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Abstract. Patterns can form when the uniform state of any system is unstable so that some non-uniform
motif grows in amplitude. Here, we identify an alternative way to form non-trivial structures, which we call
“ghost-patterns”. Ghost-patterns emerge from noisy initial conditions when all non-uniform modes decay
in amplitude except for one non-trivial motif which fails to decay. Hence, in seeking structured states, it is
not necessary to find positive growth rates. We demonstrate ghost-patterns in an idealized non-equilibrium
model intended to emulate draining thin-film suspensions.

1 Introduction

The emergence of complexity from simple systems has im-
plications for the origins of life and the structure of the
universe. Examples range from the structures formed by
protein molecules, through the intricate patterns formed
during embryonic morphogenesis and geological structures
up to the clustering of galaxies.

Even in a far simpler experimental system —irregular
quartz particles in a draining film of liquid— self-
organized patterns have been reported [1] with a variety of
morphologies. This system does not form large-scale inho-
mogeneities in the absence of flow and hence its patterning
is an intrinsically non-equilibrium phenomenon, driven by
the flux. Just how simple the building-blocks of a system
can be, whilst yielding complexity and forming large-scale
structures, remains an open question.

Motivated by this question, we have constructed an
idealised model of a particle-laden fluid flowing over
a structureless surface, as observed experimentally [1].
This is similar to Landau-Levich flow of a suspension of
particles, which can form large-scale patterns (spinodal
textures) if the particles are attractive [2]. But the
existence of pattern-formation in attractive systems is
well understood [3–11]; we are interested here in the
regime in which capillary attractions are negligible (due
to mean particle sizes an order of magnitude smaller than
film thickness [1]1) and the system is effectively infinite
(far from any reservoir). The patterns thus formed [1]
have a distinctly different morphology (cf. [2]). Patterning
in this type of system occurs in many everyday fluids

a e-mail: r.m.l.evans@leeds.ac.uk
1 Thus relaxing the assumption in ref. [1] that rare large

particles are required to nucleate band formation.

such as sugar particles forming patterns around the top
of a honey jar, fat particles in yoghurt or the dirt left
behind on a window by rain water. Despite the range of
systems involved there appear to be only two main types
of pattern formed by draining particulate films [1]: one
with channels parallel to the flow direction and the other
with ridges perpendicular to it.

A fundamental explanation for these phenomena
requires a model that is not specific to any one of the
above mixtures, but omits extraneous system-specific
features. Only by finding the simplest idealized model
capable of reproducing the patterns can we discover
the features that are essential to the pattern formation
process. Thus, our idealized two-fluid model, described in
the next section, incorporates only the simplest features
of all draining thin-film suspensions: excluded volume,
driven flow, and differential friction between the fluid
components and substrate.

In a still simpler system —a single non-volatile liquid
draining down a substrate— surface waves (variations in
film thickness) have been observed [12] to form patterns
with similar morphology to the particle distributions ob-
served in the aqueous quartz suspensions [1]. But the sim-
ilarity is likely to be superficial, as the film thickness re-
mains fairly uniform during the patterning reported in [1].
The morphology of the film thickness at the leading edge
of a particle-laden fluid, flowing down a substrate, has
been studied in refs. [13–15], using models of the fluid dy-
namics that treat the suspension as a continuum, which
we shall also do. While those model accurately reproduce
the experimentally observed front or shocks in well-mixed,
ergodic colloidal suspensions, they do not generate the
patterning of the particle distribution observed through-
out the films observed in [1]. We shall instead model the
non-ergodic case of granular suspensions. And, in order
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to investigate mechanisms that are distinct from the well
studied surface wave phenomena [16,17], we impose a con-
dition of constant film thickness on our model.

In terms of modelling draining thin films, the inves-
tigation returned a null result; the model’s features are
not sufficient to generate the experimentally observed pat-
terns. However, the model reveals a profound fact —that
structure can emerge from initial randomness without the
growth [18] of ordered modes, arising instead from the de-
cay of all other modes. The emergent “ghost-patterns” are
revealed when everything that is not the pattern decays.

In the next section, we introduce the idealised model
system. Its linear stability is investigated analytically in
sect. 3. This analysis reveals that the model system pos-
sesses two regimes of behaviour: one in which all fluctu-
ations decay, leaving a uniform state, and one in which
all fluctuations are neutrally stable, to linear order. Then,
in sect. 4 and appendix B, numerical simulations of the
model are presented, in which the neutral regime is anal-
ysed beyond linear order. In this regime, the numerics re-
veal that, while all spatial modes decay, the decay halts
for the mode describing a structure of vertical channels,
which then persist indefinitely.

2 The model

Our highly idealized model of a particle-laden fluid drain-
ing over a solid substrate describes the system as two inter-
acting fluids, one representing the solvent and the other a
course-grained representation of the particles and their in-
teractions. In common with refs. [2,13–15,19,20], we treat
the set of particles as a continuum with a locally defined
concentration, in order to investigate the most relevant
features of the macroscopic dynamics. Detail at the level of
individually resolved particles (as reviewed in [21]) is un-
necessary in the present context, to discover the features
essential to a universal process. This approach is valid in
the limit where the length scales under consideration are
much larger than the typical sizes of the particles (as is
the case in ref. [1], where the thickness and width of the
film are, respectively, one and three orders of magnitude
larger than mean particle sizes).

We shall concentrate, in particular, on the case where
the particles’ behaviour is granular, rather than colloidal,
so that particulate diffusion is negligible. Granular media
have been successfully modelled as a continuous fluid in
ref. [20] in the absence of a solvent. In the presence of
a solvent, the motion of the granular “fluid” is strongly
damped. Our model has no thermodynamic instability and
therefore remains uniform in the absence of an external
driving force.

