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Towards a complete 3D morphable model
of the human head

Stylianos Ploumpis, Evangelos Ververas, Eimear O’ Sullivan, Stylianos Moschoglou,

Haoyang Wang, Nick Pears, William A. P. Smith, Baris Gecer, and Stefanos Zafeiriou

Abstract—Three-dimensional Morphable Models (3DMMs) are powerful statistical tools for representing the 3D shapes and textures of

an object class. Here we present the most complete 3DMM of the human head to date that includes face, cranium, ears, eyes, teeth

and tongue. To achieve this, we propose two methods for combining existing 3DMMs of different overlapping head parts: i. use a

regressor to complete missing parts of one model using the other, ii. use the Gaussian Process framework to blend covariance

matrices from multiple models. Thus we build a new combined face-and-head shape model that blends the variability and facial detail

of an existing face model (the LSFM) with the full head modelling capability of an existing head model (the LYHM). Then we construct

and fuse a highly-detailed ear model to extend the variation of the ear shape. Eye and eye region models are incorporated into the

head model, along with basic models of the teeth, tongue and inner mouth cavity. The new model achieves state-of-the-art

performance. We use our model to reconstruct full head representations from single, unconstrained images allowing us to

parameterize craniofacial shape and texture, along with the ear shape, eye gaze and eye color.

Index Terms—3DMM, Morphable Model combination, 3D reconstruction, craniofacial 3DMM.

F

1 INTRODUCTION

D UE to their ability to infer and represent 3D surfaces,

3D Morphable Models (3DMMs) have many applications

in computer vision, computer graphics, biometrics, and medical

imaging [1], [2], [3], [4]. Many registered raw 3D images (‘scans’)

are required for correctly training a 3DMM, which comes at a very

large cost of manual labour for collecting and annotating such

images with meta data. Sometimes, only the resulting 3DMMs

become available to the research community, and not the raw

3D images. This is particularly true of 3D images of the human

face/head, due to increasingly stringent data protection regula-

tions. Furthermore, even if 3DMMs have overlapping parts, their

resolution and ability to express detailed shape variation may be

quite different, and we may wish to capture the best properties of

multiple 3DMMs within a single model. However, it is currently

extremely difficult to combine and enrich existing 3DMMs with

different attributes that describe distinct parts of an object without

such raw data. Therefore, we present a general approach that

can be employed to combine 3DMMs from different parts of

an object class into a single 3DMM. Due to their widespread

use in the computer vision community, we fuse 3DMMs of the

human face and the full human head as our exemplar. We add

detailed models of the ears, eyes and eye regions to our head

model, along with a basic model of the oral cavity, tongue and

teeth. Thus we create a large-scale, full-head morphable model

that has a more complete representation of shape variation than

any other published to date. The technique is readily extensible

to incorporate detailed models of the human body [5], [6], and

indeed is applicable to any object class well-described by 3DMMs.

Recent works that aim at predicting the 3D representation of more
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than one morphable model [7], [8], try to solve this problem with a

part-based approach where multiple separate models are fitted and

then linearly blended into the final result. Our framework aims

at avoiding any discontinuities that might appear from part-based

approaches by fusing all models into one single morphable model.

More specifically, although there have been many models of the

human face both in terms of identity [9], [10], [11] and expression

[12], [13], very few deal with the complete head anatomy [14].

Building a high-quality, large-scale statistical model that describes

the anatomy of the full human head paves directions across

numerous disciplines. First, it will assist craniofacial clinicians in

diagnosis, surgical planning, and assessment. Second, generating

proportionally correct head models based on the geometry of the

face will aid computer graphics designers to create realistic avatar-

like representations. Third, ergonomic design of headwear, eye-

wear, breathing apparatus and so on benefits from accurate models

of craniofacial shape variation across the population. Finally, a

detailed head model will allow the comprehensive reconstruction

of a full head representation from data-deficient sources, such as

2D images. Some example reconstructions can be seen in Figure 1.

Our key contributions are: (i) a methodology that aims to

fuse shape-based 3DMMs, using the human face, head and ear as

an exemplar. In particular, we propose both a regression method

based on latent shape parameters, and a covariance combination

approach, utilized in a Gaussian process framework, (ii) a com-

bined large-scale statistical model of the human head in terms of

ethnicity, age and gender that is significantly more accurate than

any other existing head morphable model - we make this publicly-

available 1 for the benefit of the research community, including

versions with and without eyes and teeth, and (iii) an application

experiment in which we utilize the combined 3DMM to perform

full head reconstruction from unconstrained single images.

The remainder of the paper is structured as follows. In Section

1. Project url: https://github.com/steliosploumpis/Universal Head 3DMM
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Fig. 1. A collection of arbitrary complete head reconstructions from unconstrained single images. Our work aims to combine the most important
attributes of the human head (i.e. face, cranium, ears, eyes), in order to synthesize novel and realistic 3D head models from data deficient sources.

2 we review relevant related work. In Section 3 we elaborate on

the methodology of the face and head model combination and in

Sections 4, 5 we describe the modeling of ears and eyes, which

results in our complete head representation. In Section 7, we

describe our head texture completion pipeline and in Section 8,

we outline a series of quantitative and qualitative experiments.

Finally, conclusions are presented in Section 9.

2 RELATED WORK

A very recent survey [15] identified more complete statistical

modelling of the human head as an important open challenge in

the development of 3DMMs. Motivated by this goal, we begin by

surveying existing attempts to model the face, the full craniofacial

region, eyes and ears. An earlier version of the work in this paper

was originally presented in [16]. Here, we have extended the

model by additionally integrating detailed ear and eye models and

a full head texture model as well as including further experimental

evaluation.

2.1 Face models

The first 3DMM was proposed by Blanz and Vetter [17]. They

were the first to to recognize the generative capabilities of a

3DMM and they proposed a technique to capture the variations of

3D faces. Only 200 scans were used to build the model (100 male

and 100 female) where dense correspondences were computed

based on optical flow that depends on an energy function that

describes both the shape and texture. The Basel Face Model

(BFM) is the most widely-used and well-known 3DMM, which

was built by Paysan et al. [18] and utilizes a better registration

method than the original Blanz-Vetter 3DMM. They use a known

template mesh in which all the vertices have known positions

and then they register it to the training scans by utilizing an

optimal step Non-rigid Iterative Closest Point algorithm (NICP)

[19]. Standard PCA was employed as a dimensionality reduction

technique to construct their model.

Recently, Booth et al. [20] built a Large-scale Face Model

(LSFM) by utilizing nearly 10, 000 face scans. The model is

constructed by applying a weighted version of the optimal-step

NICP algorithm [21], followed by a Generalized Procrustes Anal-

ysis (GPA) and standard PCA. Due to the large number of facial

scans, a robust automated procedure was carried out including 3D

landmark localization and error pruning of badly registered scans.

This work was the first to introduce bespoke models in terms of

age, gender and ethnicity, and is the most information-rich 3DMM

of face shapes in neutral expression produced to date.

Applications such as 3D model-based reconstruction [22], [23]

and expression estimation [24], [25] in 2D images have greatly

encouraged the advancement of statistical face models. With

the advent of deep neural networks, several recent approaches

aimed to extend the traditional 3DMM by replacing the linear

models with non-linear approaches [26], [27] or by estimating the

coefficients of a 3DMM from a single image [28]. The main scope

of this work lies in combining 3DMMs and building a united

representation of the most significant parts of the human head

(i.e. face, cranium, ears and eyes), rather than creating alternatives

for non-linear 3D face reconstruction.

