1)μ[Ψ(1)] = 0 , (2.24)

E(1)μ
a [ẽ(2)]+ E(2)μ

a [ẽ(1),Ψ(1)] = 0 , (2.25)

E (1)μ[Ψ(2)]+ E (2)μ[ẽ(1),Ψ(1)] = 0 . (2.26)

Here E (2)μ[ẽ(1),Ψ(1)] is the vector-spinor E (2)μ evaluated with (ẽaμ,Ψμ) = (ẽ(1)aμ ,Ψ(1)
μ ), and

similarly for the others. The identities (2.19) and (2.20) imply

∂μ(J
(1)μ
(ζ) [ẽ(2)]+ J

(2)μ
(ζ) [ẽ(1),Ψ(1)]) = 0 , (2.27)

for any vector field ζμ as long as field equations (2.23)–(2.25) are satisfied. The charge corre-
sponding to the conserved current J

(1)μ
(ζ) [ẽ(2)]+ J

(2)μ
(ζ) [ẽ(1),Ψ(1)] must vanish for any ζμ because

this charge is conserved even if the field ζμ is smoothly deformed to zero in the past or future

and is evaluated there. Hence, if we define

P
(2)
(ζ)[ẽ

(1),Ψ(1)] :=

∫
d3�x J(2)0(ζ) [ẽ

(1),Ψ(1)] , (2.28)

then

P
(2)
(ζ)[ẽ

(1),Ψ(1)] = −P(1)
(ζ)[ẽ

(2)] , (2.29)

for any vector field ζμ as long as the fields (ẽ(1)bν ,Ψ(1)
ν ) and (ẽ(2)bν ,Ψ(2)

ν ) are perturbative solutions

to the field equations. In particular, if ζμ = ξμ is a Killing vector, then

P
(2)
(ξ)[ẽ

(1),Ψ(1)] = 0 , (2.30)

because of (2.22). Equation (2.30) is a consequence of the requirement that the solution

(ẽ(1)bν ,Ψ(1)
ν ) extend to an exact solution and does not follow from the linearized field equations.

7
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This equation is called a linearization stability condition (LSC) and has to be imposed on

the solutions to the linearized equations. In appendix B we illustrate the argument leading to

(2.30) for electrodynamics. The total charge of the linearized charged field must vanish in this

model.

The LSCs from local supersymmetry can be derived in a similar manner. We expand the

supersymmetry transformation given by (2.5) and (2.6) according to the number of fields in

the product as

∆ǫẽ
a
μ = ∆

(1)
ǫ ẽaμ , (2.31)

∆ǫΨμ = ∆
(0)
ǫ Ψμ +∆

(1)
ǫ Ψμ +∆

(2)
ǫ Ψμ + · · · . (2.32)

It is clear that ∆ǫẽ
a
μ = ∆ǫe

a
μ given by (2.5) has no field independent contribution. That is,

∆
(0)
ǫ ẽaμ = 0. The analogue of the identity (2.12) is

∆ǫẽ
a
μ

δS

δẽaμ
+∆ǫΨμ

δS

δΨμ
= ∂μ(

√−gJ μ
(ǫ)) . (2.33)

From this equation one finds

(∆(0)
ǫ Ψμ)E (1)μ

= ∂μJ (1)μ
(ǫ) , (2.34)

(∆(0)
ǫ Ψμ)E (2)μ

+ (∆(1)
ǫ ẽaμ)E

(1)μ
a + (∆(1)

ǫ Ψμ)E (1)μ
= ∂μJ (2)μ

(ǫ) , (2.35)

for any spinor field ǫ and any field configuration. Since ∆(0)
ε Ψμ = ∂με = 0 if ε is a constant

spinor, the charge defined by

Q
(1)
(ε):=

∫
d3�x J (1)0

(ε) , (2.36)

vanishes for any field configuration if ǫ = ε is a constant spinor by the argument which led to

(2.22). By the same argument as that led to (2.29), if we define

Q
(2)
(ǫ) [ẽ

(1),Ψ(1)] :=

∫
d3�x J (2)μ

(ǫ) [ẽ(1),Ψ(1)] , (2.37)

then

Q
(2)
(ǫ) [ẽ

(1),Ψ(1)] = −Q(1)
(ǫ) [Ψ

(2)] , (2.38)

for any spinor field ǫ if (ẽ(1)bν ,Ψ(1)
ν ) gives a solution to the linearized field equations,E(1)μ

a [ẽ(1)] =

E (1)μ[Ψ(1)] = 0. In particular, if ǫ = ε is a constant spinor, since Q(1)
(ε)[Ψ

(2)] = 0 in this case, we

must have

Q
(2)
(ε)[ẽ

(1),Ψ(1)] = 0 . (2.39)

These are the LSCs arising from local supersymmetry on static three-torus space.

Next, we shall derive the conserved currents J
(2)μ
(ξ) [ẽ(1),Ψ(1)] given by (2.20) and

J (2)μ
(ε) [ẽ(1),Ψ(1)] given by (2.35) and the corresponding conserved charges P

(2)
(ξ)[ẽ

(1),Ψ(1)] and

Q
(2)
(ε)[ẽ

(1),Ψ(1)] for a constant vector ξμ and a constant spinor ε. From now onwewrite ẽ(1)aμ = ẽaμ
and Ψ(1)

μ = Ψμ.

For either charge we only need the linearized field equations. To find E(1)μ
a for ẽaμ, it is useful

to note that eR in the Lagrangian density in terms of the vierbein fields equals
√−gR given

8
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in terms of the metric tensor gμν . Thus, we may vary
√−gR with respect to the metric tensor

and then vary the metric tensor with respect to the vierbein fields. Writing gμν = ημν + hμν ,

we find the perturbation hμν in terms of ẽaμ at first order as

hμν = δaμẽaν + ẽaμδ
a
ν . (2.40)

Then we find

E(1)μ
a [ẽ] =

1

2
δνa
[
−∂μ∂λhλν − ∂ν∂

λh
μ
λ + ∂μ∂νh+�hμν + δμν ∂

λ∂σhλσ − δμν�h
]
, (2.41)

where h := ημνhμν and � := ∂λ∂
λ, with indices raised and lowered by ημν . We readily find

E (1)μ [Ψ] = −Cγμνρ∂νΨρ . (2.42)

To find the bosonic conserved current J
(2)μ
(ξ) , we use (2.40)–(2.42) together with

δ(1)(ξ) ẽ
a
μ = ξν∂ν ẽ

a
μ , (2.43)

δ(1)(ξ)Ψμ = ξν∂νΨμ , (2.44)

in (2.20), recalling δ(0)(ξ) ẽ
a
μ = 0, to find

∂μJ
(2)μ
(ξ) [ẽ,Ψ] =

1

4
(ξλ∂λhμν)

[
−∂μ∂λh ν

λ − ∂ν∂λh
μ
λ + ∂μ∂νh+�hμν

+ ημν∂λ∂σhλσ − ημν�h
]
− (ξλ∂λΨμ)γ

μνρ∂νΨρ . (2.45)

The current J
(2)μ
(ξ) [h,Ψ], which depends on ẽaμ only through hμν , is identified with the Noether

current for the spacetime translation in the direction of ξμ of the decoupled theory consist-

ing of a Fierz–Pauli Lagrangian for the graviton and a Rarita–Schwinger Lagrangian for the

Majorana gravitino [30]

L = −1

4
∂μh∂νhμν +

1

8
∂μh∂

μh+
1

4
∂σh

μσ∂ρhμρ −
1

8
∂ρh

μν∂ρhμν −
1

2
Ψμγ

μνρ∂νΨρ . (2.46)

It can be given explicitly as

J
(2)μ
(ξ) [h,Ψ] = −(ξλ∂λhρσ)

∂L
∂(∂μhρσ)

− (ξλ∂λΨρ)
∂L

∂(∂μΨρ)
+ ξμL

=
1

4

[
ξλ∂λh∂νh

μν
+ ξλ∂λh

μρ∂ρh− ξλ∂λh∂
μh

− 2ξλ∂λh
μρ∂σhρσ + ξλ∂λhρσ∂

μhρσ
]

+
1

4
ξμ
[
−∂ρh∂σhρσ +

1

2
∂ρh∂

ρh+ ∂σh
ρσ∂λhρλ −

1

2
∂λhρσ∂

λhρσ
]

+
1

2

(
ξσΨνγ

νμρ∂σΨρ − ξμΨνγ
νσρ∂σΨρ

)
. (2.47)

Next we find the fermionic conserved current J (2)μ
(ε) . We note that the first-order part of the

global supersymmetry transformation is given by

9
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∆
(1)
(ε) ẽ

a
μ =

1

2
εγaΨμ , (2.48)

∆
(1)
(ε)Ψμ =

1

4

(
∂μẽaνγ

νa
+ ∂ρhμνγ

νρ
)
ε . (2.49)

By substituting these formulas and equations (2.41) and (2.42) into (2.35), and using the

identity [29]

γρνγσμκ
= 3(ην[σγμκ]ρ − ηρ[σγμκ]ν

+ ην[σγμηκ]ρ − ηρ[σγμηκ]ν) , (2.50)

we find

J (2)μ
(ε) [h,Ψ] =

1

4

(
∂ρhσνεγ

ρνγμσκ
Ψκ − δaρẽaνεγ

ρνγμσκ∂σΨκ

)
. (2.51)

Note that the second term vanishes if the (linear) local Lorentz invariance is fixed by requir-

ing ẽaν = δμa δ
b
ν ẽbμ. (It vanishes by the linearized field equation for Ψμ as well.) With this

condition imposed, the term which explicitly depends on ẽbν in the supersymmetry trans-

formation ∆
(1)
(ε)Ψμ given by (2.49) vanishes. With this choice the current J (2)μ

(ε) [h,Ψ] and the

charge Q
(2)
(ε)[h,Ψ] are the Noether current and charge, respectively, for the supersymmetry

transformation,

∆
(1)
(ε)hμν =

1

2
(εγμΨν + εγνΨμ) , (2.52)

∆
(1)
(ε)Ψμ =

1

4
∂ρhμνγ

νρε , (2.53)

of the linearized supergravity Lagrangian given by (2.46).

