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A B S T R A C T   

Torrefied biomass is said to have potential as a replacement for coal. One of the main goals of torrefaction is to 
make biomass resemble coal more in terms of its properties as a solid fuel. As a fuel, a novel fuel that is produced 
by thermal treatment of raw biomass, biocoal has to comply with the regulations of solid fuels from different 
regulatory bodies. The production regime is different in comparison to the thermally treated fuel already 
established on the market, such as charcoal. This might raise an issue with the bodies controlling the circulation 
of chemical substances in the market, such as ECHA in Europe. The aim of this paper is to recommend suitable 
analytical techniques in order to enable effective quality control. This is necessary if biomass of low and highly 
variable quality is supposed to become more uniform and turn into a commodity. Information given in many 
published studies seems sufficient to use of FTIR and NIR as quality control techniques. The use of NMR can be 
complementary but is limited due to the high cost of the analytical equipment and time-consuming sample 
preparation. Rapid testing techniques, such as FTIR ATR or NIR, might prove feasible for quality control of solid 
biofuels, such as biocoal, especially for in-house quality control purposes. This way proper quality assurance and 
compliance with various novel regulations, such as REACH, could be assured. Further research could be helpful, 
especially if results would be available in publicly available databases, such as Phyllis.   

1. Introduction 

1.1. Energy from renewable sources 

Renewable Energy Sources are effective solutions on the way to-
wards a low carbon future. Emissions of CO2 from the consumption of 
energy exceeded 33 Gt in 2011 [1]. There is an ongoing international 
effort to reduce these emissions. On the European level, the EU Directive 
(2009/28/EC) specified targets for the share of consumed (final) energy 
coming from renewable energy sources that should be achieved by 2020 
[2]. It is 20% of renewable energy in total energy consumption, which 
splits into 21% renewable share of heating and cooling, 10% share of 
transport, and 34% share of electricity consumption [3]. In 2014 in the 
European Union, 46% of final energy was consumed as heat and cold, 
24% was consumed as electricity and 30% was consumed by transport 

[3]. In total, a 15.3% share of final energy is coming from renewable 
sources [3]. Each of the EU member countries, as well as Norway and 
Iceland, has its own target to be achieved [2]. 

1.2. Biomass as an energy source and material 

Biomass is considered as an energy source that is neutral in terms of 
CO2 emissions [4,5]. Thus the rate of absorption of atmospheric CO2 is 
correlated with the rate of growth of biomass. It is possible to obtain 
biomass on a long term, sustainable basis, and this practice is well 
known [6]. In some of the cases leaving the biomass unused might lead 
to diminished capability to absorb CO2 by the ecosystem, e.g. the threat 
is real for the European forests in the near future [7,8]. Moreover, 
accumulation of unused residual biomass might lead to pest infestation 
[7] and wildfires [9,10], which in itself can be significant source of 
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harmful emissions. From an energy point of view, this seems to be an 
enormous waste, since CO2 is being emitted anyway, without any useful 
energy recovered from that process. 

Carbon, oxygen, and hydrogen are the three main elements present 
in biomass and their respective contents are correlated with various 
effects on the energy conversion processes, utilizing this renewable en-
ergy source. Biomass is composed of the three main polymers: cellulose, 
hemicelluloses and lignin, which form the orthotropic, composite 
organic structure of plants, wood serving as a good example [11]. 

Cellulose is a glucose polymer that typically consists of repeating 
units of β 1–4 linked D-glucose [12]. The degree of polymerisation, 
which is a number of glucose units, is variable and depends on the region 
of the cell [11]. In secondary cell walls, cellulose consists of 8,000–10, 
000 units, while in primary cell walls its degree of polymerisation varies 
between 2,000 and 4,000 units [11]. Wood typically consists of 40 to 
nearly 47% of cellulose [11]. Hemicellulose is a heterogeneous class of 
polymers containing glucose, galactose, mannose, xylose and other 
sugars [12,13]. Both the degree of crystallisation and the degree of 
polymerisation (approx. 200 units) of hemicellulose are generally low 
[11,14]. Wood typically contains 25–35% of hemicellulose [11]. 

Lignin is a complex, amorphic, three dimensional, aromatic molecule 
that consists of phenyl groups [14]. It is non-crystalline, hydrophobic 
and is the main constituent of a composite matrix of woody biomass. 
Lignin is a brittle material, and its presence in middle lamella provides 
adhesion between the cells [11]. Wood typically contains 20–31% of 
lignin. Plants also contain some amounts of compounds that are not 
polymers (saps/extractives) that usually add up to less than 10% of dry 
mass [11]. 

Content of these respective polymers can have influence on the 
subsequent conversion processes, such as densification [15,16], pyrol-
ysis [17,18], gasification [19,20] as well as combustion characteristics 
[17,21,22] and emissions [23,24]. 

1.3. Production of biocoal using dry and wet torrefaction 

Torrefaction (sometimes called roasting, slow, or mild pyrolysis 
[25]) is a process in which biomass is heated up to approximately 200 
�C–300 �C [25–32]. Depending on the severity of the process, fibrous, 
tenacious and hydrophilic biomass is transformed into more hydro-
phobic material, which is also more brittle and contains less volatile 
matter. During torrefaction, the processed feedstock is heated up, dried 
and then kept under an elevated temperature inside of the reactor. 
During drying, free and physically adsorbed water is removed first. As 
the temperature of the particle becomes higher, chemically bound water 
is also removed [27]. This is called by some authors a “reactive drying” 

[27]. While being in the reactor, a devolatisation process occurs and the 
feedstock becomes subject to decomposition. Some authors call this step 
“destructive drying” [27]. Most of the process product is solid, but some 
of it is gaseous and some liquid (condensable volatiles). Process gas 
(called torgas) is typically used as a source of heat for the process, 
therefore it is combusted. In many cases, torgas itself is not sufficient and 
a part of the feedstock has to be burned to obtain the necessary amount 
of heat. Among condensable volatiles, acetic acid and water are domi-
nant [29], while other compounds like furfural, formic acid etc. are 
formed in different concentrations depending on process conditions and 
feedstock [25–32]. Non-condensable volatiles consist mainly of carbon 
dioxide and carbon monoxide [25–32]. At present torrefaction is a 
widely discussed technology due to its potential to enable the use of 
additional biomass resources and make it a tradable commodity, which 
could enable broader use of biomass as one of the energy sources that are 
not intermittent [25]. 

There are many different designs of torrefaction reactors existing 
nowadays [25,30]. The torrefaction process improves various properties 
of biomass, not only those that enable more efficient transport (energy 
density) but also those that enable easier handling (hygro-
scopic/hydrophobic nature). 

However, some crucial properties, important at the power plant (or 
other energy conversion technology facility), are also subject to change 
[28]. Grindability increases, as an effect of torrefaction, which offers 
potential savings in both energy consumption for grinding equipment 
and investment costs of auxiliary devices in co-firing power plants. 
Torrefaction, especially along with the densification stage, allows one to 
handle reduced volumes of material, containing a majority of its original 
chemical energy. Moreover, the hydrophobic character of the torrefied 
product might provide a possibility to avoid weather-protected storage. 
During torrefaction –OH groups are substituted by non-polar groups. As 
a result, water-absorbing capacity is significantly reduced. This makes 
the fuel less sensitive to biodegradation, self-heating and moisture up-
take [25–32]. Reactivity of torrefied biomass is typically increased, in 
comparison to the original feedstock, which is important in terms of 
subsequent use of torrefied material as a fuel in combustion and gasi-
fication processes [33,34]. 