2.2 Head models

In terms of 3DMMs associated with the human body, the main

focus of the research literature has been on the reconstruction of

the human face, but not other parts of the human head. The reason

for this is mainly due to the lack of 3D image datasets that describe

the other parts of the human head. In recent years, a few works

such as [29] have tried to tackle this task, in which a total of 3, 800
head scans was utilized from the US and European CEASAR body

scan database [30] to build a statistical model of the entire head.

The aim of this work focuses mainly on the temporal registration

of 3D scans rather than on the topology of the head area. The

data consists of full body scans and the resolution in which the

head topology was recorded in is insufficient to depict correctly

the shape of each individual human head. In addition, the template

used for registration in this method is extremely sparse with only

5, 000 vertices which makes it difficult to accurately represent

the entire head. Moreover, the registration process incorporates

coupling weights for the back of head and the back of the neck,

which drastically constrains the actual statistical variation of the

entire head area. An extension of this work is proposed in [31] in

which a non-linear model is constructed using convolution mesh

autoencoders focusing on facial expressions, but still it lacks the

statistical variation of the full cranium. Similarly, in the work
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of Hu and Saito [32], a full head model is created from single

images mainly for real-time rendering. The work aims at creating a

realistic avatar model which includes 3D hair estimation. The head

topology is considered to be unchanged for all subjects and only

the face part of the head is a statistically-correct representation.

The most accurate craniofacial 3DMM of the human head

both in terms of shape and texture, is the Liverpool-York Head

model (LYHM) [14]. In this work, global craniofacial 3DMMs

and demographic sub-population 3DMMs were built from 1,212

distinct identities. They have proposed a dense correspondence

system, combining a hierarchical parts-based template morphing

framework in the shape channel and a refining optical flow in the

texture channel. Although this work is the first that describes the

statistical correlation between the cranium and the face part, it

lacks detail of the facial characteristics, as the spatial resolution of

the facial region is not significantly higher than the cranial region.

In effect, the variance of the cranial and neck areas dominates that

of the facial region in the PCA parameterization. Also, although

the model describes how the cranium is affected given the age of

the subject, it is biased in terms of ethnicity, due to the lack of

ethnic diversity in the dataset.

2.3 Eye and ear models

There are some key structures of the human head that have an

important contribution to the appearance and identity of a person,

that perhaps should be treated with greater attention and detail to

such an extent that separate 3DMMs should be formulated.

One of the most significant structures of the human head

are the eyes, by which we communicate and and through their

movements we expresses our interests, our attention, and our

emotional disposition. As a result, eye appearance [33] and gaze

estimation [34], [35] are active topics in computer vision. The first

parametric approach to eye modeling was proposed by Bérard et

al. [36] where a 3DMM model was build by utilizing a database

of eyeball scans [37]. Although the results of the reconstruction

were appealing in terms of quality, the method for reconstruction

appeared to be semi-automatic. The most recent 3DMM of the

human eye was proposed in [38] focusing on the eyeball as well

as on the peripheral eye region and skin region around the eye. In

our work, instead of treating the eye region as a separate model we

globally estimate the position of the eyes and, by employing sparse

localized deformation blendshapes, we are able to determine the

gaze direction and the general shape of the eye region.

Another structure of the human head that contributes to bio-

metric recognition and to the general appearance of a person

are the ears [39], [40]. Numerous works have been published

over the years on ear-based recognition [41], [42], thus making

the ear an important structure to represent in any human head

modeling. The two foremost examples of 3DMMs of the ear are

those of Zolfghari et al. [43] and Dai et al. [44]. Both models were

constructed by applying PCA to ear meshes from the SYMARE

database [45], using 58 and 20 samples respectively. To overcome

the limited statistical variation of their restricted sample size, [44]

estimate the 3D shape of ears in a landmarked 2D ear image

dataset and combine these with their initial model to propose

a data-augmented 3DMM. Both the LSFM face model and the

LYHM head model templates contain the ear; however, modelling

the detailed shape of the ear was not the intention during the

construction of either of these. As such, the statistical variation of

the ear is limited in both models, and neither contain a sufficient

number of vertices in the ear region to accurately represent its

complex structure. In this work, we enrich the statistical variability

of the aforementioned models by fusing our own ear model

constructed from high-resolution ear scans. To the best of our

knowledge, the resulting head model is the most complete and

accurate 3DMM of the human head.

3 FACE AND HEAD SHAPE COMBINATION

In this section, we propose two methods to combine the LSFM

face model with the LYHM full head model. The first approach,

utilizes the latent PCA parameters and solves a linear least squares

problem to approximate the full head shape, whereas the second

constructs a combined covariance matrix that is later utilized as a

kernel in a Gaussian Process Morphable Model (GPMM) [46].

3.1 Regression modelling

Figure 3 illustrates the three-stage regression modeling pipeline,

which comprises 1) regression matrix calculation, 2) model com-

bination and 3) full head model registration followed by PCA

modeling. Each stage is now described.

For stage 1, let us denote the 3D mesh (shape) of an object

with N points as a 3N ⇥ 1 vector

S = [xT
1 . . .xT

N ]T = [x1, y1, z1, . . . xN , yN , zN ]T (1)

The LYHM is a PCA generative head model with Nh points,

described by an orthonormal basis after keeping the first nh

principal components Uh 2 R
3Nh×nh and the associated �h

eigenvalues. This model can be used to generate novel 3D head

instances as follows:

Sh(ph) = mh +Uhph (2)

where ph =
h

ph1
. . . phnh

iT
are the nh shape parameters.

Similarly the LSFM face model with Nf number of points, is

described by a corresponding orthonormal basis after keeping the

nf principal components Uf 2 R3Nf×nf and the associated �f

eigenvalues. The model generates novel 3D faces instances by:

Sf (pf ) = mf +Ufpf (3)

where pf =
h

pf1 . . . pfnf

iT
are the nf shape parameters.For

each model respectively, we keep the first nh = 100 and nf =
157 principal components that describe 99% of the variance in

the training set, as later principal components with much smaller

variances have a poor signal-to-noise ratio.

In order to combine the two models, we synthesize data

directly from the latent eigenspace of the head model (Uh) by

drawing random samples from a Gaussian distribution defined

by the principal eigenvalues of the head model. The standard

deviation for each of the distributions is equal to the square root

of the eigenvalue. In that way we produce randomly nr distinct

shape parameters.

After generating the random full head instances we apply non-

rigid registration (NICP) [21] between the head meshes and the

cropped mean face of the LSFM face model. We perform this

task in each one of the nr meshes in order to get the facial part

of the full head instance and describe it in terms of the LSFM

topology. Once we acquire those registered meshes we project

them to the LSFM subspace and we retrieve the corresponding

shape parameters. Thus, for each one of the randomly produced
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Fig. 2. The bespoke Combined Face & Head Models. Visualisation of the first four shape components along with the mean head shapes. Due to
the large demographic information of LSFM we are able to construct bespoke combined head model for any given age, gender or ethnicity group.

head instances, we have a pair of shape parameters (ph,pf )

corresponding to the full head representation and to the facial area

respectively.

By utilizing those pairs we construct a matrix Ch 2 Rnh×nr

where we stack all the head shape parameters and a matrix

Cf 2 Rnf×nr where we stack the face shape parameters from the

LSFM model. We would like to find a matrix Wh,f 2 Rnh×nf

to describe the mapping from the LSFM face shape parameters

pf to the corresponding LYHM full head shape parameters ph.