Thus, the classical LSCs are P
(2)
(ξ)[h,Ψ] = 0 and Q

(2)
(ε)[h,Ψ] = 0, where P

(2)
(ξ)[h,Ψ] and

Q
(2)
(ε)[h,Ψ] are the conserved charges corresponding to the conserved currents J

(2)μ
(ξ) [h,Ψ] in

(2.47) and J (2)μ
(ε) [h,Ψ] in (2.51) (without the second term) respectively (see (2.28) and (2.37)).

In the next section we discuss linearized supergravity on static three-torus space at the classical

level and express the LSCs in a form suitable for quantization.

3. Linearized supergravity on static three-torus space

The results of the previous section allow us to describe the LSCs entirely in terms of the

linearized theory. By linearizing N = 1 simple supergravity in 4 dimensions about static

three-torus background spacetime, we have the Lagrangian, which is given here again for

convenience:

L = −1

4
∂μh∂νhμν +

1

8
∂μh∂

μh+
1

4
∂σh

μσ∂ρhμρ −
1

8
∂ρh

μν∂ρhμν −
1

2
Ψμγ

μνρ∂νΨρ . (3.1)

A suitable real Majorana representation for the γ-matrices is given by

γ0
=

(
0 1

−1 0

)
, γ1

=

(
1 0

0 −1

)
,

γ2
=

(
0 σ1

σ1 0

)
, γ3

=

(
0 σ3

σ3 0

)
,

(3.2)

10
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where σ1, σ2 and σ3 are the standard Pauli matrices. In this representation the charge conjuga-

tion matrix takes the form C = iγ0. The action with the Lagrangian density (3.1) is invariant

under the following gauge transformations:

hμν → hμν + ∂μζν + ∂νζμ , (3.3)

Ψμ →Ψμ + ∂μǫ , (3.4)

where ζμ is an arbitrary vector field and ǫα is an arbitraryMajorana spinor field satisfying ǫ†α =

ǫα. This invariance is a remnant of the diffeomorphism invariance and local supersymmetry of

the full theory. We shall fix this gauge freedom completely.

Working on the spatial torus and imposing periodic boundary conditions on the fields allows

us to decompose each field as a Fourier series4. Due to the periodic boundary conditions, each

field has a spatially constant zero-momentum component. The zero-momentum sector of the

linearized theory will be seen to contain six bosonic and six fermionic degrees freedom and

this sector forms an important ingredient in the QLSCs. Meanwhile, the non-zero momen-

tum sector of the theory contains the usual gravitons and gravitinos, which each have two

polarization states. Explicitly we expand the fields as

hμν(t,�x) =
1√
V
h(0)μν(t)+

1√
V

∑

�k �=0

h̃μν(t,�k)e
i�k·�x ,

Ψμ(t,�x) =
1√
V
ψμ(t) +

1√
V

∑

�k �=0

Ψ̃μ(t,�k)e
i�k·�x ,

where the volume of the torus is V = L1L2L3 and the L1, L2 and L3 are the periods of the

torus in the x-, y- and z-directions respectively. The periodic boundary condition implies �k =(
2π
L1
n1,

2π
L2
n2,

2π
L3
n3

)
with n1, n2 and n3 integers, and reality restricts h

(0)
μν to be real, h̃μν(t,−�k) to

be equal to h̃†μν(t,�k), and similarly for ψμ and Ψ̃μ(t,�k).
The Lagrangian for the theory does not provide dynamical coupling between the modes

with zero momentum and those with non-zeromomentum�k. Therefore, it is possible to analyse
these separately. We begin with the zero-momentum sector of the theory. We write h(0)μν(t) =

hμν(t), dropping the superscript ‘(0)’, in the rest of this section. The Lagrangian, i.e. the space

integral of the Lagrangian density, for this sector reads

L0 = −1

8
∂0h

i
i∂0h

j
j +

1

8
∂0h

i j∂0hi j +
1

2
ψ̄iγ

0γ i j∂0ψ j . (3.5)

The classical [31] and quantum [25] theory of the graviton contributions have been studied

previously using the ADM formalism without fixing the gauge. Here we fix the gauge to

extract the physical degrees of freedom in the linearized theory. (This gauge fixing has little to

do with the imposition of LSCs discussed later).

The linearized Lagrangian does not provide equations of motion for hμ0 and ψ0α, and these

are precisely the components which carry the gauge degrees of freedom. It is therefore pos-

sible to gauge-fix these components to vanish by solving h00(t) = 2∂0ξ0(t), hi0(t) = ∂0ξi(t),

4 It is possible to choose other boundary conditions also compatible with local supersymmetry, such as anti-periodic

boundary conditions for both the gravitino Ψμ and the local supersymmetry parameter ǫ. However, only the periodic

boundary conditions lead to fermionic LSCs.

11
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i = 1, 2, 3 and ψ0(t) = ∂0ǫ(t). The elimination of h0μ(t) and ψ0(t) exhausts the gauge free-

dom in the zero-momentum sector, and all other components are physical. Thus, in the zero-

momentum sector the physical degrees of freedom are contained in the symmetric tensor

hij and vector-spinor ψiα, i = 1, 2, 3, each of which corresponds to six classical degrees of

freedom.

The six bosonic degrees of freedom are contained in the symmetric tensor hij. To analyse

this tensor it is convenient to break it up into the trace and trace-free sectors. Thus, we let

hi j(t) =

√
2

3
δi j c(t)+ 2

5∑

A=1

TAi jcA(t) , (3.6)

where the TAi j are a set of five trace-free tensors which satisfy the orthonormality condition

TAi jTBi j = δAB. We choose them as

T1
=

1√
2

⎛
⎝
1 0 0

0 −1 0

0 0 0

⎞
⎠ , T2

=
1√
6

⎛
⎝
1 0 0

0 1 0

0 0 −2

⎞
⎠ ,

T3
=

1√
2

⎛
⎝
0 1 0

1 0 0

0 0 0

⎞
⎠ , T4

=
1√
2

⎛
⎝
0 0 1

0 0 0

1 0 0

⎞
⎠ ,

T5
=

1√
2

⎛
⎝
0 0 0

0 0 1

0 1 0

⎞
⎠ . (3.7)

In terms of the six variables c and cA, the Lagrangian reads

L0 = −1

2
(∂0c)

2
+

1

2

5∑

A=1

(∂0cA)
2
+

1

2
ψ̄iγ

0γ i j∂0ψ j . (3.8)

The momentum conjugate to hij, i.e. p
ij = ∂L0/∂(∂0hij), is

pi j = −1

4
(∂0h

k
k)δ

i j
+

1

4
∂0h

i j

=
1

2

√
2

3
δi j cP +

1

2

∑

A

TAi j cPA , (3.9)

where cP = −∂0c and cPA = ∂0cA are the momenta conjugate to c and cA, respectively. The

time derivative of the zero-momentum field hij is then

∂0hi j = 2

5∑

A=1

TAi j cPA −
√

2

3
δi j cP . (3.10)

The canonical Poisson bracket relations for c, cA, cP and cPA, and equivalently for hij and p
kl,

are

{c, cP}P = 1, {cA, cPB}P = δAB , (3.11)

{
hi j, p

kl
}
P
=

1

2

(
δki δ

l
j + δliδ

k
j

)
. (3.12)
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The fermionic part of L0 is of first order in time derivatives and therefore already defines

a constrained dynamical system [32, 33], and we need to use the Dirac bracket as the bracket

to be ‘promoted’ to the anti-commutator upon quantization. The momentum variables πiα
conjugate to ψiα are

πiα =
∂L0

∂(∂0ψiα)

= −1

2
(ψ̄ jγ

0γ ji)α , (3.13)

where the derivative of L0 with respect to ∂0ψiα is the left derivative. These momenta are not

invertible in terms of the coordinates and velocities, so there are twelve primary constraints,

φiα = πiα +
1

2
(ψ̄ jγ

0γ ji)α ≈ 0 . (3.14)

We note that the Poisson and Dirac brackets for two fermionic fields are symmetric under the

exchange of arguments. That is, if the fields A and B are fermionic, then {A,B}P = {B,A}P,
and similarly for the Dirac bracket.

For the associated primary Hamiltonian HP we add arbitrary linear combinations of the

primary constraints to the canonical Hamiltonian,

HP = ∂0ψiπ
i − L0 + λiφi = λiφi , (3.15)

where the λiα are arbitrary. Notice in particular that the primary Hamiltonian for these modes

weakly vanishes, i.e. it vanishes if the constraints are satisfied. The constraints are to be pre-

served under evolution by the primary Hamiltonian. This requirement leads to consistency

conditions

∂0φ
i ≈
{
φi,HP

}
P
≈ 0 . (3.16)

To evaluate the Poisson bracket between the constraints, we use the canonical Poisson

bracket,
{
ψiα, π

j
β

}
P
= −δijδαβ , (3.17)

which allows us to compute the Poisson bracket between the constraints (and therefore the

primary Hamiltonian) as

{
φiα,φ

j
β

}
P
= −(Cγ0γ i j)αβ . (3.18)

Hence, we find that the consistency conditions (3.16) imply λi = 0. Thus, the primary Hamil-

tonian HP vanishes and, as a result, the fields ψi are time independent. This fact can also

be deduced from the Euler–Lagrange equation resulting from (3.8). There are no secondary

constraints and all the constraints are of second class. To obtain the bracket structure for the

theory suitable for subsequent quantization, we compute the Dirac bracket

{
ψiα, π

j
β

}
D
=

{
ψiα, π

j
β

}
P
−
{
ψiα,φ

k
γ

}
P

(
{φ,φ}P

)−1

klγδ

{
φlδ , π

j
β

}
P

=
1

2

{
ψiα, π

j
β

}
P

= −1

2
δ ji δαβ . (3.19)
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On the Dirac bracket, we can impose the second-class constraints as strong conditions since

the Dirac bracket between second-class constraints vanishes.