As we are interested in the formation of large-scale
patterning in the two macroscopic dimensions of the thin
film, we construct a simplified two-dimensional model by
coarse-graining over the third (z) dimension and neglect-
ing variations in film thickness. The remaining dynamical
variables in the two-dimensional space are the z-averaged
solvent velocity vs and the z-averaged particulate veloc-
ity vp (which are both two-component vector fields), the

local particulate volume fraction φ (a scalar field) and an
effective pressure field p. All of the information about the
dissipative interactions is then assumed to be accounted
for in the effective viscosities and friction coefficients and
all of the effects of excluded volume by an osmotic pres-
sure.

Since the draining process is quite slow and the film
thickness and particle size small, the flow is assumed
Stokesian for simplicity2. So all stresses are linear in the
true, three-dimensional velocities, and therefore also in the
coarse-grained velocities vs and vp. It would be difficult
to solve the full fluid-dynamical equations in the z direc-
tion, bounded by a static substrate and a free surface, in
order to find the thickness-averaged drag forces on the sol-
vent and particles. But, knowing that the solution must
be linear in vs and vp, we can simply parametrize our
two-dimensional model by three effective drag coefficients
ζs, ζp and ζsp, for relative motion between the two fluids
and the fixed substrate or each other respectively, and by
effective viscosities ηs and ηp. We shall assume that the
film thickness remains approximately constant over the
length and time scales considered, so that the effective
drag coefficients and viscosities are constant.

Thus the momentum equation for the force-density on
the solvent field (in terms of the Lagrangian time deriva-
tive D/Dts ≡ ∂/∂t + vs · ∇) is

(1 − φ)ρs
Dvs

Dts
= (1 − φ)∇ · τs + (1 − φ)Fs = 0, (1)

where Fs is the body-force on the solvent per unit volume
of solvent (so that (1 − φ)Fs is the body-force on the
solvent per unit volume of space), and the final equality
is the Stokesian force balance condition. The total stress
in the solvent is given by the usual Newtonian expression

τs = −pI + ηs

[
∇vs + (∇vs)T

]
(2)

and body forces on the solvent arise from gravity g and
drag,

Fs = ρsg − ζsvs − φζsp(vs − vp), (3)

where the constant parameter ρs is the mass density of
pure solvent. The factor φ in the last term arises because
the drag force from the particulate fluid must be propor-
tional to the local amount of that fluid.

Similarly, balancing force-density on the particle field
gives

φρp
Dvp

Dtp
= φ∇ · τp + φFp − ∇Π = 0, (4)

2 In ref. [1], the particle size is of order 10−5 m, film thick-
ness ∼ 10−4 m, densities ρp ≈ 2.6 × 103 kg m−3, ρs ≈ 1.0 ×
103 kg m−3, solvent viscosity ηs ≈ 10−3 Pa s and g ≈ 9.8 m s−2.
Hence the mean draining speed for pure solvent would be of
order 0.03 ms−1, giving a Reynolds number Re ∼ 3, but drain-
ing is considerably slower (and Re therefore lower) for the
mixtures of solvent and particles. The particulate free sedi-
mentation speed ∼ 4 × 10−4 m s−1 gives a Reynolds number
Re ∼ 0.004 for motion on the scale of the particles. The Peclet
number, defined as the ratio of sedimentation to diffusion rates,
is Pe ∼ 5 × 104, indicating granular, rather than colloidal be-
haviour.
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Table 1. Meanings of the symbols.

x ≡ (x, y) two-dimensional position vector

t time

vp(x, t) net particulate fluid velocity field

vs(x, t) net solvent velocity field

p(x, t) pressure field

φ(x, t) particulate concentration (volume fraction) field

Π(φ) osmotic pressure of particulate fluid at concentration φ

ηp effective viscosity of particulate fluid

ηs effective viscosity of 2D solvent

ζp effective particle-substrate drag coefficient

ζs effective solvent-substrate drag coefficient

ζsp effective solvent-particle drag coefficient

ρs solvent mass-density (a constant material parameter)

ρp particle mass density (a constant material parameter)

g gravitational field

where Fp is the net body-force on the particles per unit
volume of the particles and the constant ρp is the mass
density of the particles’ material (e.g., quartz). Hence par-
ticles at concentration φ(x, t) have net mass per unit vol-
ume φρp. The extra term ∇Π is the gradient of the os-
motic pressure Π, which represents the direct excluded-
volume interactions between particles. The osmotic pres-
sure is a function Π(φ) of concentration, defining the equa-
tion of state of the particulate fluid.

The non-osmotic contribution to its stress is assumed
to be Newtonian for simplicity,

τp = −pI + ηp

[
∇vp + (∇vp)T

]
. (5)

We do not attempt to justify eq. (5) except by virtue of
its simplicity. Recall that this is an effective relation in
the idealized 2D system, which is notionally an approxi-
mate coarse-grained and thickness-averaged simplification
of the 3D system. In reality, the effective inter-particle in-
teractions are mediated by the fine details of the 3D sol-
vent flow field. Recall also that our intention is to find
the simplest physics capable of producing patterns, not to
faithfully model the system in detail. A similar simplify-
ing assumption was made for a simple granular medium
in ref. [20].

The body forces on the particulate fluid are given by

Fp = ρpg − ζpvp − (1 − φ)ζsp(vp − vs). (6)

We see that the drag forces between solvent and particles
(terms involving ζsp in eqs. (3) and (6)) explicitly respect
Newton’s third law of motion where they enter the force
density equations (1) and (4).