We solve this by formulating a linear least square problem that

minimizes:

kCh �Wh,fCfk
2

(4)

By utilizing the normal equation, the solution of (4) is readily

given by:

Wh,f = ChC
T
f

⇣

CfC
T
f

⌘

−1
(5)

where CT
f

⇣

CfC
T
f

⌘

−1
is the right pseudo-inverse of Cf . Given

a 3D face instance Sf , we derive the 3D shape of the full head,

Sh, as follows:

Sh = mh +UhWh,fU
T
f (Sf �mf ) (6)

In this way we can map and predict the shape of the cranium

region for any given face shape in terms of LYHM topology.

In stage 2 (Figure 3), we employ the large MeIn3D database

[20] which includes nearly 10, 000 3D face images, and we utilize

the Wh,f regression matrix to construct new full head shapes

that we later combine with the real facial scans. We achieve

this by discarding the facial region of the the full head instance

which has less detailed information and we replace it with the

registered LSFM face of the MeIn3D scan. In order to create

a unique instance we merge the meshes together by applying a

NICP framework, where we deform only the outer parts of the

facial mesh to match with the cranium angle and shape so that

the result is a smooth combination of the two meshes. Following

the formulation in [21], this is accomplished by introducing higher

stiffness weights in the inner mesh (lower on the outside) while we

apply the NICP algorithm. To compute those weights we measure

the Euclidean distance of a given point from the nose tip of the

mesh and we assign a relative weight to that point. The bigger the

distance from the nose tip, the smaller the weight of the point.

One of the drawbacks of the LYHM is the arbitrary neck

circumference, where the neck tends to get broader when the

general shape of the head increases. In stage 3 (Figure 3), we aim

at excluding this factor from our final head model by applying a

final NICP step between the merged meshes and our head template

St. We utilized the same framework as before with the point-

weighted strategy where we assign weights to the points based on

their Euclidean distance from the center of the head mass. This

helps us avoid any inconsistencies of the neck area that might

appear from the regression scheme. For the area around the ear, we

have introduced 50 additional landmarks to control the registration

and preserve the general shape of the ear area.

After applying our pipeline to each one of the 10, 000 meshes,

we perform PCA on the points of the mesh and we acquire a new

generative full head model that exhibits more detail in the face

area in combination with bespoke head shapes.

3.2 Gaussian process modeling

Gaussian processes for model combination is a less complicated

and more robust technique that does not generate irregular head

shapes due to poor regression values.

The concept of Gaussian Process Morphable Models (GP-

MMs) was recently introduced in [46], [47], [48]. The main

contribution of GPMMs is the generalization of classic Point

Distribution Models (such as are constructed using PCA), with the

help of Gaussian processes. A shape is modeled as a deformation

u from the reference shape SR i.e. a shape can be represented as:

S = {x+ u(x)|x 2 SR} (7)

where u is a deformation function u : Ω ! R
3 with

Ω ◆ SR. The deformations are modeled as a Gaussian process

u ⇠ GP (µ, k). Where µ : Ω ! R
3 is the mean deformation and

k : Ω⇥ Ω ! R
3×3 is a covariance function or kernel.
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Fig. 3. The regression modeling pipeline. 1) The left part illustrates the matrix formulation from the original LYHM head model; 2) the central part
demonstrates how we utilize the MeIn3D database to produce highly-detailed head shapes; 3) the final part on the right depicts the registration
framework along with the per-vertex template weights and the statistical modeling.

The Gaussian process model is capable of operation out-

side of the space of valid face shapes. This depends highly

on the kernels chosen for this task. In the classic approaches,

the deformation function is learned through a series of typical

example surfaces S1, . . . ,Sn where a set of deformation fields is

learned {u1, . . . , un}, ui(x) : Ω ! R
d where ui(x) denotes the

deformation field that maps a point x on the reference shape to

the corresponding point on the ith-training surface.

A Gaussian process GP (µPDM , kPDM ) that models this

characteristic deformations is obtained by estimating the empirical

mean:

µPDM (x) =
1

n

n
X

i=1

ui(x) (8)

and the covariance function:

kPDM (x,y) =
1

1� n

n
X

i=1

(ui(x)� µPDM (x))

(ui(y)� µPDM (y))
T

(9)

This kernel is defined as the empirical/sample covariance kernel.

This specific Gaussian process model is a continuous analog to a

PCA model and it operates in the facial deformation spectrum. In

our case we are lacking with regards to the original head scans so

we are unable to learn deformation fields from them, nor combine

them with the MeIn3D facial dataset. In order to overcome this

problem, we have utilized the already-learned point distribution

models. For each one of the models (LYHM, LSFM), we know

the principal orthonormal basis and the eigenvalues. Hence the

covariance matrix for each model is defined:

Kh = UhΛhU
T
h

Kf = UfΛfU
T
f

(10)

where Kh 2 R3Nh×3Nh and Kf 2 R3Nf×3Nf are the covari-

ance matrices, and the Λh 2 Rnh×nh and Λf 2 Rnf×nf are

diagonal matrices with the eigenvalues in their the main diagonal

of the head and face model respectively.

We aim at constructing a universal covariance matrix KU 2
R

3NU×3NU that accommodates the high detailed facial properties

of the LSFM and the head distribution from the LYHM. We keep,

as a reference, the mean of the head model and we non-rigidly

register the mean face of the LSFM. Both PCA models must be

in the same scale space for this method to work, which was not

necessary for the regression method. Similarly, we register our

head template St by utilizing the same pipeline as before for full

head registration, which is going to be used as the reference mesh

for the new joined covariance matrix.

For each point pair i, j in St, there exists a local covariance

matrix K
i,j
U 2 R

3×3. In order to calculate its value, we begin

by projecting the points onto the mean head mesh. If both points

lie outside the face area that the registered mean mesh of LSFM

covers, we identify their exact location in the mean head mesh in

terms of barycentric coordinates (ci1, c
i
2, c

i
3) for the ith point and

(cj1, c
j
2, c

j
3) for the jth point with respect to their corresponding

triangles ti = [vT
1 ,v

T
2 ,v

T
3 ]

T , tj = [kT
1 ,k

T
2 ,k

T
3 ]

T .

Each vertex pair (v, k) in between the triangles, has an

individual covariance matrix K
v,k
h 2 R3×3 with K

v,k
h ◆ Kh.

Therefore, we blend those local vertex-covariance matrices to

acquire our final local K
i,j
U as follows:

K
i,j
U =

P3
v=1

P3
k=1 w

i,j
v,kK

v,k
h

P3
v=1

P3
k=1 w

i,j
v,k

(11)

where w
i,j
v,k =

civ+cj
k

2 is a weighting scheme based on the

barycentric coordinates of the (i, j) points. An illustration of the

aforementioned methodology can be seen in Figure 4.

In the case where the points lie in the face area, we initially

repeat the same procedure by projecting and calculating a blended

covariance matrix K
i,j
f given the mean face mesh of LSFM,

followed by a blended covariance matrix K
i,j
h calculated given

the mean head mesh of LYHM. We formulate the final local

covariance matrix as:

K
i,j
U = ⇢i,jK

i,j
h + (1� ⇢i,j)K

i,j
f (12)

where ⇢i,j =
ρi+ρj

2 is a normalized weight, based on the

Euclidean distances (⇢i, ⇢j) of the (i, j) points from the nose-

tip of the registered meshes. We apply this weighting scheme to

smoothly blend the head and face models and avoid discontinuities

that appear on the borders of the face and head area.
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Fig. 4. A graphical representation of the non-rigid registration of all mean
meshes along with our head template St and the calculation of the local

covariance matrix K
i,j
U

based on the locations of the ith and jth points.