Working explicitly in the Majorana representation, where C = iγ0, the Dirac bracket for

ψiα evaluates to

{ψiα,ψ jβ}D = − i

2

(
δi jδαβ − (γi j)αβ

)
. (3.20)

To provide some insight into these relations we write

ψiα =
1√
6
(γiη)α +

2∑

A=1

TAi j(γ
jηA)α , (3.21)

where η and ηA are Majorana spinors. The matrices T1 and T2 are given in (3.7). These

symmetric and traceless matrices satisfy

TAi jγ jT
B
ikγ

k
= δAB . (3.22)

One can also show, by a component-by-component calculation,

2∑

A=1

TAikγ
kTAjℓγ

ℓ
=

2

3
δi j −

1

3
γi j . (3.23)

These relations can be used to show that the Dirac bracket relations for ψiα are equivalent to

{ηα, ηβ}D = iδαβ ,
{
ηAα , η

B
β

}
D
= −iδABδαβ ,

{
ηα, η

A
β

}
D
= 0 . (3.24)

Next, we briefly describe the mode expansion of the non-zero-momentum sector of this

theory, which is well known. Letting the non-zero-momentum components of the fields be

denoted by ĥμν and Ψ̂μ, we can completely fix the gauge freedom in this sector by imposing

the following conditions (see, for instance, [29, 30]):

ĥμ0 = ĥ = ∂ iĥi j = 0 , (3.25)

γ iΨ̂i = Ψ̂0 = ∂ iΨ̂i = 0 . (3.26)

Then we can write the expansion of the graviton as follows:

ĥi j(�x, t) =

√
2

V

∑

�k �=0

∑

λ=±

1√
k

[
Hλ
i j(
�k)aλ(�k)e

ik·x
+ Hλ∗

i j (
�k)a†λ(

�k)e−ik·x
]
, (3.27)

where k := |�k| and kμ = (k,�k). We have let the complex conjugate of aλ(�k) be denoted by a
†
λ(
�k),

anticipating quantization. The symmetric and traceless polarization tensors are given by

Hλ
i j(
�k) = ǫλi (�k)ǫ

λ
j (
�k) , (3.28)

where the polarization vectors ǫλi (�k) are given by

ǫ±i (�k) =
1√
2
(ê(1)i (�k)± iê(2)i (�k)) . (3.29)

The unit spatial vectors ê
(1)
i (�k), ê(2)i (�k) and ê(3)i (�k) = �k/k form a right-handed orthonormal sys-

tem in this order. The polarization vectors ǫ±i (�k) satisfy ǫλ∗(�k) · ǫλ′(�k) = δλλ
′
and kiǫλi (�k) = 0.
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As a result, Hλ
i j(
�k) satisfy kiHλ

i j(
�k) = 0 and Hλ∗

i j (
�k)Hλ′i j(�k) = δλλ

′
. The Lagrangian density

for the non-zero-momentum sector of the graviton field in this gauge can be found from

(3.1) as

LTT = −1

8
∂ρĥ

i j∂ρĥi j . (3.30)

The standard procedure to find the Poisson bracket relations for the coefficients aλ(�k) and a
†
λ(
�k)

leads to

{
aλ(�k), a

†
λ(
�k′)
}
P
= −iδ�k,�k′δλλ′ , (3.31)

with all other brackets among aλ(�k) and a
†
λ(
�k) vanishing.

The non-zero-momentumsector of the gravitino field can similarly be expanded into modes

as

Ψ̂iα =
1√
V

∑

�k �=0

∑

λ=±

1√
2k

[
ǫλi (

�k)uλα(
�k)bλ(�k)e

ik·x
+ ǫλ∗i (�k)uλ∗α (�k)b†λ(

�k)e−ik·x
]
, (3.32)

where u±(�k) are eigenspinors of γ5 = iγ0γ1γ2γ3 and γ0k̂ · �γ, where k̂ :=�k/k, with eigenval-

ues ±1 and −1, respectively. We normalize them by requiring uλ†(�k)uλ
′
(�k′) = 2kδλλ

′
. The

fermionic coefficients bλ(�k) and b
†
λ(
�k) satisfy the classical analogues of the anti-commutation

relations for the annihilation and creation operators:

{
bλ(�k), b

†
λ′(
�k′)
}
D
= −iδ�k,�k′δλλ′ , (3.33)

with all other brackets among bλ(�k) and b
†
λ(
�k) vanishing.

4. Imposing the bosonic linearization stability conditions

We quantize the linearized theory by promoting the physical degrees of freedom to operators

acting on some Hilbert space, and we impose

[(anti)− commutator]± = i�{Poisson/Dirac Bracket} , (4.1)

as the algebraic relations between the operators, where [A,B]± :=AB± BA. We work in units

with � = 1. Thus, equations (3.11) and (3.31) become

[c, cP]− = i, [cA, cPB]− = iδAB , (4.2)
[
aλ(�k), a

†
λ′(
�k′)
]
−
= δλλ′δ�k,�k′ , (4.3)

respectively. On the other hand, the relations (3.24) and (3.33) become

[
ηα, ηβ

]
+
= −δαβ ,

[
ηAα, η

B
β

]
+
= δABδαβ ,

[
ηα, η

A
β

]
+
= 0 , (4.4)

[
bλ(�k), b

†
λ′(
�k′)
]
+
= δλλ′δ�k,�k′ , (4.5)

respectively.
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After imposing our gauge conditions and using the field equations, the time component of

the conserved Noether current J
(2)μ
(ξ) [h,Ψ] for the spacetime translation symmetry becomes

J
(2)0
(ξ) =

√
V

8
ξ0
[
∂0hi j∂0h

i j − ∂0h
j
j∂0h

i
i

]
− 1

4
ξν∂

ν ĥi j∂0ĥi j +
1

8
ξ0∂ν ĥi j∂

ν ĥi j − i

2
ξνΨ̂

T
i ∂

ν
Ψ̂
i ,

(4.6)

wherewe have dropped the cross terms between the zero-momentumand non-zero-momentum

sectors because they do not contribute to the space integral of J
(2)0
(ξ) , which gives the conserved

charge. Let us write

ξ0H + ξiP
i
=

∫
d3�x J(2)0(ξ) . (4.7)

By substituting (3.9), (3.27) and (3.32) into (4.6) and integrating the result over space, one

finds

H = −1

2
c2P +

5∑

A=1

1

2
c2PA +

∑

�k �=0

∑

λ=±
|�k|
(
a
†
λ(
�k)aλ(�k)+ b

†
λ(
�k)bλ(�k)

)
, (4.8)

�P =
∑

�k �=0

∑

λ=±

�k
(
a
†
λ(
�k)aλ(�k)+ b

†
λ(
�k)bλ(�k)

)
, (4.9)

the bosonic sector of which agrees with the conserved charges given in [25]. Note that the

zero-point energy which had to be renormalized away in the pure-gravity case is absent here

because of supersymmetry. Note also that the Hamiltonian H is not positive definite.

The Hilbert space for the theory can be constructed as the tensor product of a non-zero

momentum sector and a sector with zero momentum. In the sector with non-zero momentum,

we have the usual Fock spaces for the gravitons and gravitinos with the number operators for

the gravitons and gravitinos (with a given momentum and a polarization) being a
†
λ(
�k)aλ(�k) and

b
†
λ(
�k)bλ(�k), respectively. A suitable basis of states is given by states with definite number of

particles in each momentum and polarization. Thus, the normalized state with nBλ(�k) gravitons
and nFλ(�k) gravitinos with momentum �k and polarization λ can be given as

|{nB}〉 ⊗ |{nF}〉 =
∏

�k,λ=±

⎡
⎣ 1√

nBλ(�k)!
(a

†
λ(
�k))nBλ(

�k)(b
†
λ(
�k))nFλ(

�k)

⎤
⎦ |0〉 , (4.10)

where the vacuum state |0〉 satisfies aλ(�k)|0〉 = bλ(�k)|0〉 = 0 for all�k and λ. (For the gravitino

nFλ(�k) = 0 or 1, of course).

For the graviton zero-modes, we represent the commutation rules [c, cP]− = i and

[cA, cPB]− = iδAB on wave functions which are functions of the variables c and cA by

c �→ multiply by c, cP �→ −i
∂

∂c
, (4.11)

cA �→ multiply by cA, cPA �→ −i
∂

∂cA
. (4.12)

Therefore, if we take some state which is proportional to a single eigenstate of the number

operators,

|state〉 = Ψ⊗ |{nB}〉 ⊗ |{nF}〉 , (4.13)
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where Ψ is some wave function of c and cA, then the Hamiltonian and momentum operators,

(4.8) and (4.9), acting on such a state take the form

H |state〉 = 1

2

(
+

∂2

∂c2
−

5∑

A=1

∂2

∂c2A
+M2

)
|state〉 , (4.14)

�P |state〉 =
∑

�k �=0

∑

λ=±

�k
(
nBλ(�k)+ nFλ(�k)

)
|state〉 , (4.15)

where we have defined a ‘squared mass’ for these states by

M2
= 2
∑

�k �=0

∑

λ=±
|�k|
(
nBλ(�k)+ nFλ(�k)

)
. (4.16)

The operators H and �P do not contain the zero-momentum sector of the gravitino field. They

appear in the global supercharges as we shall see in the next section.

As discussed in section 2, the conserved charges H and �P must vanish classically for the

classical solutions to the linearized equations if they were to be extendible to exact solu-

tions. Moncrief proposed that in quantum theory these linearization stability conditions (LSCs)

should be imposed as constraints on the physical states. Thus, the constraints on the physical

states |phys〉 are

H |phys〉 = 0, �P |phys〉 = 0 . (4.17)

In [25] the group-averaging procedure was used to find all states satisfying these constraints

and define an inner product among these states for pure gravity on static three-torus space. We

apply this procedure toN = 1 simple supergravity in this section.