Torrefied biomass is said to have potential as a replacement for coal 
[25–32]. One of the main goals of torrefaction is to make biomass 
resemble coal more in terms of its properties as a solid fuel [25–32]. Due 
to these factors, torrefied biomass is often called biocoal. The term 
biocoal is also used for biomass valorised thermally using other pro-
cesses, such as hydrothermal carbonization (HTC) [35–41]. Hydro-
thermal carbonization (HTC) is a thermal valorisation process, typically 
performed at 200 �C up to 260 �C, in subcritical water under saturation 
pressure [37,42]. Between 200 �C and 280 �C, the ionic constant of 
water is a subject of significant increase and water behaves as a 
non-polar solvent [43]. The process involves a multitude of concurring 
reactions, with many different products, especially when it is performed 
using biomass [37,42]. Hydrolysis is the first stage of the HTC process. 
During these stages, biomass is degraded to monomers and oligomers 
[37], with some intermediates, such as 2-furfural, 5- hydrox-
ymethylfurfural (5-HMF) being subsequently produced [35,37]. The 
rate of hydrolysis is said to be diffusion controlled and thus limited by 
transport phenomena within the fibrous structure of biomass [44]. 
Therefore, the hydrolysis rate rises if the process temperature increases 
[45–47]. Dehydration and decarboxylation follow the hydrolysis [35, 
37,48]. Dehydration decreases the amount of hydroxyl groups (OH) 
[37]. Colloidal structures are destroyed, thus decreasing the amount of 
hydrophilic groups and promoting the formation of gases (mainly CO2) 
[42]. Other gases such as CO, CH4 and H2 (in case of a catalytic process) 
can also be detected [45,47]. The decrease in the amount of OH groups 
also causes a lower O/C ratio. Decarboxylation decreases the amount of 
carboxyl (COOH) and carbonyl (C––O) groups, also slightly decreasing 
the O/C ratio of the solid product [37]. Subsequently, polymerisation 
and aromatization take place [35,37]. Hydrothermal carbonization is 
also capable of removing a part of the inorganic fraction of the biomass 
[42,49,50]. This can be typically observed as the ash yield lower than 
100% [42,49]. Hydrothermal carbonization can also result in an in-
crease in a specific surface area [49] and differential pore volume [51]. 
HTC of the digestate has significant potential due to possible improve-
ments in terms of the subsequent dewatering [52–54]. This process 
partially removes organic fraction, which could also be used as a feed-
stock for anaerobic digestion [55–63]. The potential advantages of the 
use of HTC for the digestate include a decrease in the overall solid mass, 
sanitization of the digestate and elimination of the problems related to 
emissions of odours from the installation, improvements of its fuel 
properties. 

Published literature suggests that thermal valorisation of biomass 
might lead to the presence of condensable compounds on the surface of 
the solid product. Some works focused on biochar, mention condensed 
tars as a potential factor relevant in terms of the hydrophobic behaviour 
of thermally treated solids [64,65]. Published studies indicate that 
volatile organic compounds, including PAH, can be produced during the 
carbonization process and stay within the porous structure of the ma-
terial [64–67]. This claim can be extended on torrefied biomass, as some 
hypothesized that condensed tars could be responsible for blocking the 
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active oxidation sites on the particle surface [68]. Particularly, the po-
tential formation of polychlorinated dibenzo-p-dioxins (PCDDs) and 
dibenzofurans (PCDFs) could be potentially problematic for the torre-
faction process. It has been shown that especially torrefaction of poor 
quality woody biomass, such as wood from a discarded telephone pole, 
demolition wood or particleboard, may lead up to a significant increase 
of PCDD concentration in the torrefied product, in comparison to feed-
stock [69,70]. Moreover, significant amounts of phenols and furans 
were found in torrefaction condensates from the torrefaction of wheat 
straw [71]. The creation of chlorinated compounds could be attributed 
to the fact that chlorine can be relatively easily released in torrefaction 
conditions [72,73]. Typically torgas, along with these compounds, are 
burned in sizeable, refractory-lined combustion chambers with suffi-
ciently long residence time. However, compounds condensed on the 
surface may potentially become problematic, from the environmental 
point of view, due to hazards related to leaching. 

1.4. Objectives of this paper 

To date, many articles have been published on biocoal, which 
included results describing many different parameters important for its 
use as a solid fuel. Some publications already discussed a practical re-
ality of introducing biocoal into the market [74]. However, there is still 
a knowledge gap, regarding possible introduction of novel, quick and 
effective analytical techniques, that in the long term could both ensure 
compliance of the produced biocoal with various regulations and in the 
same time ensure frequent testing that could be a safeguard against 
problems caused by relatively high variability of the feedstock. This is a 
practical obstacle for the introduction of biocoal to the wide market. 
Customers would have to be assured that by purchasing a novel type of 
fuel, they will not become a subject of an investigation of various 
enforcement institutions. This can be achieved by proper quality con-
trol, targeting the following aspects:  

- Compliance with various regulations (e.g., REACH)  
- Performance of the fuel in the combustion systems:  

o Certain quality of the fuel would make it possible to maintain 
emissions beyond certain limits (e.g., emission limits for a partic-
ular class of small scale boilers as defined in EN 303–5 [75])  

o Certain quality of the fuel allowing to stay below emission limits 
that presently are not regulated, but might be in the future (e.g., 
formaldehyde) 

o Load flexibility – the capability of lowering load without extin-
guishing of the combustion process  

- Performance in the novel energy conversion systems, based on solid 
fuels (e.g., gasifiers) 

The aim of this paper is to recommend suitable analytical techniques 
in order to ensure an effective QC (Quality Control). The quality control 
tools can be regarded as effective if they:  

- enable compliance with existing regulations 
- enable determination if produced solid fuel fits within the bound-

aries outlined by the industry’s standards  
- give binary (pass/fail) result, based on certain, required parameters  
- enable testing in a cost-effective manner (both in terms of the 

equipment cost and labour intensiveness of the technique)  
- enable sufficiently fast testing (i.e., it is possible to perform tests 

quick enough to make up for the variability of the feedstock, thus 
limiting losses). 

This is necessary if biomass of low and highly variable quality is 
supposed to become more uniform and turn into a commodity, as the 
effect of the thermal valorisation process. 

2. Standardisation, compliance issues and other market barriers 
for biocoal to become a fully tradable commodity 

2.1. REACH registration – additional compliance requirements 

The abbreviation REACH stands for Registration, Evaluation, 
Authorisation, and restriction of CHemicals [76]. REACH is a 
pan-European control mechanism for chemicals introduced into the 
European market. The existence of the mechanism is based on the 
regulation of the European Parliament and the European Council from 
2006 (EC 1907/2006) [76]. 

Administration of REACH registration is one of the key roles of the 
European Chemicals Agency (ECHA) [77]. REACH is not limited to fuels, 
and its scope is much broader. It has been adopted and implemented to 
improve the safety of customers in Europe by reducing hazards posed by 
different chemicals produced and imported to Europe. This is done by 
obtaining the knowledge necessary to ascertain the potential risks 
assessed with usage, handling and storage of different chemicals. By 
January 2016, information on up to 120,000 different substances has 
been collected [77]. Enforcement of the REACH provisions, according to 
the article 126 of the regulation, is within the responsibility area of EU 
member states [76]. Enforcement varies across the states and its nature 
can be administrative or criminal [78]. E.g., in the United Kingdom 
enforcement is under the responsibility of Health and Safety Executive 
[78], whereas in Poland, various bodies, such as State Sanitary Inspec-
torate, Inspectorate for Environmental Protection, State Labour Inspec-
torate can be involved, within their respective field of competences [78]. 

2.2. Situation of different solid fuels under REACH 

All the information required for REACH registration relates only to 
the effects caused by a particular product itself [76]. It does not take into 
account any effects induced by its use, e.g., emissions from energy 
conversion processes (such as combustion). 

Coal is exempt from REACH registration according to ANNEX V point 
7 of REACH regulation [76] as a mineral substance occurring in nature, 
under the condition that it has not been chemically modified. Substances 
which occur in nature are defined in Article 3.39 as “naturally occurring 
substances as such unprocessed” or processed by Ref. [76]: manual, 
mechanical or gravitational means; dissolution in water; flotation; 
extraction with water; steam distillation; extracted from the air by any 
means; heating solely to remove water. 

A non-chemically modified substance is defined in Article 3.40 as “a 
substance whose chemical structure remains unchanged, even if it has 
undergone a chemical process or treatment, or a physical mineralogical 
transformation” [76]. 