Lastly, when the points belong to different areas (i.e. ith point

on face, jth point on head) we simply follow the first method that

exploits just the head covariance matrix Kh, since the correlation

of the face/head shape only exists in the LYHM. After repeating

this methodology for every point pair in St and calculating the

entire joined covariance matrix KU , we are able to sample new

instances from the Gaussian process morphable model.

3.3 Model Refinement

To refine our model, we begin by exploiting the already trained

GPMM of the previous section. With our head template St and

the universal covariance matrix KU , we define a kernel function:

kU (x,y) = K
CP (St,x),CP (St,y)
U (13)

where x and y are two given points from the domain where the

Gaussian process is defined and the function CP (St,x) returns

the index of the closest point of x on the surface St. We then

define our GPMM as:

GPU (µU , kU ) (14)

where µU (x) = [0, 0, 0]T . For each scan in the MeIn3D dataset,

we first try to reconstruct a full head registration with our

GPMM using Gaussian Process Regression [46], [47]. Given

a set of observed deformations X subject to Gaussian noise

✏ ⇠ N (0,�2), Gaussian process regression computes a posterior

model GPp(µp, kp) = posterior(GP,X). The landmark pairs

between a reference mesh and the raw scan define a set of sparse

mappings, which tells us exactly how the points on the reference

mesh will deform. Any sample from this posterior model will

then have fixed deformations on our observed points i.e. facial

landmarks. The mean µp and covariance kp are computed as:

µp(x) = µ(x) +KX(x)T (KXX + �2I)−1X (15)

kp(x,y) = ku(x,y)�KX(x)T (KXX +�2I)−1KX(y) (16)

where

KX(x) = (kU (x,xi)), 8 xi 2 X (17)

KXX = (kU (xi,xj)), 8 xi,xj 2 X (18)

For a scan S with landmarks LS = {l1, ...ln}, we first

compute a posterior model based on the sparse deformations

defined by the landmarks:

GP0
p(µ

0
p, k

0
p) = posterior(GPU ,LS � LSt

) (19)

We then refine the posterior model with Iterative Closest Point

algorithm. More specifically, at each iteration i we compute the

current regression result as Si
reg = {x + µi−1

p (x)|x 2 St},

which is the reference shape wrapped with the mean deformation

of the posterior model GPi−1
p . We then find the closest points Ui

for each point in Si
reg on S, and update our posterior model as:

GPi+1
p (µi+1

p , ki+1
p ) = posterior(GP0

p,U
i � Si

reg) (20)

Since the raw scans in the MeIn3D database can be noisy, we

exclude a pair of correspondence (x,U(x)) if U(x) is on the

edge of S or the distance between x and U(x) exceed a threshold.

After the final iteration we obtain the regression result Sreg =
{x + µfinal

p (x)|x 2 St}. We then non-rigidly align the face

region of Sreg to the face region of the raw scan to obtain our

final reconstruction.

In practice, we noticed that the reconstructions often produce

unrealistic head shapes. We therefore modify the covariance ma-

trix KU before the Gaussian process regression. We first compute

the principal components by decomposing KU , then reconstruct

the covariance matrix using (10) with fewer statistical compo-

nents. With the full head reconstructions from the MeIn3D dataset,

we then compute a new sample covariance matrix, and repeat

the previous GP regression process to refine the reconstructions.

Finally we perform PCA on the refined reconstructions to obtain

our final refined model. An extensive illustration of the entire

refinement pipeline can be seen in Figure 5

4 EAR MODEL COMBINATION

Both of the original 3DMMs, LSFM (face) and LYHM (head),

exhibit only moderate statistical variation around the ear area. In

order to overcome this limitation, we augment our combined face

and head model by creating a high-resolution model of the ears,

constructed from 254 distinct scans.

4.1 High resolution ear model

To construct a 3DMM from a sufficiently large sample size, we

draw on several data sources. As with previous ear models, we

make use of the SYMARE database [49], which provides both

left and right ears of 10 individuals. Additionally, we have built a

dataset of 121 distinct high-resolution ears from 64 individuals

(32 males and 32 females) ranging from 20 to 70 years old,

by scanning the inner and outer area of both ears with a light-

stage apparatus. In order to amplify the statistical variation of our

ear model across all ages, we employ an additional 113 ears of

children, acquired via CT scans.

The combined dataset comprises 254 meshes. All left ears

were mirrored to be consistent with the right ears. Each of the

meshes was manually annotated with 50 landmark points to guide

the registration process, and then put in correspondence with a

template containing 2800 vertices (Ne) using the same NICP-

variant non-rigid registration framework employed for the LSFM

[20]. These meshes are then rigidly aligned using Generalised

Procrustes Analysis (GPA). Applying PCA to all points in the

aligned meshes yields a high resolution 3DMM of the right ear.
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Fig. 5. The model refinement pipeline. We start with the GP model defined by the universal covariance matrix. For each scan in the MeIn3D dataset
we obtain full head reconstruction with GP Regression using the sparse landmarks and dense ICP algorithm. We then non-rigidly align the face
region of the full head reconstruction to the scan, and build a new sample covariance matrix to update our model.

A 3DMM of the left ear is obtained by reflecting the right ear

3DMM in the sagittal plane, both in terms of its mean shape and

its principal components. The resulting shape components of our

right ear 3DMM can be seen in Figure 6.

Fig. 6. Visualization of the first five principal shape components (with ±3
standard deviations) of our ear model along with the mean ear shape.

4.2 Fusing the ear and the head model

In order to accurately incorporate new ear shape variations into our

combined face and head model, we exploit the same methodology

of Gaussian process modeling, as described in Section 3.2. We

begin by merging, in a non-rigid manner, the mean shape templates

(Sle, Sre) of each ear model (left and right) to the ears of our

mean head mesh after the combination of the LSFM (face) and

LYHM (head) models. Once all the mean templates are registered

we calculate the covariance matrices for each individual model:

Kre = UreΛreU
T
re

Kle = UleΛleU
T
le

where Kre 2 R3Ne×3Ne , Kle 2 R3Ne×3Ne are the covariance

matrices and the Λre 2 R
3nre×3nre and Λle 2 R

nle×nle

are diagonal matrices of eigenvalues for the right and left ear

respectively. Our goal is to enhance the ear shape variation of

the combined covariance matrix KU . We begin by merging the

right ear model and, as before, we keep the mean head template

as a reference. For each projected point pair i, j that belongs in

the right ear area, we identify their exact location in the registered

Sre mesh in terms of barycentric coordinates with respect to the

corresponding triangles. Inbetween each vertex pair, we blend the

local covariance matrices, as before, with (11). We then perform

the same procedure for the left ear model.

In order to correctly incorporate both ear models into the full

head model, we need to introduce a blending distance function

that helps avoid discontinuities on the merge borders around

the ear base. We adopt (12) as the blending mechanism for our

covariance matrices and we seek to find a suitable ⇢i,j normalized

weighing scheme for the points pairs i, j that belong in the

ear templates. Naturally, ears form an elongated shape where a

Euclidean distance from the base of the ear to the outer parts

becomes an unsuitable measure for weighting the point pairs

correctly. Instead, we first unwrap the ear mesh into a circle in

2D space, where the center belongs to the ear canal and the

furthest points of the circle correspond to the base of the ear.

The blending ⇢i,j scheme is now measured in the 2D flattened

space where distances ⇢i, ⇢j are calculated from the center of the

unwrapped circle. Essentially, we enrich independently the local

variations of each ear without interfering with the already learned

variations between them. The resulting fused model is able to

describe asymmetrically any possible ear variations.