Note that, while osmotic pressure Π is internal to the
particulate fluid only, the pressure p acts on both fluids to
respect incompressibility of the overall system, determined
by continuity of their joint flux,

∇ · [φvp + (1 − φ)vs] = 0. (7)

By conservation of particles, evolution of the particulate
concentration respects the continuity equation,

∂φ

∂t
+ ∇ · (φvp) = 0. (8)

Combining eqs. (1), (2), (3), (4), (5) and (6) gives

∇ ·
(
ηs

[
∇vs+(∇vs)

T
])

=∇p−ρsg+ζsvs+ζspφ (vs−vp)
(9)

and

∇ ·
(
ηp

[
∇vp + (∇vp)

T
])

=

∇p + ζpvp + ζsp (1 − φ) (vp − vs) − ρpg +
1
φ

∇Π. (10)

Equations (7), (8), (9) and (10), together with a pre-
scription of the equation of state Π(φ), below, constitute
the equations of motion for our model. These two vector
and two scalar equations are sufficient to determine the
two vector fields vs and vp and two scalar fields φ and p.
The meanings of the symbols used here are summarized
in table 1.

In order to create a simple model of the steric inter-
actions between particles (in a similar vein to models in
refs. [20,22]) the osmotic pressure is modelled by the con-
tinuous, piecewise doubly differentiable function, chosen
for simplicity and efficiency of numerical calculations

Π(φ)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−
(

1
φ
− 1

φl

)2

, φ < φl,

0, φl ≤ φ ≤ φu,
(

1
φmax − φ

− 1
φmax − φu

)2

, φ > φu,

(11)
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Fig. 1. Sketch of the osmotic pressure as a function of volume
fraction.

as shown in fig. 1. Here φu and φl are upper and lower
thresholds of a plateau and φmax is the volume fraction
at which the osmotic pressure diverges. The aim of this
function is to provide a crude equation of state for a sus-
pension in the granular regime, where diffusion is negli-
gible, so that osmotic pressure is purely steric, and lacks
any ideal-gas pressure. Hence the osmotic pressure does
not increase until the volume fraction approaches random
close packing, where it diverges. Thus the suspension has
no tendency to spread out at lower concentrations (which
would make patterns dissipate). Another divergence at
φ = 0 is included to prevent the occurrence of negative
concentrations. As in ref. [20], this simplified treatment of
a granular medium neglects static friction of contacts.

Note that the factors of φ multiplying stress diver-
gence, in eqs. (1) and (4), do not appear inside the diver-
gence (as in [19]), because our model describes a granu-
lar suspension that is non-diffusive, unlike the models in
ref. [19]. To see that this is correct, consider a case in which
gravity is switched off, and a zero-velocity initial condition
with a static arrangement of granular particles that is in-
homogeneous but of sufficiently low concentration to be
non-interacting (with Π = 0 everywhere). In the absence
of diffusion, this inhomogeneous state should remain static
forever, with the pressure field p uniform. Moving the fac-
tor of φ inside the divergence would produce a finite value
of the spatial derivative on the RHS of those equations,
and thereby wrongly generate finite time derivatives on
the LHS, effectively describing an entropic (ideal-gas–like)
contribution to the particulate osmotic pressure.

To reduce the number of free parameters, the equa-
tions of motion are non-dimensionalized in terms of the
reduced quantities t̂ = t√

ζspηs

, x̂ = x
√

ζsp

ηs
, ∇̂ =

√
ηs

ζsp
∇,

p̂ = p
√

ζsp

ηs
, π̂ = Π

√
ζsp

ηs
, v̂s = vs

√
ζspηs − v̂pd, v̂p =

vp

√
ζspηs − v̂pd, ζ̂s = ζs

ζsp
, ζ̂p = ζp

ζsp
, η̂ = ηp

ηs
, ρ̂ = ρp

ρs
and

ĝ = ρsg
√

ηs

ζsp
, where v̂pd is the particulate fluid’s drift

velocity associated with the average of the initial volume

fraction φ0, given by

v̂pd =
1 + ζ̂sρ̂ + φ0 (ρ̂ − 1)

ζ̂sζ̂p + φ0ζ̂p + ζ̂s (1 − φ0)
ĝ. (12)

To reduce numerical artefacts, the equations are also
transformed into the co-moving frame of the initial drift
velocity v̂pd, yielding

ρ̂ĝ − ζ̂pv̂p − (1 − φ) (v̂p − v̂s) − ∇̂p̂ − 1
φ

∇̂π̂

+∇̂ ·
(

η̂

[
∇̂v̂p +

(
∇̂v̂p

)T
])

= 0, (13)

ĝ − ζ̂sv̂s − φ (v̂s − v̂p) − ∇̂p̂

+∇̂ ·
[
∇̂v̂s +

(
∇̂v̂s

)T
]

= 0, (14)

∇̂ · [φv̂p + (1 − φ) v̂s] = 0, (15)
∂φ

∂t̂
+ ∇̂ · (φv̂p) = 0. (16)

3 Linear stability analysis

To establish the linear stability of the system with re-
spect to pattern formation, the equations of motion,
eqs. (13), (14), (15), (16), are linearized about a uni-
form reference state, and the growth rate R of the Fourier
modes of the linear perturbations in concentration3 found
to be

R = −
q2 (1 − φ0) ∂π̂

∂φ |0
1 + (1 − φ0)ζ̂p + φ0ζ̂s + 2[(1 − φ0)η̂ + φ0]q2

,

(17)
where q is the magnitude of wavenumber of the mode in
question and the subscript zero indicates that quantities
are to be evaluated in the uniform state. A full derivation
is given in appendix A.

Inspection of eq. (17) reveals that the uniform state is
stable as long as the first derivative of the osmotic pres-
sure at the average volume fraction is positive, since the
other quantities in eq. (17) are positive. It is clear from
fig. 1 that this is true at both low and high, average, vol-
ume fractions, so in these limits all forms of pattern are
expected to decay to the uniform state. This is indeed ob-
served to be the case in sect. 4, where the full non-linear
equations of motion are numerically time-stepped. At in-
termediate volume fractions, however, the gradient of the
osmotic pressure vanishes, so the linear stability analysis
predicts neural stability and the results will be strongly
influenced by non-linearities.