Pellets, briquettes, chips, log, and any other form of raw solid bio-
fuels seems to fulfil the criteria set by ANNEX V of REACH regulation 
since they can be deemed as naturally occurring substances and they are 
not classified as dangerous (ANNEX V point 8 and 9 [76]). This is due to 
the fact that they are processed by mechanical means. Any additives 
have to be registered unless they are exempt (for example, Starch is 
exempt since it is named in ANNEX IV of REACH regulation [76]). 

Charcoal is the most widely known solid fuel that is produced under 
elevated temperatures. It is characterised by proximate analysis, with its 
unique testing procedures specified in the European Standard [79]. 
Some details are different in comparison to the standard for solid bio-
fuels, e.g., the temperature for determination of ash content is in this 
case, 710 �C. However, the temperature for the determination of volatile 
matter content is exactly the same as in the standard for solid biofuels 
[80] (900 �C). This gives the basis for clear comparison. There is also a 
strict limit for fixed carbon content, which is a minimum of 75% for 
charcoal and 60% for charcoal briquettes [79] (probably due to neces-
sary additives - binders). There is no test defined for fixed carbon con-
tent and it is calculated using the results of volatile and ash content tests 
[79] (therefore expressed on a dry basis). 
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Charcoal (CAS number 16291-96-6) is registered under the EC/List 
number 240-383-3 as a UVCB substance (substances of unknown or 
variable composition, complex reaction products, or biological materials 
[76]) of organic origin [77]. It has been a subject of the full registration 
process [77]. 

Another form of carbonised plant material is called biochar. Since it 
is used as a fertiliser, it is not defined exactly the same way as charcoal. 
International Biochar Initiative (IBI) deems the H/C organic molar ratio as 
a property that correlates with the degree of thermal alteration [81]. IBI 
sets criteria for H/C organic molar ratio to be lower than 0.7 for materials 
that are thermochemically converted, whereas products with higher H:C 
organic molar ratio are considered thermochemically altered, but not 
converted [81]. Armecin and Gabon assessed the content of organic 
carbon indirectly using organic matter content and van Bremellen factor 
[82]. However, the value for H/C organic molar ratio is arbitrary and it 
has been established based on the stability of biochar in the soil, which is 
correlated with the presence of fused aromatic rings in the material [81]. 

2.3. Mechanism of REACH registration 

Mechanism of REACH registrations can have important implications 
on quality control requirements, depending on the choices made by 
applicants. All chemical substances to be sold in the EU in quantity of 
more than 1 ton per annum have to be REACH registered [76]. There are 
a couple of different categories that substances can be assigned to. Some 
products require full registration, whereas others are simply exempt 
from the expensive and time consuming full registration process. In 
order for a particular substance to be the subject of exemption, the lead 
registrant has to perform tests to obtain evidence that will support the 
claim for a particular exemption [76]. 

If a substance is to be produced in quantities that exceed 1 ton per 
year, but for the purpose of developing a new process/product, there is a 
special mechanism called PPORD (Product and Process Orientated 
Research and Development) [83]. This allows compliance to REACH and 
gives the possibility of performing tests on a big enough scale. 

Products that do not qualify for the exemption have to perform a full 
suite assessment that, according to Article 44 (Title VI, Chapter 2) of the 
REACH regulation, is defined as a “risk-based approach” [76]. This 
assessment is meant to give full details on health risks involved with 
exposure to the tested substance as well as the potential of 
bio-accumulation [76]. The complexity of information depends on the 
amount of product introduced to the European market per year and it 
grows with the growing amounts of the product (as described in Annexes 
VII to X) [76]. For example, substances to be sold in quantities between 1 
and 10 tons/annum, under a full REACH registration, need to be tested 
for [76]:  

- a range of physicochemical properties (e.g., water solubility, self- 
ignition temperature, explosive properties, etc.)  

- toxicological properties (skin irritation, eye irritation, mutagenicity, 
acute toxicity, etc.)  

- ecotoxicological properties (aquatic toxicity and degradation) 

On the other hand, registration of substances to be sold in quantities 
of 1000 tons and more (per annum) extends the ecotoxicological prop-
erties to be reported, to properties such as effects on terrestrial organ-
isms, long-term toxicity to sedimentary organisms and long-term 
reproductive toxicity for birds [76]. 

Polymers are exempt from the full REACH registration, according to 
article 2(9) [76,84]. Criteria for a polymer to be exempt are as follows 
[76,84]:  

- the amount of the polymer molecules of the same molecular mass 
must be less than 50% by mass of the substance  

- over 50% of the mass of the substance consists of polymer molecules 

A polymer molecule is defined further as a molecule that contains a 
sequence of at least 3 monomer units that are covalently bound to at 
least one other monomer unit or another reactant [76,84]. Under 
REACH regulations, polymers may not only be synthesized by poly-
merisation of monomers but also by post-modification of polymer sub-
stances, which includes “controlled polymer degradation” [84]. 
Obviously, degraded polymer still needs to fall into the polymer criteria 
to be exempted from full registration. One substance that is subjected to 
a very similar thermal process as biocoal is roasted coffee beans, regis-
tered under the EC/List number 272-823-5 (CAS no. 68916-18-7) [77]. 
The substance information card states that “According to the majority of 
notifications provided by companies to ECHA in CLP notifications, no 
hazards have been classified.” 

2.4. ISO standard for thermally treated biofuels - market barriers 

Market introduction of torrefied biomass has been recently discussed 
by D. Thran et al. [74], identifying co-firing in power plants as well as 
the use in small and middle scale appliances as main market opportu-
nities for biocoal. Few experimental works on the explosibility data of 
torrefied biomass are described in the literature [85,86] and need 
extensive work in order to standardise the procedure. The lack of 
standardisation was also discussed and this was named as one of the 
major issues in terms of the successful introduction of Biocoal into the 
market [31]. 

Recently, a draft standard for “Graded, thermally treated and 
densified biomass fuel” has been issued for comments [87]. This draft 
version of the standard is supposed to become part 8 of the set of EN/ISO 
17225 standard for Solid biofuels. This standard is an important step 
towards making Biocoal a tradable commodity. However, it seems like 
some small amendments could contribute towards its further 
improvement. 

As mentioned above, the new draft is supposed to cover all thermally 
treated materials, which implies a wide variety of technologies. Only 
drying is excluded, as stated in Note: 1 of the definition of thermally 
treated biomass [87]. It seems a difficult task to accommodate all 
thermal treatment technologies into one standard, especially taking into 
account the fact that EN/ISO 17225 consists of separate parts dedicated 
to raw woody and agro biomasses, as well as separate parts dedicated to 
briquettes and pellets exclusively [88–94]. This standard, same as all the 
others from the 17225 group, names the acceptable ranges of values for 
basic parameters from the solid fuel point of view and states the origin of 
feedstock. It defines acceptable ranges for proximate and ultimate 
analysis results. It also defines an acceptable Net Calorific Value range, 
as well as parameters important from the perspective of handling of 
densified forms of the fuel (pellets and briquettes). The standard also 
sets ranges for chlorine content as well as for heavy metals, which is 
feedstock dependant. Ash melting behaviour is not normative but needs 
to be stated. 

Attempts to accommodate too many different processing technolo-
gies in one standard evidently yield some problematic results. One needs 
just to compare the results of Net Calorific Value (as received basis) 
stated for the thermally treated woody biomass with typical values for 
wood pellets to notice the problem. Three of the six values in the draft 
(TW1b, TW2b, TW3b) have a requirement for minimum Net Calorific 
Value (as received) set at a level slightly below 17 MJ/kg, which is 
similar to unprocessed wood pellets as stated in EN ISO 17225-2 stan-
dard [89] or EN þ pellet quality requirements [95]. This brings up the 
question - if the processing of the material that yields such values is 
anything more than drying. 