5 EYE MODEL COMBINATION

Accurate modeling of the characteristics of human eyes, such as

gaze direction, pupil size, iris color and eyelid and eye region

shape is important for creating realistic 3D face models. Both

LSFM and LYHM models include limited variation of the eyelid

shape, due to the low resolution of this region in the original

scans, while no other characteristics of the eyes are described by

these models. To overcome these limitations, we model the eyes

and peripheral eye regions with separate statistical models that we

incorporate in our final head model.

5.1 Eye models

We initially utilize a classical 3DMM optimization framework,

under which we combine a statistical model of the eyelid shape

and a statistical model of the eye to accurately recover eyelid

shape, gaze direction and pupil size from images.

Eye region shape model: To capture the variation of eyelids

and the peripheral eye region in the human face, we constructed a

PCA model based on 72 distinct 3D head meshes sculpted around
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the eye region by a graphics artist. Thus, the eye region shape

model can be expressed as:

Sel = s̄el +Uelpel (21)

where s̄el 2 R3NU is the mean shape, Uel 2 R3NU×M is the

eye region shape subspace with dimension M and pel 2 RM

are parameters of the model. The five most significant statistical

components of our eye region model are depicted in Figure 9

cropped in a patch around the left eye area. The variation of our

eye region PCA model can accurately represent different types

of eye region shapes, such as round eyes, almond eyes, monolid,

hooded eyes, upturned and downturned eyes.

Eye shape model: We model the eye gaze direction and pupil

size separately from the eye region. Particularly, we employ two

separate meshes to model the eye, the outer lens and the eyeball,

as depicted in Figure 7. The outer lens covers the eyeball and is

static in shape, while the eyeball includes the iris and leaves a

hole for the pupil to become visible. To control pupil dilation and

constriction, we manually created a blendshape of the pupil size

by sculpting an eyeball instance with a different pupil size and

subtracting it from the original mesh. The blendshape allows us

to render eyeballs with arbitrary pupil size, as in Figure 7. For

consistency with the eye region model, we express the eye model

as a linear combination of the mean eye shape s̄eye 2 R3Neye and

the blendshape us,eye 2 R3Neye as Seye = s̄eye + peyeus,eye,

where peye is a parameter of the model and Neye is the number

of vertices of the eye model.

Eye texture model: To boost the reconstruction accuracy

of our eye model when fitting to input images, and to recover

the color of the eyes along with the shape, we attach an RGB

texture model Teye on our eyeball model Seye, extracted from 2D

images. To build Teye we utilized 100 frontal images of human

irises, which we manually annotated with respect to 16 landmarks

around the iris and pupil. Then, for each image we projected

our eyeball model on the image plane based on 8 iris landmarks

and manually adjusted peye to match the 8 pupil landmarks. We

sampled the images at the projected vertex locations of the iris of

our model, to create per-vertex textures. For the locations outside

the iris, we used white to represent the sclera of the eye and black

to represent the pupil. Finally, we created a PCA model for the

per-vertex texture of our 3D eyeball, which can be written as:

Teye = t̄eye +Ut,eye� (22)

where t̄eye 2 R3Neye is the mean texture component, Ut,eye 2
R3Neye×Meye is the eye texture subspace with dimension Meye

and � 2 RMeye are parameters of the model.

5.2 Optimization-based eye model fitting

To automatically recover eyelid shape, gaze direction, pupil size

and iris color from images, we employ a 3DMM fitting approach

in which we optimize our parametric models of shape and texture,

based both on 2D landmarks and the texture of the eyes in images.

To this end, we automatically extract 33 2D landmarks from im-

ages, by utilizing a deep network with hourglass architecture [50],

which we trained on 3000 images that we manually annotated. The

33 eye landmarks are composed of 17 eyelid landmarks around

the eye sclera and on the upper eyelid, denoted as lel, and 16

landmarks around the iris and pupil, denoted as leye.

The fitting pipeline is then split in two steps, as shown

in Figure 8. First, we recover a perspective camera viewpoint

P(c) for the whole head by solving a Perspective-n-Point (PnP)

problem between 68 2D face landmarks of the image, which

we extract with [50], and 68 3D landmarks of the head model.

Then, keeping the head camera fixed, we optimize our statistical

eye models based on two landmarks losses and a rendering

loss. We model gaze direction as an independent 3D rotation

R(cr) relative to the head perspective camera P(c). In our

camera models, vector c = [f, tx, ty, tz, q0, q1, q2, q3]
T includes

parameters for the focal length, translation and rotation, while

vector cr = [qr0, qr1, qr2, qr3]
T includes only rotation param-

eters. In both camera transformations, rotation is modeled with

quarternions because of the ease of incorporating them in the

optimization in comparison to Euler angles.

We form the following cost function and solve with respect to

our models’ parameters:

argmin
pel,peye,cr

kWhead(pel, c)� lelk
2

+ cl kWeye(peye, c, cr)� leyek
2

+ ct kI(Weye(peye, c, cr))�Teye(�)k
2

+ cel kpelk
2
Σ

−1

pel

+ ceye,l kpeyek
2
Σ

−1

peye
+ ceye,t k�k

2
Σ

−1

λ

,

(23)

where Whead(pel, c) = P(Sel(pel), c) is the perspective pro-

jection of the eye region shape model in the image plane and

Weye(peye, c, cr) = P(R(Seye(peye), cr), c) is the indepen-

dent rotation and perspective projection of the eye shape model in

the image plane.

In (23), the first term accounts for the reconstruction of the eye

region shape, based on the eyelid landmarks lel, while the second

term accounts for the reconstruction of the pupil size and gaze

direction, based on the iris and pupil landmarks leye. The third

term is a texture loss between image I, sampled at the model’s

projected locations, and our texture model instance Teye(�). The

last three terms are regularization terms, which serve to counter

over-fitting and cl, ct, cel, ceye,l and ceye,t are weights used

to regularize the importance of each term during optimization.

Problem (23) is solved with the simultaneous variation of Gauss-

Newton optimization as formulated in [22].

5.3 Extending the traditional approach

The described 3DMM fitting algorithm produces accurate pre-

dictions for eye region, pupil size and gaze direction in images,

but is relatively slow and requires multiple Gauss-Newton steps

to converge. Thus, we attempted to take the traditional 3DMM

fitting approach one step further and trained a regression network

to estimate the parameters of our 3D models {pel, peye, cr} in a

single forward pass.

To this end, we have utilized the pretrained hourglass network

from Section 5.2 as an encoder and in the last layers we stack

a Multi-Layer Perceptron (MLP) architecture resulting in the

parameters of our model {pel, peye, cr}. The numbers of neurons

in each layer of the MLP are (66, 128, 256, 1024, 512, 256, 128,

10), where the last layer represents the concatenation of the five

eye region blendshape parameters, the single pupil blendshape

parameter, and the four quaternions that describe the rotation

of the eyeball. We trained the entire network end-to-end in a

supervised fashion with pairs of 2D images of the eye region

and the corresponding parameters that we recovered with our

3DMM fitting pipeline. We manually filtered the 3DMM results,

discarding any misaligned meshes before training. To extract the



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, OCTOBER 2019 9

Eye BallOuter Lens

Structure

Pupil Dilation & Contraction

Bank of Colours

Fig. 7. The bank of iris textures in our model along with our eye mesh structure. Our entire eye mesh topology consists of two meshes: The outer
one is a transparent mesh that forms the lens and the internal mesh is the eyeball, depicting the iris texture and the pupil shape. On the bottom
right corner, we illustrate variations of pupil dilation and contraction with and with out texture.