3 The fact that there is only one time-dependent term in
eqs. (13), (14), (15), (16) means that the growth rates in the
fluctuations associated with all of the other variables will sim-
ply be proportional to this.
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Fig. 2. Plot showing the decay of the standard deviation of
local volume fraction for four different systems. The parame-
ters used here were ρ̂ = 1.2, ĝ = 5ŷ, φ0 = 0.5, φmax = 0.64,
φl = 0.2 and φu = 0.44 with the red squares corresponding to
ζ̂p = 15, ζ̂s = 1.5 and η̂ = 1, green circles to ζ̂p = 15, ζ̂s = 3

and η̂ = 1, black triangles to ζ̂p = 15, ζ̂s = 1.5 and η̂ = 2 and

yellow pentagons to ζ̂p = 3, ζ̂s = 1.5 and η̂ = 1 The dashed
lines show the fit results.

4 Numerical evolution of the non-linear
equations of motion

Equations (13)–(16) were discretized on a rectangular grid
so that the time evolution of the system could be calcu-
lated numerically. Details of the methods are given in ap-
pendix B. For various parameter values, the system was
initialized in a near-uniform state of chosen mean volume
fraction, with local small-amplitude random fluctuations
of φ. Other initializations were also tested; see sect. 4.2.

4.1 Decay toward the uniform state

To check the validity of the calculations, the numerical al-
gorithm was first tested for mean volume fractions where
the equation of state (eq. (11)) has positive first drivative,
Π ′(φ) > 0, corresponding to finite positive bulk modulus
of the particulate fluid. In that regime, eq. (17) predicts
that all fluctuations decay, and those on the longest length
scales decay most slowly. To make quantitative compari-
son, the standard deviation of the volume fraction (a mea-
sure of the magnitude of the volume fraction fluctuations)
was measured, and its decay with time is shown in fig. 2
for a selection of different parameter values.

Following the early-time decay of higher-frequency
modes, the data demonstrate exponential decay of the
slowest fluctuations, evident as a straight line on the log-
arithmic scale of fig. 2. Straight-line best fits to the linear
section are shown as dashed lines in the figure. The mea-
sured rate of the exponential decay of the slowest mode
is given in table 2 for the various parameter values. For
comparison, theoretical values are given, calculated from
eq. (17) for a wavevector q corresponding to the longest
wavelength that can fit into the simulation cell.

Table 2. Table comparing the fit results for the decay rate with
the rate predicted by eq. (17) from linear stability analysis.
The parameters used for all of the examples shown here were
ρ̂ = 1.2, ĝ = −5ŷ, φ0 = 0.5, φmax = 0.64, φl = 0.2 and
φu = 0.44.

Parameters Decay rate

ζ̂p ζ̂s η̂ Theoretical Fit

15 1.5 1 1.2627 1.2449 ± 0.0002

15 3 1 1.1700 1.1501 ± 0.0002

15 1.5 2 1.2482 1.2376 ± 0.0004

3 1.5 1 3.447 3.383 ± 0.002

It is clear that the values obtained from linearization
and from numerical time-stepping are in good quantita-
tive agreement, with discrepancies below 2%. The small
but statistically significant differences are almost certainly
artefacts of the numerical discretization.

Note that the simulations used a non-zero value of the
gravitational field g, so that the data in fig. 2 were ob-
tained from continuously flowing systems. Nevertheless,
the decay rate, in this regime, is predicted in eq. (17),
as confirmed by the numerics, to be independent of both
g and the ratio of particle to solvent density ρ̂, i.e. it is
independent of the imposed flow field4.

4.2 Channel patterns

When the osmotic pressure at the mean volume fraction
has zero gradient Π ′(φ), the linear stability analysis in
sect. 3 predicts neutral stability of initially uniform states.
Thus the behaviour of the system in this region is entirely
controlled by non-linearities, requiring numerical investi-
gation. The zero-gradient condition models the absence
of diffusion in a granular medium, and therefore the ab-
sence of a driving force to smooth out inhomogeneities in
particulate concentration.

The numerics reveal that the system evolves away
from its initial state towards a state where vertical chan-
nels span the system. Figure 3 shows how these channels
form from an initially random state. During this process
the variance of volume fractions within the system ini-
tially falls, then stabilizes and remains constant once the
channels span the whole system. Meanwhile, we find that
no components of the structure factor (i.e., the spatial
Fourier transform of the concentration φ) grow in am-
plitude; some components decay to zero amplitude while
others decay to a finite asymptote. This is a “ghost-
patterning” process, in the sense that the structure’s am-
plitude is no larger than that of the initial randomness.
The ghost-patterning is visible in the inserts of fig. 3 due
to re-normalization of the grey-scale at each time.

The snapshots in fig. 3 show that obstructions, formed
by slow-moving regions with high particulate volume frac-

4 Simulations with different values for these variables verify
that this is indeed the case, with decay rates immeasurably
different in the absence of external force.
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Fig. 3. Standard deviation of the volume fraction versus time,
in a system forming a channel pattern. A logarithmic scale is
used for comparison with fig. 2. The inserts show snapshots of
the spatial distribution of the particle concentration φ at the
times indicated on the plot. In these snapshots the volume frac-
tion is normalised such that black corresponds to the highest
volume fraction in the system at that time and white the low-
est. (Using a constant normalization would yield a continuous
reduction in contrast, obscuring the features.) The parameters

used for this example were: ζ̂p = 2, ζ̂s = 5, η̂ = 7, ρ̂ = 1.5,
ĝ = −15ŷ, φ0 = 0.45, φmax = 0.64, φl = 0.1 and φu = 0.54.

tion, develop randomly in the system. These obstructions
gradually lengthen due to build-up of particulate fluid be-
hind them. Meanwhile the solvent that is able to pass
through the obstruction drags some of the particles with
it, elongating the region of higher volume fraction in front
of the obstruction. In the absence of diffusion, the vertical
features do not dissipate in the lateral direction.