Another question is brought up by the lack of any mention of 
grindability and hydrophobic behaviour in the standard, which would 
be an important piece of information for utility-scale customers. 
Grindability seems to be simple enough, as there is a standard value, 
namely Hardgrove Index [96], which allows a comparative assessment 
of the grindability of the solid fuel. Many published articles suggest 
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improvement in the grindability of torrefied material [97–101]. 
Hydrophobic behaviour is more problematic to assess as there is no 

standard test procedure for solid fuels at present. However, efforts have 
been made by participants of the SECTOR programme to develop such a 
method [102]. The development of MSDS sheets for Biocoal has been 
attempted, with some proposed documents, created as a part of the 
SECTOR program [103] and by Dutch Torrefaction Association [104]. 

3. Quality control tools to determine product compliance with 
existing standards and registrations 

3.1. Established techniques of quality control for solid biofuels 

Quality control of solid fuels typically is focused on its fuel-related 
properties. Thus, usually proximate and ultimate analysis of the fuel is 
performed. The proximate analysis determines the moisture content of 
the fuel, its ash content, respective content of volatile matter and fixed 
carbon. Moreover, determining the calorific value of the sample is 
critical. The ultimate analysis is used to determine the content of ele-
ments fundamental for fuels (C, H, N, S and O). There are existing 
standards that can be readily used. Moisture content can be analysed 
using a method outlined by EN ISO standard (EN ISO 18134) [105]. 
Drying takes place in the appropriate lab oven with a controlled tem-
perature of 105 �C (�2 �C). Mass of the tray is checked every hour until a 
constant mass is achieved. Constant mass is defined as the change of the 
mass between two consecutive measurements not exceeding 0.2% of the 
absolute mass of the test portion. 

The content of volatile matter can be tested according to EN standard 
(EN15148) [80]. Crucibles covered with lids are put on a stand that is 
then transferred to a laboratory furnace heated up to 900 �C (�2 �C) for 
7 min (�5 s) and subsequently placed in a desiccator to cool down before 
weighing. It seems prudent to note that the choice of the temperature 
and residence time is arbitrary, which in fact enables the determination 
of a generation of the volatile compound in that typical regime. It is 
based on the vast experience with the combustion of other solid fuels, 
such as coal, and gives some data for comparative analysis of different 
solid fuels. 

Ash content of biofuels is typically tested according to EN (EN 
18122) [106]. Ashing takes place at 550 �C (�10 �C) for at least 120 
min. Dishes are subsequently placed in a desiccator to be cooled down 
before weighing. The temperature is specific to biomass and substan-
tially different in comparison to fossil fuels as it is typical for some types 
of biomass to release significant amounts of inorganic compounds in the 
temperatures above the threshold set in the standard [107]. There are 
some indications in the published literature that the release of inorganic 
compounds might take place in the temperatures much lower than 550 
�C and take place even during the torrefaction process itself [72,108, 
109]. On the other hand, the temperature during the test has to be high 
enough to achieve ignition and complete combustion of the sample. 

Test protocols for the determination of fundamental properties of 
solid fuels are well established. However, the situation is different 
regarding test protocols for compliance with REACH registration. The 
preferred method to determine if a product falls under the definition of 
polymer, according to ECHA, is the determination of molecular weight 
distribution with gel permeation chromatography [84]. However, it 
seems reasonable to suspect that Quality Control would require a 
simpler, more rapid and more cost-effective technique to analyse 
different samples of the product from commercial-scale production 
frequently. 

Yan et al. used the Van Soest method to perform fibre analysis by 
determining the content of cellulose, hemicellulose and lignin in the 
product [110]. As mentioned before, cellulose, hemicellulose and lignin 
vary in terms of their degree of polymerisation. Also, digestion might not 
be preferable as it is a slow process and, therefore, does not fulfil the 
requirement of rapid analysis. 

3.2. Fourier transform infra-red 

FTIR analysis is a technique used in the analysis of biomass and 
pyrolysis products, as indicated by Kan et al. [111]. Xu et al. [112] 
reviewed the use of infrared techniques to characterise lignocellulosic 
biomass, as an opposite to labour intensive digestion techniques. The 
ability of ATR to provide spectra free of the influence of background 
water (humidity of the air) was mentioned as one of the advantages of 
this technique [111,112]. 

ATR (Attenuated Total Reflectance) makes use of a difference in the 
refractive index of the sampling crystal and refractive index of the 
sample. The infrared beam enters the sampling crystal at an angle 
greater than a critical angle of the crystal [113]. As the light bounces off 
the inside surface of the crystal, a small amount of radiation, called 
evanescence wave, penetrates the sample up to a certain depth [113]. 

FTIR ATR seems to be a potential technique of interest due to its 
capability to perform rapid testing, with a typical test for one sample 
taking just a couple of minutes. ATR obtains as a result absorbance of the 
sample for a selected spectral range of wavenumbers, which depends on 
the type of crystal used and range defined in experimental settings and 
Refractive Index of the tested sample [113]. Typically software can use 
its correction algorithm to obtain peak positions more closely matching 
transmission data from its spectral library since positions of peaks 
collected using the absorbance of the sample might not necessarily 
match positions of peaks collected using transmittance (by another type 
of FTIR analysers) [113,114]. Most organic materials have refractive 
indices within a range of 1.3 up to 1.7 [113]. 

Bui et al. used FTIR along with acid hydrolysis to characterise solids 
after another thermochemical conversion process of biomass called 
liquefaction [115]. Solid residues, obtained after this process, were 
hydrolysed in sulfuric acid to perform HPLC (High-Performance Liquid 
Chromatography) analysis further to obtain the content of simple sugars 
that allowed determination of cellulose and hemicellulose content 
[115]. FTIR was used, in conjunction with wet chemical methods, for the 
quantitative determination of lignin content [115]. Brewer et al. used 
FTIR as a qualitative method to assess the “progress of the pyrolysis 
reaction” [116]. It was also determined that chars contain little func-
tional groups present in lignocellulosic materials [116]. 

Fabiyi and Ogulenye investigated the thermal treatment of wood as a 
material as an alternative to chemical treatment. Temperatures used 
(160 �C–200 �C) were a bit lower than the typical torrefaction range. 
ATR-FTIR was used as one of the techniques to characterise treated 
wood. The study confirmed that under the conditions mentioned above 
Relative Crystallinity index of Cellulose increases along with the Rela-
tive Lignin Content as a consequence of the treatment. The study 
concluded this type of thermal treatment promising due to improve-
ments in dimensional stability and stiffness of heat-treated wood [117]. 
Poletto and Zatera [118] used the FTIR technique along with TGA to 
characterise Klason lignins from Eucalyptus grandis and Pinus taeda. 

Wilk at al [119]. studied the effect of Torrefaction on woody biomass 
and sewage sludge using FTIR. The decrease in OH group peak was 
observed with increasing temperature of torrefaction. Torrefaction ef-
fect on the chemical structure of sewage sludge was assessed as much 
lower than in the case of woody biomass. 

Some comparisons between the Raman spectroscopy and FTIR 
techniques, state that the spectra generated by the latter are more 
intensive [120,121]. Moreover, the former is very much sensitive with 
respect to the presence of water [120,121]. FTIR is an important tech-
nique for the analysis of the structure of biomass and this can also be 
used for analysing the change of the aforementioned structures, which 
may occur because of certain physical and chemical treatments 
[122–126]. Lignin/cellulose content was calculated using the ratio of 
the peak areas in the bands ranging from 1500 to 900 cm�1 [127]. 
Tropical hardwoods can be classified using the FTIR technique [128]. 
FTIR technique was shown to identify the structure of lignin [126, 
129–132]. 
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Garrido et al. [133] observed no significant changes in the chemical 
structure of Flexible polyurethane form briquettes (FPUF) during the 
briquetting process. The FTIR spectra were acquired in the range of 
4000–500 cm�1. The wavenumbers (1013, 1085 cm�1) at the absorption 
bands signified the stretching vibration of the C–O–C group. The peak at 
3367 cm�1, caused by the stretching vibration of the NH group, was also 
observed in the IR spectra and this was also contributed because of 
urethane bond present in FPUF. Another stretching because of the 
C–O–C bond at 1107 cm�1 was observed signifying the urethane bond 
present in FPUF which got fractured while homogenous and heteroge-
neous briquetting [133]. The temperature of 180 �C and pressure of 35 
MPa is sufficient to break the urethane bond present in FPUF, leading to 
the mobility of long polymeric change, which resulted in the bonding of 
different materials. 

