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The great anthropogenic alterations occurring to carbon availability in the oceans

necessitate an understanding of the energy requirements of species and how changes in

energy availability may impact biodiversity. The deep-sea floor is characterized naturally

by extremely low availability of chemical energy and is particularly vulnerable to changes

in carbon flux from surface waters. Because the energetic requirements of organisms

impact nearly every aspect of their ecology and evolution, we hypothesize that species

are adapted to specific levels of carbon availability and occupy a particular metabolic

niche. We test this hypothesis in deep-sea, benthic invertebrates specifically examining

how energetic demand, axes of the metabolic niche, and geographic range size vary

over gradients of chemical energy availability. We find that benthic invertebrates with

higher energetic expenditures, and ecologies associated with high energy demand,

are located in areas with higher chemical energy availability. In addition, we find that

range size and location of deep-sea, benthic species is determined by geographic

patterns in chemical energy availability. Our findings indicate that species may be

adapted to specific energy regimes, and the metabolic niche can potentially link scales

from individuals to ecosystems as well as adaptation to patterns in biogeography

and biodiversity.

Keywords: energetic, metabolism, adaptation, diversity, niche

INTRODUCTION

As demonstrated by several environmental indicators anthropogenic impacts on the environment
continue to exhibit a long-term, post-industrial rise (Steffen et al., 2015). This human induced
environmental degradation has led to significant declines in global biodiversity including increasing
numbers of endangered species and decreasing abundances of key taxa (Lotze et al., 2006;
Butchart et al., 2010). Alarmingly, this decline of species diversity in response to climate
change is a factor of four greater in marine systems as compared to terrestrial systems (Blowes
et al., 2018). Much research has been dedicated to alterations of the marine environment as
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a function of several key parameters – including temperature,
acidification, oxygen, and pollution – and how these have and will
impact marine communities (Kennish, 1997; Harley et al., 2006;
Vaquer-Sunyer and Duarte, 2008; Kordas et al., 2011; Doney
et al., 2012). Much less research exists in characterizing how
marine ecosystems will respond to the immense anthropogenic
alterations to carbon cycling and availability, especially in the
deep oceans, the largest habitat on Earth and the key in long-term
sequestration of carbon.

We propose an eco-evolutionary adaptive theory of the
metabolic niche (Wilson et al., 2011) where species are
adapted to specific energy regimes which scale with biodiversity
patterns. We hypothesize that the species observed in a locality
are dependent on the energy content of that habitat. Here,
we develop this hypothesis through a series of 10 linked
propositions, from first principles of metabolic ecology through
to biogeographic patterns in metabolic adaptation. For each of
these propositions, we review current support and theory from
a general eco-evolutionary viewpoint and specifically with a
deep-sea perspective. The deep-sea benthos provides an ideal
test system for metabolic hypotheses because the system is
productivity limited, experiences little temperature variation,
and has documented clines over productivity gradients (Gage
and Tyler, 1991; Tittensor et al., 2011; McClain et al., 2012a;
McClain and Barry, 2014;Woolley et al., 2016). The deep seafloor,
which encompasses depths below 200 m, covers most of Earth
and is an especially energy-deprived system (Gage and Tyler,
1991). Primary production is virtually absent in these dark
depths. The carbon that sustains most deep-sea seafloor life
is sequestered from sinking particulate organic carbon (POC)
derived from primary production in the euphotic zone (Gage and
Tyler, 1991). However, temperature is relatively constant over
the deep seafloor varying between -1 and 4◦C (Gage and Tyler,
1991), allowing us to examine the role of productivity largely
independent of the role of temperature. Previous studies have
also demonstrated that biodiversity patterns in the deep ocean
are controlled primarily by productivity with a weaker or non-
existent effect of temperature (Tittensor et al., 2011; McClain
et al., 2012a; McClain and Barry, 2014; Woolley et al., 2016).
For many of the propositions, we bring new data from deep-
sea, benthic invertebrates to bear to quantify and specifically
test the hypotheses.

PROPOSITION 1: LIFE REQUIRES
ENERGY

Premise
Energy is the currency of life, intrinsically linked to ecological
(Brown et al., 2004) and evolutionary (Van Valen, 1976;
Bambach, 1993) processes and driving fitness through
growth, maintenance, and reproduction (Van Valen, 1976).
Four basic forms of energy affect biological systems –
photosynthetically active radiation; thermal kinetic energy
as indexed by temperature; mechanical energy in the form
of movement of air, water, and earth; and chemical potential
energy stored in reduced carbon compounds (Denny, 1999;

Clarke and Gaston, 2006) – encompassing the fundamental axes
which together form an organism’s energetic niche.