It is worth considering how the values of the solvent
and particle velocities vary throughout the system while
the channels are developing. These are shown in fig. 4,
along with the pressure and volume fraction, at two dif-
ferent stages of the process.

It is clear that the solvent travels significantly faster
than the particles on average, due to its lower friction co-
efficient with the substrate. Note that, in the early stages
(fig. 4(a)), when the “obstructions” (high-φ regions) have
just begun to spread in the vertical direction, the solvent
flows around obstructions while the particle fluid reduces
its velocity below the drift velocity (indicated by upward-
pointing red vectors) as it encounters the osmotic pressure
barrier of the obstruction’s excluded volume. Meanwhile
the particulate fluid travels faster in the regions where the
volume fraction is lower, advected by the fast-moving sol-
vent. The difference in the particulate velocity in the two
regions (dark and light in fig. 4) is very clear once the
channel pattern is well established, since there are long
columns of cells where the particle velocity is significantly
lower than the initial drift velocity.

Notice also the long-wavelength pressure variations. In
the early stages high-pressure regions develop just behind
the growing obstacles due to the retardation of solvent

flow. This high pressure then drives the solvent outward
around the obstacles where it meets least resistance. It is
then drawn back by the low-pressure region on the trailing
end of the obstacle.

Simulations performed with different initial states re-
veal that, while all initial configurations lead to a verti-
cally channeled state, meaning that it is truly an absorbing
state, the width, and spacing, of the channels are found
to depend on the size of the obstructions in the system’s
initial state. Note that structure on the scale of the spa-
tial discretization is present in fig. 3 only because it was
present in the initial state. To demonstrate that the chan-
nels’ stability is not an artefact of the spatial discretiza-
tion, and to further quantify its evolution, we measure
the evolution of its (two-dimensional) Fourier transform,
starting from an initial state that is smoothly varying and
contains just two Fourier modes,

φ = φ0 + ε

[
sin

(
2π

L
2x

)
+ sin

(
2π

L
(x + 3y)

)]
at t = 0,

(18)
as depicted in fig. 5(a). In fig. 5(b)–(f), the results are
shown of numerically time-stepping the initial state, using
parameter values different from those in fig. 3 to demon-
strate the robustness of the phenomenon. The concentra-
tion φ is shown in fig. 5(b) at times t = 1, 10, 100, 1000
where, after an initial movement of material, both verti-
cally and horizontally, removing vertical variations and
rarefying regions with concentration exceeding φu (see
fig. 1), the smoothly varying concentration field remained
invariant during subsequent dynamics. Its standard devi-
ation is shown in fig. 5(c).

The amplitudes |am,n| of Fourier modes of concentra-
tion are shown as functions of time in fig. 5(d)–(e), defined
on the discrete L × L grid by

am,n =
1
L2

L∑

x=1

L∑

y=1

φ(x, y)ei 2π
L (mx+ny)

such that the modes initially present in eq. (18) are
(m,n) = (2, 0) and (1, 3). We see that the modes present in
the ghost-pattern are not decoupled from the dynamics a
priori, but initially evolve, until the system self-organizes
into a state in which the pattern becomes decoupled. No-
tice that the (2, 0) mode (fig. 5(d)), initially present (which
has no variation in the y direction), initially decays, but
eventually de-couples from the dynamics, and remains at
finite amplitude at late times. Most modes that are not
initially present (e.g., mode (3, 0) shown in fig. 5(d)) re-
main at negligible amplitude, but the (4, 0) mode grows
due to it coupling to (2, 0), and survives to late times
due to its channel-like structure (without y-dependence).
Meanwhile, all modes with y-dependence (i.e., non-zero
index n) decay at late times, as shown in fig. 5(e), includ-
ing the initially present (1, 3) mode, and the (3, 3) mode
which appears transiently as the flow distorts mode (1, 3).

We have similarly Fourier-analyzed the horizontal
component of the solvent velocity, which is small for all
Fourier modes not present in the concentration distribu-
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Fig. 4. Snapshots showing the state of all dynamical variables in each simulation cell (a) as the channel pattern begins to
emerge, and (b) when it is established. The particulate volume fraction φ is illustrated by the grey scale, with black representing
the highest instantaneous volume fraction. The radii of the blue circles represent normalised pressure. Green and red vectors
represent the solvent and particulate velocities respectively, in the frame of the initial mean drift velocity. All of the variables
are normalised at each time step. The parameters used in this example are: ζ̂p = 3, ζ̂s = 1.5, η̂ = 1, ρ̂ = 1.2, ĝ = −5ŷ, φ0 = 0.4,
φmax = 0.64, φl = 0.2 and φu = 0.44.

tion, and decays monotonically with time for all modes ex-
cept the (3, 3) mode, shown together with the (2, 0) mode
in fig. 5(f).

We find that the ghost-pattern formation process and
final morphology are robust with respect to variation of
the various parameters of the model. For example, the
effect of varying gravity is demonstrated in fig. 6, for a
state with an initial state with weak random concentra-
tion fluctuations. Only the relative viscosity η̂ affected
the intensity of the fluctuations5, with higher viscosities
resulting in fainter patterns. This is because, unlike the
other forces, the viscous force opposes gradients in the
flow field. Hence a high viscosity means that fast flowing,
solvent-rich regions, cannot exist close to slow flowing
particle-rich regions.