Blesa et al. [134] have synthesized fuel briquettes with carbonaceous 
materials with the help of the binder and calcium additives have been 
added in order to decrease sulphur emissions during combustion. It was 
also revealed that these briquettes were waterproof. The FTIR spectra 
were obtained in the range 4000 to 400 cm�1 with a resolution of 4 
cm�1. When the temperature of the blend of humates with calcium 
hydroxide was increased, it was observed that the broadband at 3400 
cm�1 decreases, and it is because of the release of hydroxyl groups. It 
was revealed that Micro FTIR spectroscopy was an effective technique to 
follow the evolution of the structural changes, which take place between 
humates, calcium hydroxide and the carbonised materials at various 
temperatures. 

Blesa et al. [135] have synthesized smokeless fuel briquettes using 
low-rank coal and olive stone as biomass with a binder as molasses. The 
FTIR spectroscopy was used to study the effect of curing temperature on 
these briquettes. The curing led to a decrease in the hydrogen bonds as 
well as aliphatic structures and methoxy groups, while carboxylic 
groups increased during curing because of oxidation. Moreover, the 
briquettes cured at 200 �C for 2 h revealed the highest mechanical 
strength. The curing also led to the production of waterproof briquettes. 
The FTIR spectroscopy ranges between 4000 and 400 cm�1 with a res-
olution of 2 cm�1. It helped in finding structural changes produced 
during the curing process. The briquettes have been prepared with 
molasses as a binder and investigated by varying the temperature from 
150 to 200 �C for 4 h. The hydroxyl groups appeared at 3400 cm�1, with 
a relatively broad peak. The height of the peak decreased with 
increasing treatment temperature. The curing, lasting more than 2 h, did 
not produce any relevant molecular changes. Moreover, the treatment at 
200 �C (4 h) did not produce any additional stabilisation. The briquettes 
cured at 200 �C for 2 h showed the best mechanical resistance and water 
repellence. Some of the FTIR bands/peak values, potentially useful for 
the Quality Control of thermally treated biofuels, are presented in 
Table 1. 

3.3. Near Infra-Red spectroscopy 

NIR technique is considered useful in the determination of the 
chemical structure of solid and liquid fuels. It is one of the speedy 
characterisation techniques with a simple methodology [146–149]. The 
infrared region consists of three regions according to wavelength range: 
near-infrared (780–2500 nm), mid-infrared (2500–25000 nm), and 
far-infrared (25000–1000000 nm) [146–149]. In general, two types of 
spectrophotometers are in use, with respect to wavelength selection, 
namely discrete wavelength and whole spectrum. Discrete wavelengths 
photometers are simpler as only a few wavelengths are used to irradiate 
samples. Thus, their application is limited to materials absorbing in 
specific spectral zones [146–149]. Detection in NIR spectroscopy uses 
devices comprising semiconductors (PbS or InGaAs). In multi-channel 
detectors, several detection elements are arranged in rows (diode ar-
rays) or planes (Charged Coupled Devices CCDs) in order to record many 
wavelengths at once, so as to increase the speed at which spectral in-
formation can be acquired [146–149]. 

Table 1 
FTIR bands/peak values, identified in literature sources studying various aspects 
of biomass (Ref. – Reference).  

Wavenumber, 
cm�1 

Peak 
assignment 

Corresponding 
compound(s)/ 
polymer(s) 

Comments Ref. 

875 – Glycosidic 
linkage 

Hemicellulose – [122, 
136] 

– 895 Glycosidic 
bonds 
symmetric 
ring-stretching 
mode 

Cellulose Determination 
performed for 
raw, de-waxed, 
and de-lignified 
pine wood. Peak 
attributed to 
polysaccharides. 

[137, 
138] 

– 898 β-glucose bond 
(C1–O–C4) 

Cellulose CEAL (reference 
cellulose) 

[139] 

987 995 C–O valence 
vibration 

Cellulose Spruce wood and 
spruce holo- 
cellulose, before 
and after milling 

[140] 

1214 1215 C–C þ C–O 
stretch 

Lignin Kraft Lignin in 
both softwood 
and hardwood 

[141] 

1200 – O–H bending Cellulose, 
Hemicellulose 

– [136] 

1682 – C¼O 
stretching 

Lignin Kraft Lignin in 
hardwood 

[141] 

1704 – Kraft Lignin in 
softwood 

[141] 

2840 2937 C–H stretching Lignin Kraft Lignin in 
hardwood 

[141] 

2840 2934 Kraft Lignin in 
softwood 

[141] 

897 – C1–H 
deformation of 
glucose ring 

Cellulose Could be used for 
determination of 
the cellulose 
crystallinity 
index 

[117] 

1421 – C–H in-plane 
deformation, 
with aromatic 
skeletal 
vibrations 

Lignin 

1506 1507 Aromatic 
skeletal 
vibration C––C 

Lignin (guaiacyl 
and syringyl) 

Could be used for 
the 
determination of 
relative (to 
cellulose) lignin 
content, being 
divided by the 
height of the 
peak for 897 
cm�1 

[117] 

1507 – C¼C aromatic 
symmetrical 
stretching 

Lignin Determination 
performed for 
raw, de-waxed 
and de-lignified 
pine wood 

[138] 

– 1510 – Lignin Cell wall of 
Zinnia elegans 

[142] 

720 1450 Methylene 
group 

Long aliphatic 
chains. 

Briquettes 
synthesized from 
torrefied SPF 
(Spruce, Pine, 
Fir), coal with 
binders, such as 
coal tar, coal tar 
sludge, paraffin, 
and molasses. 

[143] 

3386 – N–H Group Polyurethane (a) FPUF 
(Flexible 
polyurethane 
foam) 
(b) Viscoelastic 
Memory foam 
(VMF) with FPUF 
(c) Latex foam 
with FPUF. 

[133] 
1107 – C–O–C bond 
1720 – C¼O Group 

(continued on next page) 
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The use of NIR analytical techniques has both advantages and dis-
advantages. Among the advantages, one can count [147–149]:  

- The fact that the technique is non-invasive and non-destructive.  
- Minimal sample pre-treatment requirements (in some of the cases no 

pre-treatment needed)  
- Rapid measurement, resulting in a high throughput of a single 

analytical device (many samples per day).  
- No need for reagents.  
- Easy maintenance of the analytical equipment due to no moving 

parts. 

Following disadvantages can be stated [147–149]:  

- It is not a selective technique.  
- Insufficient amount of robust models connecting the results of NIR 

analysis with specific target parameters.  
- The need for reference methods, in order to enable calibration of the 

models, that translate the results, obtained by NIR, into the values of 
target parameters.  

- Relatively low sensitivity, limiting the use of the technique only to 
the determination of major components.  

- Lack of robust calibration methodology for solid fuel analysis, using 
NIR. 

Near Infra-Red (NIR) Spectroscopy is getting attention recently as an 
economical and fast technique, which permits simultaneous assessment 
of many parameters for biomass composition [147,150]. NIR is a mod-
ern spectroscopic technique, which finds application in many areas, 
including agriculture, food, medicine, environment, etc. [151]. This 
technique is simple as well as non-destructive. NIR spectroscopy can 
give valuable information about carbon, hydrogen, oxygen, volatile 
matter, fixed carbon and energy contents of various biomasses. 
Lestander et al. stated in his study that a combination of NIR spec-
trometry with multivariate calibration modelling can lead to developing 
a rapid method for characterizing thermally treated biomass, thus 
reducing the requirement of costly wet chemical analysing methods 
[152]. Covalent C–O, C––O and C––C bonds are found in torrefied 
biomass. Moreover, in addition to O–H and C–H bonds, these vibrations 
interfere with near-infrared radiation [153], i.e., overtones from 
fundamental vibrations in the IR region. Hence overtone vibrations in 
the IR region having more considerable penetration depths than in the 
IR give valuable chemical information about the state of carbonised 
biomass [154]. The simplicity of the sample preparation cause NIR, to be 
deemed as a potential quality control technique for biomass conversion 
processes, such as torrefaction [153,154]. 