We start with the Hilbert spaceH0 of superpositions of the states defined by (4.13). Take two

states in this Hilbert space of the form |ϕ1〉 = Ψ1(c, cA)⊗ |Φ1〉 and |ϕ2〉 = Ψ2(c, cA)⊗ |Φ2〉,
where |Φ1〉 and |Φ2〉 are states in the Fock space F of non-zero-momentum gravitons and

gravitinos. The inner product between these states is

〈ϕ1|ϕ2〉H0
= 〈Φ1|Φ2〉F

∫
dcd5�cΨ∗

1Ψ2 , (4.18)

where �c is the vector with components cA, A = 1, 2, 3, 4, 5. Let us choose both |Φ1〉 and |Φ2〉
to have a definite value of M2 defined by (4.16). (If these states have different values of M2,

then 〈Φ1|Φ2〉F = 0.) Then, by expressing ΨI(c,�c), I = 1, 2, as a Fourier integral in the six-

dimensional space with coordinates (c,�c), these states can be given as

|ϕI〉 =
∫

dp0

2π

d5�p

(2π)5
FI(p

0,�p)e−ip0c+i�p·�c ⊗ |ΦI〉 , (4.19)

where �p is also a five-dimensional vector and �p ·�c = pAcA. The inner product for these states

is

〈ϕ1|ϕ2〉H0
= 〈Φ1|Φ2〉F

∫
dp0

2π

d5�p

(2π)5
F∗
1(p

0,�p)F2(p
0,�p) . (4.20)
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Since the operators H and �P are the generators of spacetime translations, we can construct

states satisfying (4.17) by averaging the states |ϕI〉 over this translation group as follows:

|ϕ(B)
I 〉 = 1

2V

∫ ∞

−∞
dα0

(
3∏

i=1

∫ Li

0

dαi

)
exp(iα0H − i�α · �P)|ϕI〉 . (4.21)

The integral over space acts as the projector onto the sector of the Fock space with zero total

momentum:

1

V

(
3∏

i=1

∫ Li

0

dαi

)
exp(−i�α · �P)|ΦI〉 = P�P=0|ΦI〉 . (4.22)

The integral over α0 can readily be evaluated using the representation (4.19) since

He−ip0c+i�p·�c ⊗ |ΦI〉 =
1

2

[
−(p0)2 + �p2 +M2

]
e−ip0c+i�p·�c ⊗ |ΦI〉 . (4.23)

Thus we find, with the notation |Φ(�P=0)
I 〉 = P�P=0|ΦI〉,

|ϕ(B)
I 〉 =

∫
dp0

2π

d5�p

(2π)5
2πδ((p0)2 − �p2 −M2)FI(p

0,�p)e−ip0c+i�p·�c ⊗ |Φ(�P=0)
I 〉

=

∫
d5�p

(2π)5

[
f
(+)
I (�p)e−iE(�p)c+i�p·�c

+ f
(−)
I (�p)eiE(�p)c+i�p·�c

]
⊗ |Φ(�P=0)

I 〉 , (4.24)

where E(�p) =
√
�p2 +M2 and where

f
(±)
I (�p) =

FI(±E(�p),�p)
2E(�p)

. (4.25)

Althoughwe obtained the invariant state |ϕ(B)
I 〉 by averaging |ϕI〉 over the spacetime translation

group, it is easy to show that any state with definite value ofM2 satisfying the constraints (4.17)

is of this form. (The zero-momentum sector is a solution to the six-dimensional Klein–Gordon

equation with mass M).

The states |ϕ(B)
I 〉 are indeed invariant, i.e. they satisfy the QLSCs given by (4.17). How-

ever, they have infinite norm and, hence, are not in the Hilbert space H0: the inner prod-

uct 〈ϕ(B)
I |ϕ(B)

I 〉H0
computed using (4.20) is infinite because of the δ-function in (4.24). The

group-averaging inner product for the Hilbert spaceHB of invariant states is defined by

〈ϕ(B)
1 |ϕ(B)

2 〉HB
=

1

2V

∫ ∞

−∞
dα0

(
3∏

i=1

∫ Li

0

dαi

)
〈ϕ1| exp(iα0H − i�α · �P)|ϕ2〉H0

= 〈ϕ1|ϕ(B)
2 〉H0

= 2

∫
d5�p

(2π)5
E(�p)

[
f
(+)∗
1 (�p) f (+)

2 (�p)+ f
(−)∗
1 (�p) f (−)

2 (�p)
]
〈Φ(�P=0)

1 |Φ(�P=0)
2 〉F .

(4.26)

Notice that, although this inner product is defined in terms of the ‘seed states’ |ϕI〉, it depends
only on the invariant states |ϕ(B)

I 〉. This inner product is equivalent to that proposed in [34] in

the context of quantum cosmology.
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Since the constraint H|phys〉 = 0 is a Klein–Gordon equation, it is tempting to use the

Klein–Gordon inner product for the Hilbert spaceHB:

〈ϕ(B)
1 |ϕ(B)

2 〉KG = i

∫
d5c

(
Ψ

∗
1

∂Ψ2

∂c
− ∂Ψ∗

1

∂c
Ψ2

)
〈Φ(�P=0)

1 |Φ(�P=0)
2 〉F . (4.27)

This inner product can readily be evaluated as

〈ϕ(B)
1 |ϕ(B)

2 〉KG = 2

∫
d5�p

(2π)5
E(�p)

[
f
(+)∗
1 (�p) f (+)

2 (�p)− f
(−)∗
1 (�p) f (−)

2 (�p)
]
〈Φ(�P=0)

1 |Φ(�P=0)
2 〉F ,

(4.28)

which is identical with the group-averaging inner product, 〈ϕ(B)
1 |ϕ(B)

2 〉HB
, given by (4.26)

except for the minus sign in the second term. Although the Klein–Gordon inner product is

more widely used in quantum cosmology, it can be used only if the space of geometries

considered has the structure of spacetime [35]. (In our example, it is the six-dimensional

Minkowski space.) The group-averaging inner product, which we use in this paper, has wider

applicability. For example, it can be used in recollapsing quantum cosmology as shown in

[34].

In the next section we impose the fermionic QLSCs derived in the previous section. We

shall find that the states satisfying these constraints and the inner product among them can be

found by group-averaging over the relevant supergroup.

5. Imposing the fermionic linearization stability conditions

The time component of the conserved fermionic current J (2)μ
(ε) [h,Ψ] is

J (2)0
(ε) [h,Ψ] =

1

4

[
∂0hεγ

iψi − ∂0hi jεγ
iψ j − ∂0ĥi jεγ

j
Ψ̂
i
+ ∂ℓĥi jεγ

0γℓγ j
Ψ̂
i
]
, (5.1)

where we dropped the cross terms between the zero-momentum and non-zero-momentum

sectors since they do not contribute to the space integral. By letting

εQ = −
∫

d3�xJ (2)0
(ε) , (5.2)

and substituting (3.10) and (3.21) into (5.1) and integrating over space, we find

Q = Q(0)
+ Q̂ , (5.3)

with the zero- and non-zero-momentum contributions respectively given by

Q(0)
=

1

2

(
cPη +

5∑

A=1

2∑

B=1

TAi jT
B
ikγ

jγkcPAη
B

)
, (5.4)

Q̂ =
1

4

∫
d3�x

(
∂0ĥ

i jγ jΨ̂i − ĥi jγ j∂0Ψ̂i

)
, (5.5)

where we have integrated by parts in the second term of Q̂ and used γ j∂ jΨ̂i = −γ0∂0Ψ̂i.

One is readily able to find the mode expansion for Q̂, which then yields
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Q =
1

2

(
cpη +

5∑

A=1

2∑

B=1

TAi jT
B
ikγ

jγkcPAη
B

)

− i

2

∑

�k �=0

∑

λ=±

[
ǫλ(�k) · �γuλ∗(�k)aλ(�k)b†λ(�k)− ǫλ∗(�k) · �γuλ(�k)a†λ(�k)bλ(�k)

]
. (5.6)

This charge and the bosonic charges, Pμ = (H,�P), satisfy the supersymmetry algebra. That is,

[Pμ,Q]− = 0, [Pμ,Pν]− = 0 and

[
Qα,Qβ

]
+
=

1

2
(γμγ

0)αβP
μ . (5.7)

Since the contribution to Q with different �k anti-commute, equation (5.7) holds for each �k
including �k = 0. In deriving (5.7) we have used the following identities for �k = 0 and �k �= 0

proved in appendix C:

2∑

B=1

5∑

A=1

5∑

A′=1

TAi jT
B
ikT

A′
i′ j′T

Bi′
k′γ

jγkγk
′
γ j′cPAcPA′ =

5∑

A=1

(cPA)
2 , (5.8)

[
ǫ±∗(�k) · �γu±(�k)

]
α

[
ǫ±(�k) · �γu±∗(�k)

]
β
+ (α ↔ β) = 2(γ · kγ0)αβ . (5.9)

We also recall that γμ are real, γ5 is purely imaginary and that ǫ±∗(�k) = ǫ∓(�k) and u±∗(�k) =
u∓(�k).

One can represent the anti-commutation relations (4.4) satisfied by the twelve fermionic

operators ηα and ηAα in the zero-momentum sector of the gravitino field by a 64-dimensional

indefinite-metric Hilbert space (or Krein space) H0F as shown in appendix D. The basis vec-

tors of this space can be chosen such that 32 of them are normalized with positive norm and

the other 32 are normalized with negative norm. [We say here that |v〉 is normalized with

positive (negative) norm if 〈v|v〉 = 1 (〈v|v〉 = −1).] An important property ofH0F used later

is that the 16-dimensional subspace of H0F of states annihilated by the operators d1 and d2
defined by

d1 := (η1 + iη2)/
√
2 , d2 = (η3 + iη4)/

√
2 , (5.10)

is a positive-norm subspace because this subspace is spanned by the states of the form (D.5)

with n1 = n2 = 0 (withM = 2) [see (D.6)]. The Hilbert space of states satisfying the bosonic

QLSCs is in fact the tensor product HB ⊗H0F. We call this tensor product space also HB

from now on in order not to complicate the notation.