Face	with
68	landmarks

Mean	 	and	

Perspective	
camera	

PnP	problem

Fixed
perspective	
projection
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3DMM
initialization

3DMM
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3DMM	fitting
result	for	 ,

	and	

Fig. 8. Eye 3DMM fitting pipeline for recovering eye region shape, gaze
direction and pupil size from single images.

training image pairs we utilized AgeDB [51], which contains

16488 images of faces of people of various ages. For training and

testing our regression model, we split AgeDB into a training set

(90% of the images) and a test set (10% of the images). Results

are presented in Section 8.3.

5.4 Color estimation

High quality eye color reconstruction is difficult to achieve using

low resolution images of the eye region with the standard iris

PCA model of Section 5.1. To this end, we treat the problem of

eye color reconstruction as a classification problem, given a bank

of known iris textures as shown in Figure 7.

In order to make as accurate predictions as possible with

respect to the color of the eyes of a subject depicted in an “in-

the-wild” image, we need thousands of ground-truth eye images

annotated with regards to their color. To this end, we utilized

AgeDB [51] and we employed the 68 2D landmarks to extract

the eye regions for each one of the images. Subsequently, since

there are only seven different colors for human eyes, we manually

annotated the extracted eye images with one of the following

options: amber, blue, brown, gray, green, hazel, or dark brown.

The cropped eye images were of size 64⇥ 64.

We used 90% of the AgeDB data [51] for the training process

and the rest for testing. We carried out the training utilizing a

simple encoder architecture, similar to the one described in [52].

The only modification was with respect to the last layer, where

the output dimension was changed to seven, to be in accordance

with the total number of eye colors. This architecture yielded the

best results, with about 92% classification accuracy in the test set.

Given that certain eye classes are highly correlated and are even

challenging to classify by humans (such as amber and brown or

gray and blue), the model actually achieves very high accuracy,

since the vast majority of misclassifications occur between these

groups.

6 ORAL CAVITY AND TEETH

An appropriate and complete representation of the human head

should also model the inner mouth cavity and the teeth, in addition

to the external characteristics of the human head, as these are often

visible in raw images. Correctly capturing the 3D topology of the

oral cavity in a single template is a challenging topic due to the

lack of 3D data, the challenging non-convex and specular teeth

regions, as well as the highly deformable nature of the tongue.

To progress this aspect, we have incorporated an inner mouth

topology, where we model the lining inside the cheeks, the front

two thirds of the tongue, the upper and lower gum, and the floor

and the roof of the mouth. We treat teeth as separate meshes and

we fix their location on top of the gums. The tongue and the teeth

are not fitted to any training data and, as such, they do not capture

any independent statistical variance. However, the overall scale for

all axes, is copied and back-propagated smoothly in a decaying

manner from the outer lips to the inner cavity of our head model.

7 TEXTURE MODELING AND COMPLETION

Instead of modeling the texture space in a low frequency PCA

formulation, we employ a GAN architecture [53] after bringing in
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Fig. 9. Illustration of the first five components of the eye region shape model Sel that outlines the eyelid shape along with the peripheral shape
around the eye. Our model demonstrates large variance and is capable of reconstructing any given eyelid and eye region shape across the human
population.(i.e. round, almond, monolid, hooded, upturned and downturned eyes)

correspondence all the textures in a UV domain space. In this way,

we are capable of preserving the high frequency skin details and

avoiding the blurriness of a PCA model. Our combined data set of

textures consists of approximately 10K facial textures and 1, 200
full head textures from the original LSFM and LYHM respectively.

Unfortunately, the textures of the cranium region are unwanted due

to the blue latex hair caps that the subjects were instructed to wear

during the image capture process.

In order to properly render the head of a given subject, apart

from the shape and the facial texture, we need to also successfully

visualize the entire head texture. That is, we need to find an elegant

way to fill out the missing head texture, given the facial texture.

The main problem that arises in this process is the scarcity of

ground truth data of full head textures. To address this issue, given

the facial textures, we employed a graphics artist to fill out the

corresponding missing head textures. In this way, we created an

adequate number of face-head texture pairs which we then used

to train a pix2pixHD [53] model to fill out the missing cranium

textures.

The pix2pixHD methodology is the current state-of-the-art

when it comes to carrying out image translation tasks in high-

resolution data. In our case, we learned how to automatically

produce complete head textures, given the facial ones. An illus-

tration of a head completion example can be seen in Figure 10.

We trained the pix2pixHD model utilizing the learning rates and

hyper-parameters mentioned in the original implementation [53].

However, the global and local blocks in the generator framework

were changed to 5 and 10, respectively. Moreover, no instance

feature maps were added to the input and, finally, the VGG

feature loss was deactivated as this led to a marginally enhanced

performance in the completion process.

(a) (b) (c)

Fig. 10. Head texture completion given an unseen facial texture. (a) Input
facial texture, (b) recovered completed texture by a pix2pix translation
architecture, (c) ground truth completed texture by a graphics artist.

8 EXPERIMENTS

In this section, we analyze in detail the capabilities of our fused

head model by examining the intrinsic characteristics in Section

8.1. Additionally, in Sections 8.2 and 8.3, we thoroughly describe

the full head reconstruction pipeline from 2D images, and we

evaluate our approach both qualitatively and quantitatively for all

separate attributes.

8.1 Intrinsic evaluation

After merging the LSFM face and LYHM head models together,

we name our initial head model as the Combined Face & Head

Model (CFHM). When this is augmented into our final model, it

is named the Universal Head Model (UHM), and this combines

four separate models (face, cranium, ears and eyes) into a single

representation.

Following common practice, we evaluate our model variations

compared to the LYHM by utilizing, compactness, generalization

and specificity [54], [55], [56]. For all the subsequent experiments

we utilise the original head scans of [14] from which we have

chosen 300 head meshes that were excluded from the training

procedure. This test set was randomly chosen within demographic

constrains to ensure ethnic, age and gender diversity. We name our

model variations as: CFHM-reg built by the regression method,

CFHM-GP built by the Gaussian processes kernels framework and

finally, CFHM-ref built after refinement with Gaussian process

regression. Also, we present bespoke modes in terms of age and

ethnicity, constructed by the Gaussian processes kernels method

coupled with refinement. Several bespoke head models can be

seen in Figure 2 where the first four shape components along with

the mean head shapes are visualised.

The top graphs in Figure 11 present the compactness mea-

sures of the CFHM models compared to LYHM. Compactness

calculates the percentage of variance of the training data that is

explained by the model, when certain number of principal com-

ponents are retained. The models CFHM-reg, CFHM-GP express

higher compactness compared to the model after the refinement.

The compactness ability of the all proposed methods is far greater

than the LYHM, as can be seen by the graph. Both global and

bespoke CFHM models can be considered sufficiently compact. In

Figure 12 (a) the UHM model demonstrates similar compactness

to CFHM-reg, CFHM-GP models while extending the variation in

the ear area. Compared to the original ear model, the universal

model is able to describe the same ear variability with fewer

components.
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The center row of Figure 11 illustrates the generalization

error, which demonstrates the ability of the models to represent

novel head shapes that are unseen during training. To compute the

generalization error for a given number of principal components

retained, we compute the per-vertex Euclidian distance between

every sample of the test set and its corresponding model projection

and then take the average value over all vertices and test samples.