Kelley et al. [155] investigated the typical NIR spectra of wood. The 
major vibrations were in the range of 400–500 nm including the 
yellow-brown colour of wood due to lignin and extractives. The first 
overtone of cellulose and hemicellulose hydroxyl is found between 400 
and 1600 nm and moreover, the interaction between the water and 
carbohydrate hydroxyl is between 1890 and 2020 nm. Another strong 
vibration is seen between 2020 and 2250 nm confirming the cellulose 
hydroxyl vibration. 

He et al. studied the NIR in the spectral range of 12500–3600 cm�1 

with a resolution of 8 cm�1 [156]. The two highest peaks were observed 
in the wavenumber at 6900 cm�1, and 5150 cm�1 and these are because 
of the absorption of water. O–H deformation and the combination band 
of O–H stretching are giving a peak at 5150 cm�1 [157]. The spectra of 
the two kinds of wood can be distinguished between the wavenumbers 
7300 cm�1 and 6800 cm�1 and, moreover, also in between 6250 cm�1 

and 4200 cm�1. The second and third overtones are giving the band 
between 12500 and 7500 cm�1 [158]. Moreover, the NIR model of hot 
water soluble extracted content was also developed and in the spectra, 
the absorbance band in the region of 7211 cm�1 is arising because C–H 
stretching and deformation of CH3 at 7353 cm�1 and 7194 cm�1. C–H 
stretching and –C––O group frequencies of carbohydrates are exhibited 
at 4545 cm�1. The best pentosan prediction model was established with 
the wave number in the regions 7502.1–5446.3 cm�1 and 
4601.6–4246.7 cm�1. The spectral regions in the range 6000 cm-1 and 
4246 cm-1 are related to C–H stretching of ROHCH3 (5885 cm�1 and 
5773 cm-1), –C––OCH3 (5960 cm�1 and 5898 cm�1), R–OHCH3 (5880 
cm�1 and 5770 cm�1), and C–H stretching (1st overtone) of CH2 (5787 
cm�1), as well as C–H stretching and C––O group frequencies (4545 
cm�1) of carbohydrates, and O–H stretching and C–H stretching group 
frequencies (4412 cm�1) of cellulose (4405 cm�1). Moreover, the 
absorbance band in the region of 7168 cm�1 is present because of the 
group frequencies of –CH2. Hence the important structure of pentosan 
can be analysed with the help of NIR spectroscopy. The prediction model 
for the cellulose was developed in the wavenumber regions of 
7502.1–4297.7 cm�1. The region 5685 and 4300 cm�1 is related with 
C–H stretching 1st overtone (5612 cm�1) of CH2 (1st overtone) (5262 
cm�1) and O–H stretching (6025 cm�1, 5657 cm�1 and 4405 cm�1) and 
C–O stretching group frequencies of cellulose (6024 cm�1, 5667 cm�1 

and 4405 cm�1) and also C–H stretching and C––O group frequencies 
(4545 cm�1) of carbohydrates. Therefore, the main chemical structure 
of cellulose can be identified using the NIR technique. 

Rambo et al. reported that the significant absorption bands in the 

Table 1 (continued ) 
Wavenumber, 
cm�1 

Peak 
assignment 

Corresponding 
compound(s)/ 
polymer(s) 

Comments Ref. 

– 1734 Non- 
conjugated 
carboxyl 
group C(¼O) 
OH 

Lignin Effluent 
treatment waste 
after kraft 
pulping of 
Eucalyptus 

[139] 

1730 – C¼O 
stretching of p- 
coumaric acids 
of lignin 

Lignin Determination 
performed for 
raw, de-waxed 
and de-lignified 
pine wood 

[138] 

1730 – C¼O 
stretching of 
acetyl groups 

Hemicellulose 

1730 – C¼O 
stretching 
vibration 

Hemicellulose Characteristic to 
carbonyl band 
due to the 
presence of 
hemicellulose in 
Sugarcane 
Bagasse 

[144] 

1732 – C¼O 
unconjugated 
stretching 

Xylans 
(Hemicellulose) 

Hemp fibres [137] 

– 1737 C¼O 
stretching of 
carboxylic 
acid 

Hemicellulose Alkali treated 
Indian grass 
(Poaceae family) 

[145] 

– 1738 – Hemicellulose The cell wall of 
Zinnia elegans 

[142] 

2860 2940 Aliphatic C–H 
structure 

Humates Briquettes with 
the blend of 
humates with 
calcium 
hydroxide 

[134] 

1600 – Aromatic ring 
stretching 

1578 – Stretching of 
C––O bond of 
carboxylates 

1240 – C–O aryl 
group 

Lignin Hemp fibres [137] 

1254 – C–O aryl 
group 

Lignin Alkali treated 
Indian grass 
(Poaceae family) 

[145] 

– 1255 C–O aryl 
group 

Lignin Determination 
performed for 
raw, de-waxed 
and de-lignified 
pine wood 

[138]  
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NIR spectra are found at 1450/1470 nm, 2090 nm and 1920 nm [159]. 
The bands in the range of 1450–1470 nm are present because of the first 
overtone of the O–H groups with H bonds of intermediate strength 
[160]. The less intense band in the range of 1170–1270 nm are 
appearing because of C–H stretch 2nd overtone from lignin. C–H 
stretching in the aromatic structure is also confirmed at 1672 nm and 
bands in the region of 2150–2460 nm confirm the presence of lignin 
[161]. 

Rambo et al. have applied partial least square (PLS) regression for the 
banana, coffee and coconut samples in order to analyse various chemical 
constituents [162]. A total of 104 samples of banana, 101 samples of 
coffee and 28 samples of coconut residues was collected. The VIS-NIR 
spectra in the range of 400–2500 nm were analysed. The bands at 
460 nm and at 670 nm confirmed the presence of lignin and chlorophyll 
structure, respectively. At 2090 nm, a combination band of O–H of 
carbohydrates was found. The study showed that NIR could be suc-
cessfully used for the rapid analysis of many samples of different 
biogenic materials. 

Yue et al. used NIRS technology for the quantitative analysis of 
biochar [163]. Biochar was produced using low-temperature pyrolysis 
through anaerobic conditions of organic material and 163 samples were 
analysed. The study determined that NIR can give reasonably good 
predictions of fixed carbon and volatile content, with Partial Least 
Square empirical model [163]. The whole spectra range of biochar 
samples can be divided into three sections in the NIRS regions: 
10000-7000 cm�1, 7000-5000 cm�1 and 5000-3000 cm�1. The FC and 
VM of all samples of biochar can generate NIR information in the range 
of 7000–3800 cm�1 [152,164]. As the ash is an inorganic compound so 
it does not have a characterised spectra in NIRS but still exhibits a 
correlation with organic components, which can be used for the quan-
titative analysis for the ash content in samples [165]. The spectral band 
for ash in biochar samples is in the range of 10000–5000 cm�1 [163]. 
Some of the NIR bands/peak values, potentially useful for the Quality 
Control of thermally treated biofuels, are presented in Table 2. 

3.4. Nuclear Magnetic Resonance spectroscopy 

NMR technique is used for detailed analyses of the structure and 
features of the organic compounds. It is a non-destructive method that is 
based on bringing the nuclei in resonance with the external magnetic 
field and determining the different amounts of energy for the shielded 
and de-shielded environment. The presence of a more electronegative 
atom near the nuclei attracts electrons towards it and creates a de- 
shielded environment for the neighbour nuclei. It then requires more 
external energy to bring the nuclei in resonance with the external 
magnetic field. However, if there are atoms with less electron affinity, 
then there will be a shielded environment for the neighbour nuclei 
requiring less external energy to bring it in resonance with the external 
magnetic field. NMR spectroscopy helps to draw the spectrum of energy 
needed for the shielded and de-shielded nuclei to bring them into 
resonance. NMR is very much suitable for analysing complex chemical 
structures such as plant cell walls etc. [169]. Traditional Solid-state 
NMR such as 13C cross polymerisation magic angle spinning 
(CP/MAS) of biomass is having the disadvantage of poor resolution and 
overlapping resonance [170] but it has advantages like Solid-state NMR 
is a non-destructive technique, not limited by sample insolubility and 
moreover, it gives the detailed structure information [171]. The 
solid-state 13C NMR has been widely used to examine the structure of 
char and many other aromatic compounds [116,172–175]. 