Now we are in a position to find the physical states |phys〉 satisfying the fermionic QLSCs,

Qα|phys〉 = 0, aswell as the bosonic ones,Pμ|phys〉 = 0. Since the operatorsPμ commutewith

Qα, we specialize to the Hilbert space HB of states satisfying the bosonic QLSCs and iden-

tify Pμ with the null operator. Thus, we have
[
Qα,Qβ

]
+
= 0 in place of (5.7). Splitting the

supercharge into zero- and non-zero-momentum contributions, these anti-commutation rela-

tions of the supercharge can be rewritten as

[Q(0)
α ,Q

(0)
β ]+ = −1

4
M2δαβ = −[Q̂α, Q̂β]+ , (5.11)

whereM2 is defined by (4.16). We specialize to an eigenspace of the operatorM2 without loss

of generality. Thus, we treatM as if it were a non-negative number.
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AssumeM > 0. Then, in each common eigenspace of the operators cP and cPA with eigen-

values p0 and pA, respectively, satisfying p
2
0 − �p2 = M2, the operatorsQ(0)

α given by (5.4) is of

the form

Q(0)
α =

M

2

⎛
⎝±ηα cosh θ +

2∑

B=1

4∑

β=1

Cα
β
Bη

B
β sinh θ

⎞
⎠ , (5.12)

where Cα
β
B can be regarded as a 4× 8 matrix with the rows and columns labelled

by α and (B, β), respectively. Here, cosh θ = |cP|/M and sinh θ = |�cP|/M, where �cP =

(cP1, cP2, cP3, cP4, cP5). The four eight-dimensional column vectors of the matrix Cα
β
B are

orthonormal, i.e.

2∑

B=1

4∑

β=1

Cα1

β
B
Cα2

β
B
= δα1α2

. (5.13)

Then by appendix D there is a unitary operatorU, i.e. an operator preserving the inner product,

onH0F such that

Q(0)
α = (M/2)UηαU

† . (5.14)

Instead of directly working with Q(0)
α and Q̂α, it is more convenient to combine them into

annihilation- and creation-type operators [33] as

a1 =

√
2

M
(Q

(0)
1 + iQ

(0)
2 ), a2 =

√
2

M

(
Q

(0)
3 + iQ

(0)
4

)
, (5.15)

b1 =

√
2

M
(Q̂1 + iQ̂2), b2 =

√
2

M
(Q̂3 + iQ̂4) , (5.16)

provided that M > 0.5 These new operators satisfy the anti-commutation relations of Fermi

oscillators (up to a sign), i.e. a2i = b2i = a
†2
i = b

†2
i = 0 and

[ai, a
†
j]+ = −δi j, [bi, b

†
j]+ = δi j . (5.17)

Now we construct all states |ϕ(BF)〉 ∈ HB satisfying Qα|ϕ(BF)〉 = 0, α = 1, 2, 3, 4. These

constraints can be organized as

(ai + bi)
∣∣ϕ(BF)

〉
= (a

†
i + b

†
i )
∣∣ϕ(BF)

〉
= 0, i = 1, 2 . (5.18)

Note that all states are linear combinations of the states each annihilated by either b1 or b
†
1

since |ϕ(B)〉 = b
†
1b1|ϕ(B)〉+ b1b

†
1|ϕ(B)〉 for any state |ϕ(B)〉 ∈ HB. The same is true for each pair

of operators, (b2, b
†
2), (a1, a

†
1) and (a2, a

†
2). This means that a general state is a superposition

of states, each belonging to a 16-dimensional Fock space built on a state |χ(B)〉 satisfying

ai|χ(B)〉 = bi|χ(B)〉 = 0, i = 1, 2, by applying the creation-type operators a
†
i and b

†
i . Notice

that equations (5.14) and (5.15) imply a1 = Ud1U
† and a2 = Ud2U

†, where U is a unitary

5 For M = 0, formally one can proceed in a similar manner by considering (δ-function normalisable) plane wave

states Ψ(c,�c) = e±ipc+i�p·�c. On such states the supercharge takes the form Q =
p

2
(±η + R), with [ηα, ηβ]+ = −δαβ

and
[

Rα,Rβ

]

+
= δαβ . Then, we define ladder-type operators a1 = (η1 + iη2)/

√
2, a2 = (η3 + iη4)/

√
2, b1 = (R1 +

iR2)/
√
2 and b2 = (R3 + iR4)/

√
2 and proceed in a manner similar to the case with M > 0.
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operator onH0F and where d1 and d2 are defined by (5.10). Since the states annihilated by d1
and d2 have positive norm as we stated before, we have 〈χ(B)|χ(B)〉HB

> 0.

We label the 16 possible states in such a Fock space as follows:

(a
†
1)
m1(a

†
2)
m2(b

†
1)
n1(b

†
2)
n2 |χ(B)〉 = |m1m2n1n2〉 , (5.19)

with each m1,m2, n1, n2 being either 0 or 1. For example, we define

∣∣χ(B)
〉
= |0000〉 , a

†
1

∣∣χ(B)
〉
= |1000〉 , a

†
1a

†
2b

†
1b

†
2

∣∣χ(B)
〉
= |1111〉 . (5.20)

Thus, we look for states satisfying the fermionic QLSCs in the form

|ϕ(BF)〉 =
1∑

m1=0

1∑

m2=0

1∑

n1=0

1∑

n2=0

cm1m2n1n2 |m1m2n1n2〉 . (5.21)

We find

(a1 + b1)|ϕ(BF)〉 =
1∑

m1=0

1∑

m2=0

1∑

n1=0

1∑

n2=0

cm1m2n1n2

[
−m1|0m2n1n2〉+ (−1)m1+m2n1|m1m20n2〉

]
.

(5.22)

The coefficient of the term |0m21n2〉 in this equation is −c1m21n2 . Hence c1m1n = 0 for all m

and n. We can conclude similarly that c0m0n = cm0n0 = cm1n1 = 0 by using the other constraints.

Thus, cm1m2n1n2 = 0 ifm1 = n1 orm2 = n2. Hence the invariant state |ϕ(BF)〉 ∈ HB, i.e. the state

satisfying the fermionic QLSCs, must be of the following form:

∣∣ϕ(BF)
〉
= A |1100〉+ B |0110〉+ C |1001〉+ D |0011〉 , (5.23)

where A, B, C and D are constants. Note that the four states |1100〉, |0110〉, |1001〉 and |0011〉
are mutually orthogonal and satisfy

〈1100|1100〉 = 〈0011|0011〉 = 〈χ(B)|χ(B)〉HB
,

〈0110|0110〉 = 〈1001|1001〉 = −〈χ(B)|χ(B)〉HB
.

(5.24)

In particular, the two states |0110〉 and |1001〉 have negative norm.

By applying the constraints (5.18) we find the following unique solution up to an overall

normalization:

∣∣ϕ(BF)
〉
∝ |ϕ(BF)

P 〉:= |1100〉 − |0110〉+ |1001〉+ |0011〉 . (5.25)

Thus, there is precisely one possible combination which satisfies the fermionic QLSCs in

each Fock space spanned by (a
†
1)
n1(a

†
2)
n2(b

†
1)
n1(b

†
2)
n2 |χ(B)〉, where |χ(B)〉 is any state with fixed

positiveM2, satisfying the bosonic QLSCs and the conditions

(Q
(0)
1 + iQ

(0)
2 )|χ(B)〉 = (Q

(0)
3 + iQ

(0)
4 )|χ(B)〉 = 0 , (5.26)

(Q̂1 + iQ̂2)|χ(B)〉 = (Q̂1 + iQ̂2)|χ(B)〉 = 0 . (5.27)

Now, in section 4 it was shown that all states satisfying the bosonic QLSCs are obtained

by group-averaging. Here we show that the same is true for the fermionic QLSCs. That is, the

state |ϕ(BF)〉 in (5.23) is obtained as
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|ϕ(BF)〉 = −
∫

d4θ e−θQ|ϕ(B)〉 , (5.28)

for some linear combination |ϕ(B)〉 of the states |m1m2n1n2〉, where θ = (θ1, θ2, θ3, θ4) are
Grassmann numbers and where θ = iθTγ0 and d4θ = dθ4dθ3dθ2dθ1. (The minus sign in (5.28)

has been introduced for convenience.) By the usual rules,
∫
dθα = 0 and

∫
dθαθα = 1, α =

1, 2, 3, 4, this equation becomes

|ϕ(BF)〉 = −Q1Q2Q3Q4|ϕ(B)〉

=
1

4
(Q1 − iQ2)(Q1 + iQ2)(Q3 − iQ4)(Q3 + iQ4)|ϕ(B)〉

=
M4

16
(a

†
1 + b

†
1)(a1 + b1)(a

†
2 + b

†
2)(a2 + b2)|ϕ(B)〉 . (5.29)

One readily finds thatQ1Q2Q3Q4|m1m2n1n2〉 = 0 unless |m1m2n1n2〉 = |1100〉, |0110〉, |1001〉
or |0011〉 and that

(a
†
1 + b

†
1)(a1 + b1)(a

†
2 + b

†
2)(a2 + b2) |1100〉 = |ϕ(BF)

P 〉 , (5.30)

(a
†
1 + b

†
1)(a1 + b1)(a

†
2 + b

†
2)(a2 + b2) |0110〉 = |ϕ(BF)

P 〉 , (5.31)

(a
†
1 + b

†
1)(a1 + b1)(a

†
2 + b

†
2)(a2 + b2) |1001〉 = −|ϕ(BF)

P 〉 , (5.32)

(a
†
1 + b

†
1)(a1 + b1)(a

†
2 + b

†
2)(a2 + b2) |0011〉 = |ϕ(BF)

P 〉 , (5.33)

where the state |ϕ(BF)
P 〉 is defined by (5.25). Thus, starting from any linear combination |ϕ(B)〉

of |m1m2n1n2〉, we find

−
∫

d4θ e−θQ
∣∣ϕ(B)

〉
= −Q1Q2Q3Q4

∣∣ϕ(B)
〉
= κ|ϕ(BF)

P 〉 , (5.34)

with κ ∈ C.