However, the reduced friction coefficients, ζ̂p and ζ̂s,
and relative viscosity η̂ did have a profound effect on
rate of ghost-pattern formation. Because this process is
driven by the flow, the density and gravitational field
strength also played a roll in determining this rate, with
the strongest driving forces resulting in the system finding
its steady state most quickly, as one might expect.

5 Concluding remarks

Our simple two-fluid model was created, to better un-
derstand the universal processes of pattering observed in
draining thin films of particulate suspensions [1]. In the
absence of osmotic forces (the granular regime), when
∂Π
∂φ = 0, the numerical solutions revealed an initial decay

5 Naturally the absolute value in the steady state was found
to depend on the intensity of the fluctuations in the initial
state.

of fluctuations towards a finite asymptote, corresponding
to a faint structure of vertical channels, somewhat similar
in shape to the channels observed in reference [1] in the
non-granular regime, but lacking their intensity. (Stan-
dard deviations of concentration

√
(φ2 − φ

2
) are of order

0.1–0.2 in the examples reported in ref. [1], compared with
0.02 in fig. 5(c) and, in general for ghost-patterns, not ex-
ceeding the fluctuations initially present.)

The appearance of vertical structures in the model can
be understood quite simply. The flow field smooths out
any inhomogeneities in the volume fraction that occur in
the flow direction and in doing so reduces the overall vari-
ance of concentration in the system, but does not continue
to smooth out inhomogeneities in the direction perpendic-
ular to the flow, as there is no net force in this direction to
move the particles, once other (perpendicular) structure
has disappeared. This demonstrates a novel behaviour
that may exist more widely in dynamical systems: self-
organization into a state in which particular non-trivial
spatial modes are decoupled from the dynamics at late
times, despite initially being coupled and time-dependent.

While the emergent structures bear some similarity
to the vertical channels observed experimentally in drain-
ing thin-film suspensions, their amplitude is much lower,
and the idealized model does not reproduce the hori-
zontal bands seen experimentally. We infer that they re-
quire more than the simple ingredients of excluded vol-
ume and unequal substrate friction included in this model.
Adapting the model [23] to include shear-thinning, shear-
thickening and concentration-dependence of the effective
viscosity (all of which are phenomena observed in colloidal
suspensions [24, 25]) does not qualitatively alter the re-
sults [23]. We therefore speculate that the experimentally
observed patterning requires a constitutive relation in
which the particulate fluid’s stress depends explicitly on
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Fig. 5. (a), (b) Images of concentration φ on a consistent grey scale where black corresponds to the highest volume fraction
initially present, φ = 0.52, and white to the lowest φ = 0.28. (a) A depiction of the smooth function in eq. (18). (b) A time
series (left to right t = 0.1, 1, 10, 100, 1000) of the evolving system with parameters L = 11, φ0 = 0.4, ε = 0.06, φmax = 0.64,

φl = 0.2, φu = 0.44, ζ̂p = 3, ζ̂s = 4, η̂ = 1, ρ̂ = 1.2, g = −5ŷ (i.e., downwards). (c) Standard deviation of the volume fraction
versus time. (d) Magnitude of the (2, 0) (solid line), (3, 0) (dash-dotted line) and (4, 0) (dashed line) modes of the concentration
φ, as functions of time. (e) Magnitude of the (1, 3) (solid line), (2, 3) (dash-dotted line) and (3, 3) (dashed line) modes of the
concentration φ, as functions of time. (f) Magnitude of the (2, 0) (solid line) and (3, 3) (dashed line) modes of the x-component
of the solvent velocity, v̂sx, as functions of time.

the splay of its velocity field, as indicated by experimental
observations of convergence-dependent jamming [26]. Al-
ternatively, it might be necessary to include static contact
friction between the particles and substrate, described by
a finite yield stress, that might allow fast flowing, solvent-
rich regions to exist close to slow flowing, particle-rich
regions.

More significantly, the emergence of structuring from
the decay of the non-structured initial fluctuations (rather
than from an instability [18]) is an entirely novel class of
process. This formation of morphology by ordered decay
can usefully be called “ghost-patterning”.

The new phenomenon of ghost-patterning is distinct
from the phenomenon of critical slowing down, with which
it shares some features. Critical slowing down occurs near
a critical point of condensed matter [5], where restoring

forces on inhomogeneities become small, so that fluctu-
ations are long-lived, and the system decorrelates from
its initial state slowly (as a power-law of distance from
the critical point). In simple dynamical systems, similar
slowing down occurs near a pitchfork bifurcation or on a
saddle-node ghost [27]. In our ghost-patterning system, on
the other hand, the dynamics remain fast whilst vertical
inhomogeneities exist. They decay quickly and can also
drive rearrangement and decay of the horizontal struc-
ture, which is non-trivially coupled to the fast modes via
the flow dynamics and the osmotic pressure. Only once the
system self-organizes into a channel pattern does it cease
to evolve. Any structure without vertical variation and
not exceeding the overlap concentration (the threshold for
excluded-volume interactions) is a true steady state of the
dynamics (not just a slowly evolving one). This can be
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Fig. 6. Plot comparing the standard deviation of the con-
centration as a function of time for systems with different
gravitational field strengths. Initial concentration has small
random fluctuations about a mean φ = 0.45. Parameters are
φmax = 0.64, φl = 0.1, φu = 0.54, ζ̂p = 2, ζ̂s = 0.5, η̂ = 2,
ρ̂ = 1.5. Gravity g increased with increasingly dark symbols:
pale × g = 5, diamond g = 10, + g = 15, square g = 20,
dark circle g = 25. Gravitational strength affects the rate of
formation of ghost-patterns, but not their final intensity.

seen in eqs. (13)–(16), where no horizontal components
of velocity are generated if the system is in a state with
purely vertical velocities vp,s and pressure gradients ∇p.
So the system becomes trapped in such a state.