The results of the qualitative analysis have been confirmed by 
quantitative analysis using NMR spectroscopy (Nuclear Magnetic 
Resonance) [116]. Sharma et al. also used an FTIR technique, along with 
NMR to characterise char from pyrolysis of lignin [176]. They reported 
an increase of aromatic hydrogen and loss of oxygen-containing func-
tional groups between 400 �C and 500 �C [176]. Similar defunctional-
isation was observed in chars from pyrolysis of cellulose above 330 �C by 

Table 2 
NIR bands/peak values, identified in literature sources studying various aspects 
of biomass (Ref. – Reference).  

Wavenumber, 
nm 

Peak 
assignment 

Corresponding 
compound(s)/ 
polymer(s) 

Comments Ref. 

2252 – – Cellulose Stepwise 
forward 
multiple linear 
regression 
model for the 
description of 
degradation of 
foliage. 

[166] 
1754 – CH2 
1438 – CH2 Lignin 
1708 – CH3 

1960 – C¼O stretch 
bond 

Lignin Stepwise 
multiple linear 
regression 
model for 
determination 
of lignin, 
holocellulose, 
and organic 
solvent 
extractives in 
fresh leaf, 
litterfall, and 
organic material 
on the forest 
floor 

[167] 

1400 2500 – α-Cellulose Partial least 
square model 
for 
determination 
of α-Cellulose in 
woody biomass. 

[168] 

1635 1825 Aromatic C–H 
stretching 

Lignin This is 
confirming the 
first and second 
overtone of the 
lignin aromatic 
and aliphatic 
carbon/ 
hydrogen 
vibrations 
giving the 
information of 
the chemical 
structure 
present in the 
material, but 
the overlapping 
limits the 
information. 

[155] 

1075 1250 Aliphatic C–H 
stretching 

6900 – The 1st 
overtone of O–H 
structure 

Softwood The NIR 
technique can 
be applied to 
predict the 
chemical 
composition of 
various wood 
species. The hot 
water soluble 
extractive and 
cellulose 
content model 
can be only 
applied for 
quality control 
analysis only, 
but as far as 
Pentosan 
content model is 
concerned it is 
showing an 

[156] 

5200 – O–H and –C––O Hardwood 

1920 – O–H stretching 
from water 

Coconut 
residues 

It was possible 
to predict the 
major 

[159] 

2090 – 

(continued on next page) 
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Boon et al. [177]. 
Park et al. used NMR as a technique for comparative characterisation 

of torrefied biomass along with a comparative TGA study [178]. Using 
solid-state NMR spectroscopy, it was proven that torrefaction leads to 
increase in the aromaticity from 36 to 60%. NMR spectra of both 
untorrefied (raw) and torrefied biomass were examined. Three torrefied 
samples having different treatment temperature were synthesized, 
namely lightly torrefied biomass (TA) at 270 �C, moderately torrefied 
biomass (TB) at 300 �C and severely torrefied biomass (TC) at 330 �C. Fu 
et al. have revealed that solid-state NMR is one of the most effective 
techniques for the quantification of lignin in biomass [179]. In his study 
on the treatment of Kenaf, the 13CP/MAS spectrum of Kenaf biomass 
revealed the presence of an aromatic signal at 142–157 ppm, which was 
observed because of the presence of lignin [179]. In the untreated 
biomass samples of Kenaf, the lignin content was found to be 32% [179]. 
Samuel et al. successfully used NMR to determine the influence of the 
dilute acid pretreatment, performed at 190 �C using sulfuric acid (50 g 
per kg of switchgrass), on the ultrastructure of cellulose the material 
[180]. The study determined that such pre-treatment can increase the 
crystallinity index of cellulose by 18% [180]. 

4. Discussion and conclusions 

Biocoal is a thermally pre-treated solid fuel that is supposed to be 
more uniform than the initial feedstock. This way, through torrefaction, 
low-quality fuel can become a tradable commodity, with improved 
properties [25,42]. This ideal can be fully realised only up to a certain 
extent. The choice of optimum quality control technique should take this 
potential variability into account. Probably non-uniform feedstock 
would require quality control, every time the quality of the feedstock 
changes dramatically. Due to this anticipated frequency of testing, 
analytical techniques for QC of Biocoal should not only give reliable 
results, but also be fast, both in terms of the test itself and the time 
necessary for sample preparation. 

The preferable analytical technique would be quantitative (NMR) as 
the interpretation of such a result is more straightforward, and a sig-
nificant amount of knowledge could be gained, with little need for 
additional tests. However, the price of the equipment, as well as labour 
intensive sample preparation, introduces some complications as the 
amount of tests, possible to do during a single day might not be able to 
meet the needs of the industrial environment. On the other hand, 
qualitative techniques, such as FTIR or NIR, could also be a sensible 
solution, when prior calibration takes place. This one would typically 
involve the determination of the peaks in the bandwidth, within the 
range of the used spectroscopy technique, that correlates well with the 
properties of the fuel, that is of typical concern. In terms of REACH 
compliance, this would be the change in the content of different 

polymers, as detailly described in paragraph 2. From the practical 
perspective, having the effective mean of quality control that could 
guarantee the compliance with REACH and in the same time provide 
additional useful information on the product would be useful from the 
point of view of both investors and consumers, as it could add some 
assurance, regarding the use of the biocoal (as a commercial product and 
a commodity). This in turn could be important step towards wider 
introduction of biocoal into the markets. Any solid fuel is ultimately 
used for other energy conversion processes (predominantly combus-
tion). Therefore, it would be useful if some peaks, corresponding to 
established parameters for solid fuels, were determined. This is because 
often performance of the fuel in a particular end-use process can be 
assessed by using traditionally established results of proximate and ul-
timate analyses. As shown in Table 3, stoichiometry is extremely 
important in combustion [181,182], whereas the content of N and S is 
important in terms of respective emissions of NOx and SOx [183–190]. 
For the fast pyrolysis processes, the O/C ratio is significant and has a 
profound influence on the quality of the obtained bio-oil [191,192]. 

Moreover, results of proximate and ultimate analyses, with special 
emphasis on the result of the calorific value of the fuel, are the values 
that are widely recognized parameters in terms of various certifications 
and standards. An extensive amount of data is needed for various ma-
terials in order to make qualitative analytical techniques feasible, form 
that point of view. To some extent, it has already been done, as shown by 
this manuscript. 

To some extent novel techniques can give a lot of valuable infor-
mation, which could be either supplementary or to some extent, replace 
the existing methods, as shown in Table 3. Knowledge about the pres-
ence of the particular functional groups and qualitative assessment of 
their abundance might not necessarily be a straight predictor of per-
formance. However, it is well known that the content of the polymers 
present in biomass (cellulose, hemicellulose and lignins) plays a signif-
icant role in pyrolysis and combustion (see Table 3). This might not be 
enough for gaining in-depth knowledge of the energy conversion process 
that ultimately uses solid biofuel. Nonetheless, this might be enough for 
quality control, especially taking into account the rapid character of 
these tests. In the beginning, one would need to perform extensive suite 
of tests in order to determine performance of the biocoal of particular 
origin (feedstock, torrefaction temperature and residence time) in the 
specific end-use process (pyrolysis/gasification/combustion), including 
detailed fibre analysis as well as analysis of functional groups in order to 
find groups giving some correlation with performance of the end-use 
process (Fig. 1 – route A). One could build on existing knowledge by 
focusing the search on functional groups reported so far in the literature 
taking into account the reported connection between the abundance of a 
particular polymer and the abundance of a certain functional group. 
Following with establishing of the relationship between the abundance 
of particular functional group(s) and the performance of the fuel in a 
certain end-use process would reduce the necessary amount of work 
(Fig. 1 – route B). This would limit the need for quantification of the 
content of the aforementioned polymers by time-consuming “wet 
chemistry” methods. Understanding the relationship between the con-
tent of certain functional group(s) in an end-use process would subse-
quently allow setting minimum and maximum levels of the content of 
these groups in the particular fuel. Using that could consequently allow 
using relative sizes of certain peaks as indicators for quality control 
purposes (Fig. 1 – route C), especially in-house QC (see Fig. 2). The use of 
published data should be treated with caution and preferably relevance 
of a particular peak should be confirmed by more than one source as 
some peaks might overlap. One such example is shown in Table 1, where 
C––O stretching appearing at approx. 1730 cm�1 for FTIR is attributed 
by several authors both to lignin and hemicellulose [137–139,144,145]. 
This issue could be mitigated by not focusing on a single peak but 
instead finding a couple of peaks to be used as performance indicators. 
Although using peaks exclusively from one spectrum would be sensible 
from the cost efficiency perspective, the use of peaks from both FTIR and 