Now, an explicit computation shows that 〈ϕ(BF)
P |ϕ(BF)

P 〉HB
= 0. In fact this can be deduced

immediately from (5.34) because Q2
α = 0 on the space HB of states satisfying the bosonic

QLSCs. However, the group-averagingformula (5.34) suggests that one can proceed in analogy

with the bosonic case to define a new inner product. Thus, for two states |ϕ(B)
1 〉, |ϕ(B)

2 〉 ∈ HB

we obtain two states satisfying the fermionic QLSCs as

|ϕ(BF)
I 〉 = −Q1Q2Q3Q4|ϕ(B)

I 〉 , (5.35)

and define the new inner product by

〈ϕ(BF)
1 |ϕ(BF)

2 〉HBF
= −〈ϕ(B)

1 |Q1Q2Q3Q4|ϕ(B)
2 〉HB

= 〈ϕ(B)
1 |ϕ(BF)

2 〉HB
. (5.36)

Equations (5.30)–(5.33) and (5.25) imply that, if

|ϕ(B)
I 〉 = κ(1)

I |1100〉+ κ(2)
I |0110〉+ κ(3)

I |1001〉+ κ(4)
I |0011〉 , (5.37)

then
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|ϕ(BF)
I 〉 = M4

16
λI |ϕ(B)

P 〉 , (5.38)

where

λI = κ(1)
I + κ(2)

I − κ(3)
I + κ(4)

I , (5.39)

and

〈ϕ(BF)
1 |ϕ(BF)

2 〉HBF
=
M4

16
λ∗
1λ2〈χ(B)|χ(B)〉 . (5.40)

Thus, our new inner product 〈·|·〉HBF
is positive definite6. Although it is defined in terms of the

‘seed states’ |ϕ(B)
I 〉, which do not satisfy the fermionic QLSCs, the new inner product depends

only on the invariant states |ϕ(BF)
I 〉.

We constructed the states satisfying the bosonic and fermionic QLSCs step by step. We

first found the states satisfying the bosonic QLSCs and an inner product among them in the

previous section, following [25]. Then, we found the states satisfying the fermionic QLSCs

as well among these states and defined an inner product for these invariant states. Our con-

struction can in fact be understood as group-averaging over the supergroup generated by Pμ

and Qα. Starting from a state |ϕI〉, I = 1, 2, in the original Hilbert space H0, we define a state

satisfying all constraints by integrating over the supergroup [37, 38]:

|ϕ(BF)
I 〉 = − 1

2V

∫
d4α, d4θ exp

(
−iα · P− θQ

)
|ϕI〉 , (5.41)

where θ = (θ1, θ2, θ3, θ4) are Grassmann numbers and αμ = (α0, �α) are commuting numbers.

As Pμ and Qα commute, we can write this integral as

|ϕ(BF)
I 〉 = − 1

2V

∫
d4θ exp(−θQ)

∫
d4α exp(−iα · P) |ϕI〉

= −Q1Q2Q3Q4|ϕ(B)
I 〉 , (5.42)

where |ϕ(B)
I 〉 satisfies only the bosonic QLSCs:

|ϕ(B)
I 〉 = 1

2V

∫
d4α exp(−iα · P) |ϕI〉 . (5.43)

We have shown that all states satisfying both the bosonic and fermionic QLSCs can be obtained

in this manner. The inner product 〈·|·〉HBF
we have defined is

〈ϕ(BF)
1 |ϕ(BF)

2 〉HBF
= − 1

2V

∫
d4α d4θ 〈ϕ1| exp

(
−iα · P− θQ

)
|ϕ2〉H0

= −
∫

d4θ〈ϕ(B)
1 | exp

(
−θQ

)
|ϕ(B)

2 〉HB
. (5.44)

In appendix E we present an example of a state with two particles with non-zero momenta

which satisfies all QLSCs.

6The definition of a positive-definite inner product used here is similar to that in appendix D of reference [36].
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6. Summary and discussion

In this paper we pointed out that there are fermionic linearization stability conditions as well

as bosonic ones in four-dimensional N = 1 simple supergravity in the background of static

three-torus space. Then we showed that states satisfying both fermionic and bosonic quan-

tum linearization stability conditions (QLSCs) can be constructed by group-averaging over

the supergroup of global supersymmetry and spacetime translation symmetry.

States satisfying the bosonic QLSCs have infinite norm in the original Hilbert space. This

infinity results from the infinite volume of the symmetry group generated by the LSCs. Roughly

speaking, this infinite volume is factored out in the group-averaging inner product. It is inter-

esting that the inner product of states satisfying all QLSCs have zero norm in the Hilbert

space of states satisfying only the bosonic ones. The finite group-averaging inner product is

obtained by factoring out zero in this case.

As the bosonic QLSCs can be interpreted as a remnant of diffeomorphism invariance of

the full generally covariant theory, one should be able to interpret the fermionic QLSCs as

a remnant of full local supersymmetry in the context of canonical quantization [39, 40]. The

bosonic QLSCs, H|phys〉 = 0 and �P|phys〉 = 0, have a natural physical picture. These con-

ditions imply that all physical states are invariant under spacetime translations. This means

that there is no meaning in the position and time coordinates of an event relative to the back-

ground spacetime of static three-torus. However, the physical states still encode relative posi-

tions and relative time differences between two or more events. Thus, the bosonic QLSCs

can be seen as a manifestation of Mach’s principle in quantum general relativity. (See e.g.

[41] for a discussion of Mach’s principle in general relativity.) On the other hand, it is not

clear if there is a simple interpretation of the fermionic QLSCs. It would be interesting to find

one.

It would also be interesting to investigate whether there are analogues of LSCs in string the-

ory. A preliminary investigation in this direction [31] did not find such analogues in Bosonic

string theory, but since string theory contains general relativity, we believe there should

be analogues of LSCs in (super) string theory on any background spacetime with compact

Cauchy surfaces.

The supergroup relevant to this work was a simple one with an abelian bosonic subgroup.

It would be interesting to investigate the group-averaging procedure for general supergroups

and establish general properties in analogy with the bosonic case studied in [24].
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Appendix A. Modified transformation of the vierbein in general spacetime

In this appendixwe show that one can modify the infinitesimal diffeomorphism transformation

on eaμ by an infinitesimal local Lorentz transformation so that the transform is proportional to

∇μζν +∇νζμ. If we transform eaμ by diffeomorphism in the direction of ζμ and by a local

Lorentz transformation, we have

δ(m)eaμ = ζρ∇ρe
a
μ + eaρ∇μζ

ρ − sabebμ , (A.1)
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where sab is anti-symmetric and where∇ρe
a
μ = ∂ρe

a
μ − Γ

σ
ρμe

a
σ with the Levi-Civita connection

Γ
σ
ρμ. Our task is to choose sab so that δ(m)eaμ is proportional to ∇μζν +∇νζμ. To this end, we

require

ea[μδ
(m)eaν] = (ζρ∇ρec[ν)e

c
μ] + ecρe

c
[μ∇ν]ζ

ρ − sabe
a
[μe

b
ν] = 0 . (A.2)

Since

Dρe
c
ν = ∇ρe

c
ν + ωμ

cbebν = 0 , (A.3)

we find

sabe
a
[μe

b
ν] = −ζρωρcbe

c
[μe

b
ν] +∇[νζμ] . (A.4)

Thus,

sab = −ζρωρ
ab
+∇[νζμ]e

aμebν . (A.5)

Then

δ(m)eaμ = ζρ∇ρe
a
μ + eaρ∇μζ

ρ
+ ζρωρ

ab
+

1

2
(∇λζν −∇νζλ)e

aλebνebμ

= ζρDρe
a
μ + eaλ∇μζ

λ
+

1

2
(∇λζμ −∇μζλ)e

aλ

=
1

2
(∇λζμ +∇μζλ)e

aλ . (A.6)

Appendix B. Linearization stability condition for electrodynamics

In this appendix we discuss the linearization stability condition for quantum electrodynamics

in a static three-torus space. The Lagrangian density is

L = −1

4
FμνF

μν
+ ψγμ(∂μ − ieAμ)ψ − mψψ , (B.1)

where Fμν = ∂μAν − ∂νAμ and ψ = iψ†γ0. The field equations are

δS

δAμ
= ∂νF

νμ − ieψγμψ = 0 , (B.2)

δS

δψ† = iγ0
[
γμ(∂μ − ieAμ)ψ − mψ

]
= 0 , (B.3)

δS

δψ
= (∂μ + ieAμ)ψγ

μ
+ mψ = 0 , (B.4)

where S is the action obtained by integrating L over spacetime. We have defined the left-hand

side of (B.3) and (B.4) as the left functional derivative of the action S.

The field equations (B.3) and (B.4) imply that the current J
μ
(E) = ieψγμψ is conserved. As

a result, the total charge, which is the integral of J0(E) over the space,

Q(E) = e

∫
d3�x ψ†ψ , (B.5)
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is time independent. This charge must vanish because the zeroth component of (B.2) implies

∂ iF
i0 = eψ†ψ and hence

Q(E) =

∫
d3�x ∂iF

i0 , (B.6)

which must vanish by Gauss’s divergence theorem. (Recall our space is compact.) At

linearized level, the fields Aμ and ψ are decoupled, and the condition Q(E) = 0 does not

automatically arise in the linearized theory. Hence this condition has to be imposed as a lin-

earization stability condition on the linearized solution for it to extend to an exact solution.

The aim of this appendix is to illustrate how the argument in section 3 works in this simple

model.

The action is invariant under the gauge transformation δAμ = ∂μΛ, δψ = ieΛψ for any

function Λ of the spacetime point. The argument in section 3 leads to the conclusion that

∂μΛ(∂νF
νμ− ieψγμψ)− ieΛψ

[
γμ(∂μ − ieAμ)ψ − mψ

]
− ieΛ

{[
(∂μ + ieAμ)ψ

]
γμ

+ mψ
}
ψ

= ∂μJ
μ
(Λ) [A,ψ] , (B.7)

for some current J
μ
(Λ) [A,ψ] for any Λ. We indeed find that this equation is satisfied with

J
μ
(Λ) [A,ψ] = Λ(∂νF

νμ − ieψγμψ) . (B.8)

The identity (B.7) is satisfied order by order in the fields Aμ and ψ, i.e.

∂μΛ∂νF
νμ

= ∂μJ
(1)μ
(Λ) [A] , (B.9)

− ie∂μΛψγ
μψ − ieΛψγμ∂μψ − ieΛ(∂μψ)γ

μψ = ∂μJ
(2)μ
(Λ) [A,ψ] , (B.10)

where

J
(1)μ
(Λ) [A] = Λ∂νF

νμ , (B.11)

J
(2)μ
(Λ) [A,ψ] = −ieΛψγμψ . (B.12)

Now, if Λ(x) = λ is constant, then the left-hand side of (B.9) vanishes. Hence the current

J
(1)μ
(λ) [A] = λ∂νF

νμ is conserved for any field configuration Aμ. In particular, we can smoothly

deform Aμ to zero in the far future or past of any given Cauchy surface while keeping the value

of the conserved charge

Q
(1)
(E)[A] =

∫
d3�x ∂iF

i0 , (B.13)

unchanged. It follows that Q
(1)
(E)[A] = 0 for any field Aμ. Of course, one can readily verify this

fact by Gauss’s divergence theorem, as we observed before.