All of the proposed models exhibit far greater generalization

capability compared to LYHM. The refined model CFHM-ref

tends to generalize better than the other approaches, especially

in the range of 20 to 60 components. LYHM holds the worst error

variance throughout the components whereas the refined model

retains the smallest error variance compared to the other models

especially in the interval of 40 to 65 components. Equivalently, as

can be seen in Figure 12 (b), the UHM performs marginally better,

but more importantly exhibits regular descent errors compared to

all other methods, which ensures stability across all components.

Additionally, we plot the generalization error of the bespoke

models against the CFHM-ref in Figure 11 (b) center. In order

to derive a correct generalization measure for the bespoke CFHM-

ref, for every mesh we use its demographic information, we project

it on the subspace of the corresponding bespoke model and then

we compute an overall average error. We observe that the CFHM-

ref mostly outperforms the bespoke generalization models, which

might be attributed to the fact that many of the specific models

are trained from smaller cohorts, and so run out of interesting

statistical variance. This also explains the smaller error variance

of the global model throughout the components when compared

to the errors of the bespoke models.

Finally, the graphs of Figure 11 (bottom) show the specificity

measures of the introduced models that evaluate the validity of

the synthetic faces generated by a model. We randomly synthesize

5,000 faces from each model for a fixed number of components

and measure how close they are to the real faces based on a

standard per-vertex Euclidean distance metric. We observe that

the model that has the best error results is the proposed re-

fined model CFHM-ref. The LYHM model demonstrates better

specificity error than the CFHM-reg, CFHM-GP models only in

the first 20 components. Both of the proposed combined models

exhibit steady error measures (⇡ 3.8) after keeping components

greater than 20. This is due to the higher compactness that both

combined models demonstrate, which enables them to maintain

certain specificity error after the 20 components. For all bespoke

models, we observe that the specificity errors attain particularly

low values, in the range of 1to 4 mm. This is evidence that

the synthetic head generated by both global and bespoke CFHM

models are realistic enough. Additionally, as shown in [20] the

significant error differences between different age groups and

ethnicities (i.e. black model), are caused by a lack of sufficient

representative training data. This means that the training data of

those models are insufficient to synthesize new identities, so the

nearest neighbor error tends to be greater, as compared to other

models with more training examples. Similarly, in Figure 12 (c)

the UHM model demonstrates identical specificity measures with

CFHM-ref, since the ear fusion does not interfere with the overall

ability of the model to synthesize realistic head shapes.

Our results show that our combination techniques yield models

that are capable of exhibiting improved intrinsic characteristics

compared to the original LYHM head model.

(a) (b)

Fig. 11. Characteristics of the CFHM models compared to LYHM. Top:
compactness; Center: generalization; Bottom: specificity. Left column
(a): different methods, Right column (b): demographic-specific 3DMMs
based on the CFHM-ref model.

8.2 Head reconstruction from single images

By leveraging the UHM model, we outline a methodology that

enables us to reconstruct the entire head shape including ears

and eye gaze/color from unconstrained single images. We strictly

utilize only one view/pose for head reconstruction in contrast to

[57] where multiple images were utilized. We achieve this by

regressing from a latent space that represents the 3D face and

ear shape to the latent space of the full head models constructed

by the proposed methodologies.

We begin by building a PCA model of the inner face along

with 50 landmarks on each ear as described in [58]. We utilize the

10, 000 head meshes produced by our proposed methods. After

building the face-ear PCA model, we project each one of the

face-ear examples to get the associated shape parameters pe/f .

Similarly, we project the full head mesh of the same identity

to the full head PCA model in order to the acquire the latent

shape parameters of the entire head ph. As in Section 3.1, we

construct a regression matrix in the same manner, which works as

a mapping from the latent space of the ear/face shape to the full

head representation.

In order to reconstruct the full head shape and texture from 2D

images, we begin by fitting the facial part of our head model. Due

to the nature of our high frequency head texture model we employ

the recently proposed approach in [23] where high quality texture

reconstructions are possible by leveraging a GAN texture model in

a gradient descent optimization setting. Afterwards, we implement

an ear detector and an Active Appearance Model (AAM) as

proposed in [58] to localize the ear landmarks in the 2D image do-

main. Since we have fitted a facial 3DMM in the image space, we

already know the camera parameters, i.e. , focal length, rotation,
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a) b) c)

Fig. 12. Intrinsic characteristics of the Universal head model (UHM) along with the ear model. a) compactness, b) generalization, c) specificity.

translation. To this effect, we can easily retrieve the ear landmarks

in the 3D space by solving an inverse perspective-n-point problem

[59] given the camera parameters and the depth values of the fitted

mesh. We mirror the 3D landmarks with respect to the z-axis to

obtain the missing landmarks of the occluded ear. After acquiring

the facial part and the ear landmarks we are able to attain the full

head representation with the help of the regression matrix. Since

each proposed method estimates a slightly different head shape for

the 10, 000 face scans, we repeat the aforementioned procedure

by building bespoke regression matrices for each head model. In

order to fill out the entire head texture we employ the texture

completion methodology as described in Section 7 where from a

facial texture we are able to fill out the entire head surface. Finally,

after acquiring the full head shape we refine eye region shape

and estimate the eye gaze/color and pupil dilation/contraction, by

employing the regression network where the parameters of the eye

model are estimated from a cropped image around the eye region.

Qualitative results of our approach can be seen in Figure 13.

Because of the nature of our complete head model we are able

to recover large ear variations among the reconstructed subjects

as well as different eye region and head shapes in combination

with high quality texture. Asymmetrical ear reconstructions for

the same identity are possible when both ears are visible in a

multi-view setting as it can be seen in Figure 16.

The overall processing time of the entire head reconstruc-

tion pipeline is approximately 32 seconds on moderate GPUs

(i.e. NVIDIA RTX 2080 Ti) with CPU Intel Core i7 3.8 GHz.

The first part of facial reconstruction along with the ear landmark

localization takes around 12 seconds while the rest of the pipeline

that completes the head shape and the texture is processed approx-

imately in 16 seconds. Finally the eye gaze and colour estimation

and the eye region shape along with the pupil dilation/contraction

is computed around in 5 seconds.

We evaluate quantitatively our methodology by rendering 50
distinct head scans from our test set in frontal and side poses

varying from 20 to �20 degrees around the y-axis in order for

the ears to be visible in the image space. We apply our previous

procedure, where we fit a facial 3DMM and we detect the ear

landmarks in the image plane. Then for each method we exploit

the bespoke regression matrix to predict the entire head shape. We

measure the per-vertex error between the recovered head shape

and the actual ground-truth head scan by projecting each point of

the fitted mesh to the ground-truth and measuring the Euclidean

distance. Figure 14 shows the cumulative error distribution for this

experiment, for the four models under test. Table 1 and 2 report the

Method AUC Std Failure Rate (%)

UHM 0.875 1.74 1.51

CFHM-ref 0.751 3.42 3.64
CFHM-reg 0.693 4.71 6.88
CFHM-GP 0.681 4.36 7.55
LYHM [14] 0.605 20.95 19.21

TABLE 1
Head shape estimation accuracy results for the fitted facial meshes of

our test set. Metrics are Area Under the Curve (AUC), standard
deviation (Std) and Failure Rate of the Cumulative Error Distributions of

Figure 14.

corresponding Area Under Curve (AUC) and failure rates for the

fitted and the actual ground truth 3D facial meshes respectively.

The failure rate, represents the frequency with which a method

fails to represent a 3D head shape for a specific amount of vertices

within a threshold (the bins of our graph) divided by the total

number of bins. Essentially, it is the probability of failure given a

threshold.