Table 2 (continued ) 
Wavenumber, 
nm 

Peak 
assignment 

Corresponding 
compound(s)/ 
polymer(s) 

Comments Ref. 

lignocellulose 
constituents: 
Glucose (Glu), 
total lignin (TL), 
and total sugar 
(TS); of coconut 
husk samples 
through their 
dried spectra 
and the wet 
spectra gave 
useful reasons 
for sugar models 
but not for 
lignins. 

O–H stretching 
from 
polysaccharides  
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NIR spectra could positively influence the reliability of QC. 
Last, but not the least cost of the equipment should be taken into the 

account, along with the cost of its maintenance, as this would be the key 
cost of the laboratory, thus influencing the feasibility of the QC overall. 
Qualitative assessment of the potential suitability of various analytical 
techniques for QC of Biocoal is given in Table 4. 

Table 4 shows both some advantages and disadvantages of the novel 
analytical techniques. Indeed, the fact that FTIR and NIR can only give 
qualitative results is a disadvantage as additional research needs to be 
initially performed in order to set the boundaries for specific peaks, 
which could subsequently serve as an indicator of the quality of the 
product. Any quality control only gives “binary” results – i.e., tested 
material can either conform with the set standard or not, therefore 
boundaries defined for selected peaks could most certainly serve this 
purpose, thus being suitable as a quality control tool. However, it is 
possible that separate boundaries would need to be set for biocoal, 
produced from different feedstocks. Here NMR has a clear advantage. 
However, it has some serious disadvantages as well, as sample prepa-
ration is time-consuming, and current prices would make such a quality 
control lab very costly. It seems better to use NMR as an auxiliary 
technique that could help to set the aforementioned boundaries for fast 
and cheap techniques, such as FTIR and NIR. 

Ability to give the result quickly, quick and straightforward sample 
preparation and relatively low cost of the analytical equipment could 
definitely be considered as the advantages of FTIR and NIR. This makes 
those two techniques particularly useful for in-house QC for biocoal 
production plants when the result is needed fast to minimize the losses 
due to protracted production of the fuel not conforming to standards. 

Overall it can be concluded that:  

� Techniques giving qualitative results seem overall sufficient for the 
purpose of quality control of the solid fuels  

� Rapid testing techniques, such as FTIR ATR or NIR might prove 
feasible for quality control of solid biofuels, such as Biocoal, espe-
cially for in-house QC  

� There is a need for more research to establish sufficient data covering 
all aspects for its safe utilization and in order to establish a rela-
tionship that would allow to quantitatively determine the values that 
could be related to results obtained with qualitative methods. 
Traditional fibre analysis seems to be suitable as well as some novel 
techniques, such as NMR. 

Further research is needed, in order to establish a novel, qualitative, 
rapid testing analytical techniques, such as FTIR ATR or NIR, as QC 
techniques for Biocoal, most of the work being the identification of 
particular wavenumbers/bandwidths relevant for the properties of the 
solid fuel. It would be even better if correlations between such charac-
teristic wavenumbers/bandwidths and performance of the solid fuels in 

Table 3 
The advantages of characterizing the Biocoal fuel characteristics and relevant 
associated parameters.  

Characteristics/ 
analysis 

Analytical techniques/ 
methods of 
determination 

Advantages, disadvantages 
and possible use of 
information 

Proximate analysis  � Gravimetric methods  
� Bomb calorimetry  

☑ Possible to perform with 
only basic laboratory 
equipment (balance and 
furnace)  

☑ Cheap  
☑ Results necessary to 

perform mass and energy 
balance of combustion  

☑ Allow simple 
determination of mass 
yield of biocoal by an 
indirect method [193]  

☑ Time-consuming 
Ultimate analysis  � Dedicated (CHNS*) 

analysers  
☑ Allow calculation of the 

stoichiometric amount of 
oxygen/air [181,182]  

☑ Allow estimation of the 
change of NOx emissions 
(“fuel NOx”) and SOx 
depending on the used fuel 
** [183–190] 

Fire and explosion 
characteristics  

� 20 L or 1 m3 spherical 
vessel  

� Hartmann apparatus  
� Layer Ignition 

Temperature 
Apparatus  

� Self-Ignition (in 
volume) Temperature 
apparatus  

� Goldberg-Greenwald 
apparatus  

☑ Parameters necessary for 
ATEX assessment and risk 
prevention (fire and 
explosion safety) [194]  

☑ Assessment of reactivity 
[33,85,195–197]  

☑ Knowledge about ignition 
and flame propagation [34, 
197–199]  

☑ Time-consuming 

Ash (oxide) analysis  � Atomic Absorption 
Spectroscopy (AAS)  

� Inductively Coupled 
Plasma – Optical 
Emission 
Spectrometry (ICP- 
OES)  

� Inductively Coupled 
Plasma – Mass 
Spectrometry (ICP- 
MS)  

� Flame Emission 
Spectrometry (FES)  

☑ Allows determination of 
ash composition  

☑ Allows estimation of 
slagging/sintering/fouling 
behaviour of a particular 
fuel in combustion or 
gasification [43,200–205]  

☑ Allows to estimate the 
severity of high- 
temperature corrosion in 
boilers [206,207]  

☑ Time-consuming 
(especially AAS due to the 
use of different lamp for 
each element) 

Thermogravimetry 
(TGA/DTA)  

� TGA/DTA  ☑ Characterisation of solid 
fuel for combustion [119, 
208–210]:  
o Kinetics  
o Ignition  

☑ Characterisation of solid 
fuel for pyrolysis [138,208, 
211]:  
o Kinetics  
o Reactivity 

Functional groups  � Fourier Transform 
Infra-Red spectros-
copy (FTIR) 

� Near Infra-Red spec-
troscopy (NIR)  

� Nuclear Magnetic 
Resonance (NMR)  

☑ Rapid characterisation (not 
NMR)  

☑ Easy sample preparation 
(not NMR)  

☑ Qualitative results (not 
NMR)  

☑ Possible to use for 
assessment of compliance 
with REACH regulations  

☑ Useful for characterisation 
for pyrolysis *** [17,18, 
138]:  
o Kinetics  
o Oil yield  

Table 3 (continued ) 
Characteristics/ 
analysis 

Analytical techniques/ 
methods of 
determination 

Advantages, disadvantages 
and possible use of 
information  

o Oil composition  
☑ Useful for characterisation 

for combustion *** [23,24, 
212]:  
o Kinetics  
o Emissions  

☑ Useful for characterisation 
for densification 
(pelletizing, briquetting, 
etc.) *** [16,213] 

* - not all analysers allow determination of S content. 
** - requires information on fuel N/S conversion to NOx/SOx. 
*** - indirectly, as certain functional groups might be used as an indicator of 
changes in the content of particular polymers between feedstock and biocoal. 
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subsequent energy conversion processes are established. Moreover, it 
seems sensible to note that the dissemination of knowledge is critical. 
Widely renowned databases for solid biofuels, such as Phyllis [215], 
should be expanded in order to include the aforementioned spectral 
characteristics. 
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