Ghost-patterns, if small in amplitude, could be easily
erased by the addition of diffusion to the dynamics. How-
ever, diffusion is negligibly slow in granular media, so sys-
tems and parameter regimes exist for which the erasure
is effectively absent. Note also that the initial random-
ness is not necessarily small in amplitude, as it may not
be thermal in origin. Initial random inhomogeneities in
a distribution of large, athermal, granular particles could
lead to robust, large-amplitude ghost-patterns.
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Appendix A. Linear stability analysis

The equations of motion, (13)–(16), expressing the x and y
components of the velocity fields separately, and dropping
the hat notation ρ̂ etc., become

−ζpvpx + (1 − φ) (vsx − vpx) − ∂p

∂x
− 1

φ

∂π

∂x

+2
∂

∂x

[
η
∂vpx

∂x

]
+

∂

∂y

[
η
∂vpx

∂y
+ η

∂vpy

∂x

]
= 0, (A.1a)

ρg − ζpvpy + (1 − φ) (vsy − vpy) − ∂p

∂y
− 1

φ

∂π

∂y

+2
∂

∂y

[
η
∂vpy

∂y

]
+

∂

∂x

[
η
∂vpy

∂x
+ η

∂vpx

∂y

]
= 0, (A.1b)

−ζsvsx − φ (vsx − vpx) − ∂p

∂x
+ 2

∂2vsx

∂x2
+

∂2vsx

∂y2

+
∂2vsy

∂x∂y
= 0, (A.2a)

g − ζsvsy − φ (vsy − vpy) − ∂p

∂y
+ 2

∂2vsy

∂y2
+

∂2vsy

∂x2

+
∂2vsx

∂x∂y
= 0, (A.2b)

(vpx − vsx)
∂φ

∂x
+ (vpy − vsy)

∂φ

∂y
+ φ

(
∂vpx

∂x
+

∂vpy

∂y

)

+ (1 − φ)
(

∂vsx

∂x
+

∂vsy

∂y

)
= 0, (A.3)

∂φ

∂t
+ vpx

∂φ

∂x
+ vpy

∂φ

∂y
+ φ

(
∂vpx

∂x
+

∂vpy

∂y

)
= 0. (A.4)

Making the substitutions p = p0 + α, vp = vpd + β,
vs = vsd + γ and φ = φ0 + δ, where p0, vpd, γ and
φ0 are constants, and expanding to first order in the per-
turbations α, β, γ and δ gives

−ζpβx + (1 − φ0) (γx − βx) − δ (vsdx − vpdx) − ∂α

∂x

− 1
φ0 + δ

∂π

∂x
+ 2

∂

∂x

[
η
∂βx

∂x

]
+

∂

∂y

[
η
∂βx

∂y
+ η

∂βy

∂x

]

= ζpvpdx − (1 − φ0) (vsdx − vpdx) , (A.5a)

−ζpβy + (1 − φ0) (γy − βy) − δ (vsdy − vpdy) − ∂α

∂y

− 1
φ0 + δ

∂π

∂y
+ 2

∂

∂y

[
η
∂βy

∂y

]
+

∂

∂x

[
η
∂βy

∂x
+ η

∂βx

∂y

]

= ζpvpdy − ρg − (1 − φ0) (vsdy − vpdy) , (A.5b)

−ζsγx − φ0 (γx − βx) − δ (vsdx − vpdx) − ∂α

∂x
+ 2

∂2γx

∂x2

+
∂2γx

∂y2
+

∂2γy

∂x∂y
= ζsvsdx + φ0 (vsdx − vpdx) , (A.6a)

−ζsγy − φ0 (γy − βy) − δ (vsdy − vpdy) − ∂α

∂y
+ 2

∂2γy

∂y2

+
∂2γy

∂x2
+

∂2γx

∂x∂y
= ζsvsdy + φ0 (vsdy − vpdy) − g, (A.6b)
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(vpdx − vsdx)
∂δ

∂x
+ (vpdy − vsdy)

∂δ

∂y
+ φ0

(
∂βx

∂x
+

∂βy

∂y

)

+ (1 − φ0)
(

∂γx

∂x
+

∂γy

∂y

)
= 0, (A.7)

∂δ

∂t
+ vpdx

∂δ

∂x
+ vpdy

∂δ

∂y
+ φ0

(
∂βx

∂x
+

∂βy

∂y

)
= 0. (A.8)

To first order 1
φ0+δ → 1

φ0
− δ

φ2
0

and π → π|φ0 + δ ∂π
∂φ |φ0

and remembering that ∂
∂xπ|φ0 = ∂

∂y π|φ0 = ∂
∂x

∂π
∂φ |φ0 =

∂
∂y

∂π
∂φ |φ0 = 0, we have

−ζpβx + (1 − φ0) (γx − βx) − δ (vsdx − vpdx) − ∂α

∂x

− 1
φ0

∂δ

∂x

∂π

∂φ

∣
∣
∣
∣
φ0

+ η

[
2
∂2βx

∂x2
+

∂2βx

∂y2
+

∂2βy

∂x∂y

]

= ζpvpdx − (1 − φ0) (vsdx − vpdx) , (A.9a)

−ζpβy + (1 − φ0) (γy − βy) − δ (vsdy − vpdy) − ∂α

∂y

− 1
φ0

∂δ

∂y

∂π

∂φ

∣
∣
∣
∣
φ0

+ η

[
2
∂2βy

∂y2
+

∂2βy

∂x2
+

∂2βx

∂x∂y

]