In both situations, the LYHM struggles to recover the head

shapes. CFHM-reg and CFHM-GP perform equally, whereas the

model after refinement attains better results. The model that

exhibits the best reconstruction in both settings is the UHM as

shown in the diagrams (a) and (b) of Figure 14. That is attributed

to the high quality ear variation of the UHM model after fusion,

which the head reconstruction pipeline relies on. By merging the

ear model, the degrees of freedom by which the ear topology

can drive the entire head shape have significantly increased.

Figure 14 (c) show the ear shape estimation results of UHM

model against the LYHM and the CHFM-ref, from 2D image

landmarks compared to the actual ground truth 3D ear meshes. The

UHM significantly outperforms both models by a large margin.

Additional measures are described in table 3. Some qualitative

results can be seen in Figure 17 where we can easily deduce

that the UHM outperforms all models in terms of ear estimation

and general head shape reconstruction. Both CFHM and LYHM

struggle with the prediction of the ear shape because they share

the same shape variations. Additionally, LYHM tends to predict

arbitrary neck circumferences as well as head shapes, which are

excluded from the CHFM and the UHM after model refinement

(Section 3.3)

8.2.1 Special Cases

Naturally, in-the-wild faces of people often come with all sorts

of occlusions including long hair, hats, sunglasses or even other

body parts such as hands covering parts of the face/head. Similar
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Fig. 13. Qualitative results of our in-the-wild 3D head reconstruction. In the first column we show the 2D ear landmarks on top of the subject images.
In columns 2-5 we depict our high detailed head reconstruction. In the last column we illustrate different ear shape reconstructions for each subject.
Our model is able to generate realistic representations for all general traits (i.e. face, head, eyes, ears).
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a) b) c)

Fig. 14. Accuracy results for head and ear shape estimation, as cumulative error distributions of the normalized dense vertex errors. a) accuracy
results based on the fitted facial meshes to rendered images, b) accuracy results based on the actual ground truth 3D facial meshes, c) accuracy
results only for the ear topology based on the actual ground truth 3D ear meshes. Tables 1, 2 and 3 report additional measures.

Method AUC Std Failure Rate (%)

UHM 0.912 1.12 0.44

CFHM-ref 0.880 2.04 0.62
CFHM-GP 0.844 2.81 2.46
CFHM-reg 0.831 2.74 1.69
LYHM [14] 0.739 18.14 14.10

TABLE 2
Head shape estimation accuracy results for the actual ground truth 3D
facial meshes of our test set. Metrics are AUC, standard deviation (Std)

and Failure Rate of the Cumulative Error Distributions of Figure 14.

Method AUC Std Failure Rate (%)

UHM 0.802 2.4 0.32

CFHM-ref Ear 0.697 6.88 2.75
LYHM Ear [14] 0.621 17.52 12.6

TABLE 3
Ear shape estimation accuracy results for the ground truth 3D meshes

of our test set around the ear area. Metrics are AUC, standard
deviation (Std) and Failure Rate of the Cumulative Error Distributions of

Figure 14.

to [23], we rely on a strong optimization setting in order to

overcome these limitations. Due to the high frequency nature of

our texture model, we are able to exclude any occluding artifacts

that might appear and generate realistic head shapes. Also thanks

to the face recognition component (face identity features) of [23]

in the gradient descent optimization framework, we are capable of

reconstructing realistic human-like head shapes from oil-paintings

and animated characters. As can be seen in Figure 15, we are able

to reconstruct pleasing head shapes and textures from images with

various occlusions (hair, sunglasses, hats, hands) from painting-

like images of people and from images of animated characters. In

cases where both ears were not visible in the images, we utilized

the mean ear landmarks of the UHM model in order to acquire the

entire head shape.

8.3 Eye model evaluation

We evaluate the eye modeling pipeline of our UHM both qualita-

tively in terms of resemblance between reconstructions and input

images and quantitatively in the task of gaze estimation from sin-

gle images. Figure 18 includes qualitative results on reconstruction

of the eye region from single images by our regression network

described in Sec. 5.3. Reconstructions produced by our pipeline

Fig. 15. Qualitative results of our 3D head reconstruction pipeline from
challenging images with occlusions (hats, sunglasses, hair), images with
animated human-like characters (hulk) and images with paintings of
people (oil painting of Picasso).

accurately simulate the eyelid shape and gaze direction of the

corresponding images, while the pupil size also reasonably adapts

to the pupil, wherever it is visible.

We evaluate our regression network on the testing set of

AgeDB [51], separately for the three regression tasks: eye region

shape, gaze direction and pupil size parameters prediction. In more

detail, we measure our regression model’s accuracy in terms of the

Euclidean distance between the the predicted parameters and the

ground truth ones which are recovered by our 3DMM pipeline.

Furthermore, for comparison reasons we normalise the errors by

the l2 norm of the ground truth parameters. To get the total error

for each regression task, we average all the sample errors. Finally,
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Fig. 16. Asymmetric ear reconstruction from different view points for the
same identity after retrieving different sets of 3D ear landmarks from the
top left and top right images.

our regression network achieved 94% mean parameter accuracy in

recovering the eye region shape, 98% mean parameter accuracy in

recovering the gaze direction and 86% mean parameter accuracy

in recovering the pupil size.

To further evaluate the eye modeling module of the UHM,

we perform a gaze estimation experiment and compare our results

with eye3DMM [60], in which gaze direction is also estimated

by fitting a 3DMM of the eye region. Our model, builds on a

similar pipeline and extends it by training an end-to-end network

which regresses the 3DMM parameters of our eye models. Table

4 includes gaze estimation results in terms of mean angular errors,

on the Eyediap database [61]. For fair comparison with other

methods, we didn’t include the extreme gaze directions of Eyediap

in our experiments. Our model outperforms eye3DMM [60] by

0.59o.

9 CONCLUSION

In this work, we propose the first human head 3DMM representa-

tion that is complete in the sense that it demonstrates meaningful

variations across all major visible surfaces of the human head

- that is face, cranium, ears and eyes. In addition, for realistic

renderings in open-mouth expressions, a basic model of the oral

cavity, tongue and teeth is included. We presented a pipeline

to fuse multiple 3DMMs into a single 3DMM and used it to

combine the LSFM face model, the LYHM head model, and a

high-detail ear model. Furthermore, we incorporated a detailed

eye model that is capable of reconstructing accurately the eyelid

shape and the shape around the eyes as well as the eye gaze and

color. Additionally, we build a complete high-detail head texture

model by constructing a framework that enables us to complete

the missing head texture for any given facial texture. The resulting

universal head model captures all the desirable properties of the

constituent 3DMMs; namely, the high facial detail of the facial

model, the full cranial shape variations of the head model, the

additional high quality ear variations as well as the bespoke eyelid

and eye region deformations. The augmented model is capable of

representing and reconstructing any given head shape (including

ears and eyelid shape) due to the high variation of facial and head

appearances existing in the original models. We demonstrated that

our methodology yielded a statistical model that is considerably

superior to the original constituent models. Finally we illustrated

the model’s utility in full head reconstruction from a single images.

Although our model is a significant step forward, the challenge

of a universal head model remains open. We do not deal with

hair, instead modelling cranium geometry with skin texture and

baking facial hair into the texture. We do not fully model the

statistical shape variance inside the mouth, including teeth and

tongue, which is essential for realistic speech dynamics. Rather,

we only statistically model external craniofacial shape. There may

be value in modelling internal skull geometry and a volumetric

skin model both for disentangling rigid body motion from face

dynamics and also to enable more accurate rendering. Finally,

we still depend on a classical shape modelling pipeline of GPA

and PCA where more sophisticated, nonlinear models may be

preferable.
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