Now, consider solving the field equations order by order by letting

Aμ = A(1)
μ + A(2)

μ + · · · , (B.14)

ψ = ψ(1)
+ ψ(2)

+ · · · . (B.15)

Then, with the definition F(I)
μν := ∂μA

(I)
ν − ∂νA

(I)
μ , I = 1, 2, the field equations (B.2)–(B.4)

become
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∂νF
(1)νμ

= 0 , (B.16)

iγ0
[
γμ∂μψ

(1) − mψ(1)
]
= 0 , (B.17)

∂μψ(1)γμ
+ mψ(1) = 0 , (B.18)

∂νF
(2)νμ − ieψ(1)γμψ(1)

= 0 . (B.19)

Then, equations (B.9) and (B.10) imply that the current

J
(1)μ
(Λ) [A

(2)]+ J
(2)μ
(Λ) [A

(1),ψ(1)] = Λ(∂νF
(2)νμ − ieψ(1)γμψ(1)) , (B.20)

is conserved for any Λ(x). This implies that the corresponding charge must vanish, which is

rather obvious in this example because, in fact, J
(1)μ
(Λ) [A

(2)]+ J
(2)μ
(Λ) [A

(1),ψ(1)] = 0 by (B.19). In

particular, if we define

Q
(2)
(E)[ψ

(1)] = −e
∫

d3�x ψ(1)†ψ(1) , (B.21)

then, since eλψ(1)†ψ(1) = ieλψ(1)γ0ψ(1) = −J(2)0(λ) [A
(1),ψ(1)], we find

Q
(2)
(E)[ψ

(1)] = −Q(1)
(E)[A

(2)] = 0 , (B.22)

which is the linearization stability condition for electrodynamics in static torus space. In this

example, it is the linearization of the condition (B.6) in the exact theory.

Appendix C. Proof of identities (5.8) and (5.9)

We first note that the matrices TBi j, B = 1, 2, are diagonal with TBik = δikq
B
k , where q

1
1 = −q12 =

1/
√
2, q13 = 0. q21 = q22 = 1/

√
6 and q23 = −2/

√
6. Hence

X :=

2∑

B=1

5∑

A=1

5∑

A′=1

TAi jT
Bi
kT

A′
i′ j′T

Bi′
k′γ

jγkγk
′
γ j′cPAcPA′

=

3∑

k=1

3∑

k′=1

5∑

A=1

5∑

A′=1

TAk jT
A′
k′ j′

2∑

B=1

qBk q
B
k′γ

jγkγk
′
γ j′cPAcPA′ . (C.1)

By a component-by-component calculation we find

2∑

B=1

qBk q
B
k′ = δkk′ −

1

3
. (C.2)

By substituting this formula into (C.1) we obtain

X =

5∑

A=1

5∑

A′=1

TAk jT
A′
k j′γ

jγ j′cPAcPA′ −
1

3

5∑

A=1

5∑

A′=1

TAk jT
A′
k j′γ

jγkγk
′
γ j′cPAcPA′ . (C.3)

The second sum vanishes because the matrices TAi j are symmetric and traceless so that

TAk jγ
jγk = TAjk(δ

jk + γ jk) = 0. Since the first sum is of the form Sjj′γ
jγj′ where Sjj′ is symmetric,

we may replace γjγ j′ by δjj′. Hence
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X =

5∑

A=1

5∑

A′=1

TAk jT
A
k j′δ

j j′cPAcPA′ =

5∑

A=1

δAA
′
cPAcPA′ =

5∑

A=1

(cPA)
2 , (C.4)

which is equation (5.8).

To show (5.9) we note that, since u±(�k) is a simultaneous eigenspinor of γ0k̂ · �γ and

γ5 with eigenvalues −1 and ±1, respectively, with the normalization u±†(�k)u±(�k) = 2k, the

matrix Mαβ = u±(�k)αu±∗(�k)β is the product of the projection operator onto the eigenspace of

γ0k̂ · �γ with eigenvalue −1 and that of γ5 with eigenvalue ±1 (multiplied by 2k) since these

projection operators commute. Hence, we have

u±(�k)αu
±∗(�k)β =

k

2

[
(1− γ0k̂ · �γ)(1± γ5)

]
αβ

=
1

2

[
(1± γ5)k · γγ0

]
αβ

, (C.5)

where we have used k · γ = k(−γ0 + k̂ · �γ) so that k(1− γ0k̂ · �γ) = k · γγ0. Hence

[
ǫ±∗(�k) · �γu±(�k)

]
α

[
ǫ±(�k) · �γu±∗(�k)

]
β
=

1

2

[
(1∓ γ5)k · γ(ǫ±∗(�k) · �γ)(ǫ±(�k) · �γ)γ0

]
αβ

, (C.6)

where we have used the fact that k · γ, γ0 and γ5 all anti-commute with ǫ±(�k) · �γ and ǫ±∗(�k) ·
�γ. Now the identities (ǫ±∗(�k) · �γ)(ǫ±(�k) · �γ) = 1± γ0k̂ · �γγ5 and k · γγ0k̂ · �γ = k · γ imply k ·
γ(ǫ±∗(�k) · γ)(ǫ±(�k) · γ) = k · γ(1± γ5). By substituting this identity into (C.6) we find

[
ǫ±∗(�k) · �γu±(�k)

]
α

[
ǫ±(�k) · �γu±∗(�k)

]
β
=
[
(1∓ γ5)k · γγ0

]
αβ

. (C.7)

Finally, by noting that [(1∓ γ5)k · γγ0]βα = [(1± γ5)k · γγ0]αβ we find (5.9).

Appendix D. Zero-momentum sector of the gravitino field

In this appendix we provide some details of the (indefinite-metric) Hilbert space describing

the zero-momentum sector of the gravitino field. Some of the material presented here can be

found in [33]. We make the discussion general and treat the fermionic algebra where the self-

adjoint operators ηα, α = 1, 2, . . . , 2M and η(+)
α , α = 1, 2, . . . , 2N satisfying

[ηα, ηβ]+ = −δαβ , [η(+)
α , η(+)

β ]+ = δαβ , [ηα, η
(+)
β ]+ = 0 . (D.1)

The zero-momentum sector of the gravitino field corresponds toM = 2 and N = 4.

We represent this algebra as follows. We define annihilation-type operators as

da :=
1√
2
(η2a−1 + iη2a) , a = 1, 2, . . . , M , (D.2)

d(+)
a :=

1√
2
(η(+)

2a−1 + iη(+)
2a ) , a = 1, 2, . . . , N . (D.3)

These operators and their adjoint, the creation-type operators, have the following non-zero

anti-commutators:
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[da, d
†
b]+ = −δab , [d(+)

a , d
(+)†
b ]+ = δab . (D.4)

We define the state |00F〉 by requiring da|00F〉 = d(+)
a |00F〉 = 0 for all a and 〈00F|00F〉 = 1.

Then the 2M+N-dimensional (indefinite-metric) Hilbert space representing the algebra (D.1) is

spanned by the following orthogonal states:

| {n} ,
{
n(+)

}
〉 =

M∏

a=1

(d†a)
na

N∏

b=1

(d
(+)†
b )nb |00F〉 , (D.5)

where na and n
(+)
b are either 0 or 1 and where {n} = {n1, n2, . . . , nM} and

{
n(+)

}
={

n
(+)
1 , n

(+)
2 , . . . , n(+)

N

}
. One readily finds

〈{n} ,
{
n(+)

}
| {n} ,

{
n(+)

}
〉 =

{
1 if n1 + n2 + · · ·+ nM is even,

−1 if n1 + n2 + · · ·+ nN is odd.
(D.6)

If Ω is an anti-self-adjoint operator satisfying Ω
†
= −Ω, then the operator expΩ, which

can be defined as a power series, is unitary in the sense that it preserves the inner product. Of

particular interest are the following unitary operators:

Uαβ(θ) := exp

(
θ

2
ηαηβ

)
= cos

θ

2
+ ηαηβ sin

θ

2
, α �= β , (D.7)

Vαβ(θ) := exp

(
θ

2
ηαη

(+)
β

)
= cosh

θ

2
+ ηαη

(+)
β sinh

θ

2
, (D.8)

Wαβ(θ) := exp

(
θ

2
η(+)
α η(+)

β

)
= cos

θ

2
+ η(+)

α η(+)
β sin

θ

2
, α �= β . (D.9)

These unitary operators act on ηα and η(+)
α as follows:

Uαβ(θ)ηαUαβ(θ)
†
= ηα cos θ + ηβ sin θ , (D.10)

Wαβ(θ)η
(+)
α Wαβ(θ)

†
= η(+)

α cos θ − η(+)
β sin θ , (D.11)

Vαβ(θ)ηαVαβ(θ)
†
= ηα cosh θ + η(+)

β sinh θ , (D.12)

Vαβ(θ)η
(+)
β Vαβ(θ)

†
= η(+)

β cosh θ + ηα sinh θ . (D.13)

Let us define Y :=
∏2M

α=1 ηα
∏2N

β=1 η
(+)
β . Then, Y is unitary, i.e. Y† = Y−1. The opera-

tor Wα := Yη(+)
α , α = 1, 2, . . . , 2N, is also unitary. We find Wαη

(+)
α W†

α = −η(+)
α whereas

Wαη
(+)
β W†

α = η(+)
β if β �= α andWαηβW

†
α = ηβ for all β.

Since any product of Uαβ(θ), Wαβ(θ), Vα(θ) and Wα is unitary, we can conclude the

following. Suppose that M � N and let

X̃α = Aα
βηβ cosh θα − Cα

βη(+)
β sinh θα , (D.14)

where the index α = 1, 2, . . . , 2M, is not summed over, and where (Aα
β) and (Cα

β)

are a 2M× 2M matrix and a 2M× 2N matrix, respectively, satisfying Aα1

β1Aα2

β2δβ1β2 =
Cα1

β1Cα2

β2δβ1β2 = δα1α2
and det(Aα

β) = 1. 7Then there is a unitary operator U such that

X̃α = UηαU
†.