= ζpvpdy − ρg − (1 − φ0) (vsdy − vpdy) , (A.9b)

−ζsγx − φ0 (γx − βx) − δ (vsdx − vpdx) − ∂α

∂x
+ 2

∂2γx

∂x2

+
∂2γx

∂y2
+

∂2γy

∂x∂y
= ζsvsdx + φ0 (vsdx − vpdx) , (A.10a)

−ζsγy − φ0 (γy − βy) − δ (vsdy − vpdy) − ∂α

∂y
+ 2

∂2γy

∂y2

+
∂2γy

∂x2
+

∂2γx

∂x∂y
=ζsvsdy+φ0 (vsdy − vpdy) − g, (A.10b)

(vpdx − vsdx)
∂δ

∂x
+ (vpdy − vsdy)

∂δ

∂y
+ φ0

(
∂βx

∂x
+

∂βy

∂y

)

+ (1 − φ0)
(

∂γx

∂x
+

∂γy

∂y

)
= 0, (A.11)

∂δ

∂t
+ vpdx

∂δ

∂x
+ vpdy

∂δ

∂y
+ φ0

(
∂βx

∂x
+

∂βy

∂y

)
= 0. (A.12)

Expanding the perturbations as Fourier series,

α =
∑

q

Aqeiq·r,

β =
∑

q

Bqeiq·r,

γ =
∑

q

Cqeiq·r

and
δ =

∑

q

Dqeiq·r,

and using orthogonality of the Fourier modes and, by con-
servation of matter, ∂Dq

∂t = 0 when q = 0 gives (after
rearranging and dropping the subscript q),

−iqxA −
[
ζp + 1 − φ0 + η

(
2q2

x + q2
y

)]
Bx − ηqxqyBy

+ (1 − φ0) Cx −
[

(vsdx − vpdx) +
i

φ0
qx

∂π

∂φ

∣
∣
∣
∣
φ0

]

D = 0,

(A.13a)
−iqyA − ηqxqyBx −

[
ζp + 1 − φ0 + η

(
2q2

y + q2
x

)]
By

+ (1 − φ0) Cy −
[

(vsdy − vpdy) +
i

φ0
qy

∂π

∂φ

∣
∣
∣
∣
φ0

]

D = 0,

(A.13b)

−iqxA + φ0Bx −
(
ζs + φ0 + 2q2

x + q2
y

)
Cx − qxqyCy

− (vsdx − vpdx) D = 0, (A.14a)

−iqyA − qxqyCx −
(
ζs + φ0 + 2q2

y + q2
x

)
Cy + φ0By

− (vsdy − vpdy) D = 0, (A.14b)

φ0qxBx + φ0qyBy + (1 − φ0) qxCx + (1 − φ0) qyCy

+ [(vpdx − vsdx) qx + (vpdy − vsdy) qy] D = 0, (A.15)

i
∂D

∂t
= φ0qxBx + φ0qyBy + [vpdxqx + vpdyqy] D = 0.

(A.16)

Equations (A.13a)–(A.16) can be rearranged to yield

∂D

∂t
=

(
−q2(1 − φ0)∂π

∂φ |φ0

1 + (1 − φ0)ζp + φ0ζs + 2[(1 − φ0)η + φ0]q2

−φ0(1+ζs+2q2)vsd ·q−(1−φ0)(1+ζp+2ηq2)vpd ·q
1+(1−φ0)ζp+φ0ζs+2[(1−φ0)η+φ0]q2

i

)
D.

(A.17)

Let D = deiθ, remembering that d and θ will depend
on q. Then, after separating real and imaginary parts, we
have

∂d

∂t
=

−q2(1 − φ0)∂π
∂φ |φ0

1+(1−φ0)ζp+φ0ζs+2[(1−φ0)η+φ0]q2
d, (A.18a)

∂θ

∂t
=

(1−φ0)(1+ζp+2ηq2)vpd ·q−φ0(1+ζs+2q2)vsd ·q
1+(1−φ0)ζp+φ0ζs+2[(1−φ0)η+φ0]q2

.

(A.18b)

Hence the magnitude of the concentration fluctuations will
not grow, given that ∂π

∂φ |φ0 is non-negative, which is always
the case in this model. The fluctuations decay exponen-
tially with a characteristic rate

1
τ

=
q2(1 − φ0)∂π

∂φ |φ0

1 + (1 − φ0)ζp + φ0ζs + 2[(1 − φ0)η + φ0]q2
,

(A.19)
which is independent of gravity.
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Appendix B. Numerics

Periodic boundary conditions were used in both direc-
tions. A spectral method [28] was used to evaluate gra-
dients, whereby the local value of a gradient at a point is
obtained from the values in all of the cells in the system,
not just local cells. This eliminates checker-board insta-
bilities [29] as well as preserving symmetry. The relevant
Fourier transforms were performed using a derivative ma-
trix rather than a fast Fourier transform algorithm [28],
since other terms in the equations involved matrix mul-
tiplications and this provided a much more convenient
means of combing the various terms at a negligible ad-
ditional computational cost.

Because the equations of motion are non-linear an iter-
ative approach was used to solve them. For this a Newton-
Raphson method [29] was employed which required the in-
version of the Jacobian matrix for the system. This opera-
tion accounted for the vast majority of the computational
cost of the simulation so every effort was made to obtain
the vector of adjustments as efficiently as possible. Since
many of the terms in the Jacobian were guaranteed to van-
ish a sparse version of the LU-decomposition algorithm,
provided by the CSparse library [30], was used. In order to
retain stability and accuracy while using the largest pos-
sible time step, the state of the system was advanced in
time using an implicit Euler method [31, 32], which cou-
pled well with the Newton-Raphson procedure [29] and
offered unconditional stability [31,32].
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