7The unitarity of the operators Wα allows us to have det(Cα
β) = −1.
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Appendix E. Example of a state satisfying all quantum linearization stability

conditions

In this appendix we present a concrete example of a state satisfying all fermionic as well as

bosonic QLSCs. We consider an example where there are two particles, one going in the posi-

tive x-direction and the other in the negative x-direction with momentum k > 0 and both with

positive helicity. In this sector of the theoryM2 = 4k.

To find the non-zero-momentum contribution to the supercharge in this sector we need

to find the spinors u+(�k) with �k = ±kê1, where ê1 is the unit vector in the x-direction. It is

an eigenspinor of γ0γ1 and iγ2γ3 with eigenvalue −1 for both and, hence, an eigenspinor

of γ5 = iγ0γ1γ2γ3 with eigenvalue 1. It is normalized as u+†(±kê1)u+(±kê1) = 2k. We find

from (3.2)

γ0γ1
=

(
0 −1

−1 0

)
, iγ2γ3

=

(
σ2 0

0 σ2

)
. (E.1)

Hence we can take

u+(kê1) =

√
k

2

⎛
⎜⎜⎝

1

−i

1

−i

⎞
⎟⎟⎠ , u+∗(kê1) =

√
k

2

⎛
⎜⎜⎝

1

i

1

i

⎞
⎟⎟⎠ . (E.2)

Now, {ê2, ê3, ê1} form a right handed basis so that we can choose

ǫ+(kê1) · �γ =
1√
2
(γ2

+ iγ3) =
1√
2
γ2(1+ iγ2γ3) . (E.3)

Since u+∗(kê1) is an eigenspinor of iγ2γ3 with eigenvalue+1, we have

ǫ+(kê1) · �γu+∗(kê1) =
√
kγ2

⎛
⎜⎜⎝

1

i

1

i

⎞
⎟⎟⎠ =

√
k

⎛
⎜⎜⎝

i

1

i

1

⎞
⎟⎟⎠ , (E.4)

and

ǫ+∗(kê1) · �γu+(kê1) =
√
kγ2

⎛
⎜⎜⎝

1

−i

1

−i

⎞
⎟⎟⎠ =

√
k

⎛
⎜⎜⎝

−i

1

−i

1

⎞
⎟⎟⎠ . (E.5)

The spinor u+(−kê1) is an eigenspinor of γ0γ1 and iγ2γ3 with eigenvalue+1 for both. We

can choose

ǫ+(−kê1) · �γ =
1√
2
γ2(1− iγ2γ3) . (E.6)

Proceeding similarly as above, we find

ǫ+(−kê1) · �γu+∗(−kê1) =
√
kγ2

⎛
⎜⎜⎝

1

i

−1

−i

⎞
⎟⎟⎠ =

√
k

⎛
⎜⎜⎝

−i

−1

i

1

⎞
⎟⎟⎠ , (E.7)
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and

ǫ+∗(−kê1) · �γu+(−kê1) =
√
kγ2

⎛
⎜⎜⎝

1

−i

−1

i

⎞
⎟⎟⎠ =

√
k

⎛
⎜⎜⎝

i

−1

−i

1

⎞
⎟⎟⎠ , (E.8)

Thus, the relevant part of the �k �= 0 contribution to the supercharge

Q̂ = − i

2

∑

�k �=0

∑

λ=±

[
ǫλ(�k) · γuλ∗(�k)aλ(�k)b†λ(�k)− ǫλ∗(�k) · γuλ(�k)a†λ(�k)bλ(�k)

]
, (E.9)

is, with the notation a(±) = a+(±kê1) and b(±) = b+(±kê1),

Q̂ =

√
k

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

[
a(+)b

†
(+) + a

†
(+)b(+)

]
−
[
a(−)b

†
(−) + a

†
(−)b(−)

]

−i
[
a(+)b

†
(+) − a

†
(+)b(+)

]
+ i
[
a(−)b

†
(−) − a

†
(−)b(−)

]

[
a(+)b

†
(+) + a

†
(+)b(+)

]
+

[
a(−)b

†
(−) + a

†
(−)b(−)

]

−i
[
a(+)b

†
(+) − a

†
(+)b(+)

]
− i
[
a(−)b

†
(−) − a

†
(−)b(−)

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (E.10)

Proceeding as in section 5 to construct a state satisfying the fermionic QLSCs we define

a1 =

√
2

M
(Q(0)

1 + iQ(0)
2 ) , a2 =

√
2

M
(Q(0)

3 + iQ(0)
4 ) , (E.11)

as before and also

b1 =
1√
2k

(Q̂1 + iQ̂2) =
1√
2
(a(+)b

†
(+) − a(−)b

†
(−)) , (E.12)

b2 =
1√
2k

(Q̂3 + iQ̂4) =
1√
2
(a(+)b

†
(+) + a(−)b

†
(−)) , (E.13)

in the relevant subspace. Then in the two-particle sector,M2 = 4k, it is easy to see that

[ai, a
†
j]+ = −δi j , [bi, b

†
j]+ = δi j . (E.14)

We define a state
∣∣ϕ(B)

〉
obeying the bosonic QLSCs as follows. We take the bosonic zero-

momentum sector wave function to be given by the Gaussian

Ψ(c,�c) = Ne−c
2

e−�c
2

, (E.15)

where N is a constant, and the non-zero-momentum part of the state contains two positive

helicity gravitons with momentum±kê1. Then the state obeying the bosonic QLSCs by group-
averaging is given by (4.24), which reads

∣∣ϕ(B)
〉
=

∫
d5�p

(2π)5
[
f (+)(�p)e−iE(�p)c+i�p·�c

+ f (−)(�p)eiE(�p)c+i�p·�c]⊗
(
a
†
(+)a

†
(−) |0〉

)
, (E.16)

where the state |0〉 is the Fock vacuum in the non-zero-momentum sector, E(�p) =
√
�p2 +M2

and
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f (±)(�p) =
π3Ne−M

2/4e−�p
2/2

2
√
�p2 +M2

. (E.17)

The norm of this state in the Hilbert spaceHB is then given by (4.26), which reads

〈ϕ(B)|ϕ(B)〉HB
=

π3

12
|N|2e−M2/2

∫ ∞

0

dp
p4e−p

2

√
p2 +M2

< ∞ . (E.18)

We choose the normalisation constant N so that 〈ϕ(B)|ϕ(B)〉HB
= 1.

Now we need to consider the fermionic zero-momentum sector. As we stated in section 5,

we need to consider the tensor product of HB and the 64-dimensional Hilbert space H0F

describing the fermionic zero-momentumsector.We call this tensor productHB as in section 5.

As in appendix D let |00F〉 be the normalized state annihilated by d1 = (η1 + iη2)/
√
2, d2 =

(η3 + iη4)/
√
2, dB1 = (ηB1 + iηB2 )/

√
2 and dB2 = (ηB3 + iηB4 )/

√
2, B = 1, 2. Let ā1 and ā2 be

the operators a1 and a2, respectively, restricted to the eigenspace of cP and cPA with eigen-

values p0 and pA, respectively. Define |p0,�p〉 ∈ H0F by |p0,�p〉 :=Cp0 ,�p ā1ā2d
†
2d

†
1|00F〉, where

Cp0,�p is a normalization constant such that 〈p0,�p|p0,�p〉H0F
= 1. Then, ā1|p0,�p〉 = ā2|p0,�p〉 = 0

because ā21 = ā22 = 0 and ā1ā2 = −ā2ā1. Now, we let

∣∣ϕ(B)
〉
=

∫
d5�p

(2π)5
[
f (+)(�p)e−iE(�p)c+i�p·�c ⊗ |E(�p),�p〉+ f (−)(�p)eiE(�p)c+i�p·�c ⊗ | − E(�p),�p〉

]

⊗
(
a
†
(+)a

†
(−) |0〉

)
. (E.19)

Then,a1
∣∣ϕ(B)

〉
= a2

∣∣ϕ(B)
〉
= 0 and 〈ϕ(B)|ϕ(B)〉HB

= 1. Notice also that because
∣∣ϕ(B)

〉
contains

only gravitons, it obeys b
†
1

∣∣ϕ(B)
〉
= b

†
2

∣∣ϕ(B)
〉
= 0.

In the notation of section 5we can thus take
∣∣ϕ(B)

〉
∝ |0011〉. Indeed, by the group-averaging

procedure described in section 5, we obtain a state
∣∣ϕ(BF)

〉
∈ HBF obeying the bosonic and

fermionic QLSCs by applying−Q1Q2Q3Q4. That is,

∣∣ϕ(BF)
〉
= −Q1Q2Q3Q4

∣∣ϕ(B)
〉

(E.20)

=
1

4
(Q1 − iQ2)(Q1 + iQ2)(Q3 − iQ4)(Q3 + iQ4)

∣∣ϕ(B)
〉

(E.21)

=
M4

16
(a

†
1 + b

†
1)(a1 + b1)(a

†
2 + b

†
2)(a2 + b2)

∣∣ϕ(B)
〉
. (E.22)

By writing
∣∣ϕ(B)

〉
= a

†
(+)a

†
(−)

∣∣Ψ(B)
〉
this can be evaluated as

∣∣ϕ(BF)
〉
=
M4

16

[
a
†
(+)a

†
(−)|Ψ(B)〉 − 1√

2
(a

†
1 − a

†
2)a

†
(+)b

†
(−)|Ψ(B)〉

+
1√
2
(a

†
1 + a

†
2)b

†
(+)a

†
(−)|Ψ(B)〉 − a

†
1a

†
2b

†
(+)b

†
(−)|Ψ(B)〉

]
. (E.23)

In particular, by the group-averaging procedure, the norm of this state is given by

〈ϕ(BF)|ϕ(BF)〉HBF
= 〈ϕ(B)|ϕ(BF)〉HB

=
M4

16
, (E.24)

as would be expected by the procedure presented in section 5.
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