Metabolic rate is the rate of chemical energy uptake,
transformation, and allocation (Brown et al., 2004). In
heterotrophs, this energy is obtained by oxidizing carbon
compounds; the respiration rate of chemical energy is the
metabolic rate (Brown et al., 2004). Thus, the energetic needs
of an organism are its total organic carbon demand. We define
carbon availability as the amount of organic carbon available for
an organism to consume and in part can be viewed analogous to
the more general term of food.

Here, we restrict our use of the term energy to chemical
potential energy, or organic carbon, following the conventions
of species-energy theory (Wright, 1983; Wright et al., 1993;
Hurlbert, 2004, 2006). For terrestrial and shallow-water systems,
productivity, e.g., net primary production, is often used as a
metric for chemical energy. For the deep-sea benthos, organic
carbon availability is often quantified as either POC flux or
organic carbon in the sediment. Note that organic carbon may
also arrive to the seafloor through large food parcels such
as whale carcasses, macroalgae, jellyfish, and wood. However,
these larger food falls are isolated and scarce both in time
and space, due to the immense scale of ocean basins, so while
they are locally important at certain times, background levels
of organic carbon availability are more general drivers of deep-
sea diversity. Promisingly, previous studies have demonstrated
that macroecological patterns in the deep-sea benthos are highly
correlated with POC flux (Tittensor et al., 2011; McClain
et al., 2012a; McClain and Barry, 2014; Woolley et al.,
2016). This suggests that POC represents a reasonable metric
for understanding the chemical energy available to deep-sea
benthic organisms.

Consequence
This basic requirement of energy can be quantified for each
organism and potentially inform about biological patterns from
the individual up to the ecosystem.

PROPOSITION 2: AGAINST A
BACKDROP OF GLOBAL CHANGE IN
ORGANIC CARBON AVAILABILITY,
UNDERSTANDING THE ENERGETIC
NEEDS OF ORGANISMS IS VITAL

Premise
In the oceans, the combination of global phytoplankton
production declines over century to decadal timescales
(Behrenfeld et al., 2006; Boyce et al., 2010), with more
varied responses at regional and local scales (Harding and
Perry, 1997; Boyce et al., 2010; McQuatters-Gollop et al., 2011;
Rousseaux and Gregg, 2015), indicates significant heterogeneity
of anthropogenic impacts and a major reworking of carbon
cycling. This alteration of organic carbon availability is predicted
to increase with continued anthropogenic disturbance (Chust
et al., 2014; Bryndum-Buchholz et al., 2019) potentially leading to
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15–30% decreases in biomass in some ocean basins and 20–80%
increases in others (Bryndum-Buchholz et al., 2019).

Consequence
The metabolic niche and its relationship to biodiversity is
important because of these immense anthropogenic alterations
to carbon cycling and availability. Against this backdrop of
global change in organic carbon availability, understanding how
organisms respond to a changing energetic environment is
critical. Changing organic carbon availability can affect aggregate
properties of ecological communities such as the number of
individuals and species (Wright, 1983; Wright et al., 1993; Brown
et al., 2004), but the extent to which species with different
carbon requirements and adaptations will vary in their responses
to a novel energetic environment is not well known. This has
consequences for how we expect ecological communities to be
structured, and for predicting winners and losers as we progress
into the Anthropocene.

PROPOSITION 3: THE DEEP-SEA
BENTHOS IS PARTICULARLY
VULNERABLE TO ALTERATIONS IN
ORGANIC CARBON AVAILABILITY

Premise
As previously stated, below 200 m the oceans are chemical
energy-deprived systems (Gage and Tyler, 1991; McClain et al.,
2012a), with deep-sea floor communities reliant on primary
production occurring in surface waters sinking in the form
of POC (Gage and Tyler, 1991). This supply of chemical
energy to the benthos varies as a function of depth because
of remineralization and surface primary production, also often
decreasing with distance from productive coastal regions (Gage
and Tyler, 1991). On the abyssal plains, one of the largest habitats
on Earth, with an average depth of 4.4 km, the downward flux of
POC represents less than 1% of surface production (Lampitt and
Anita, 1997) resulting in an extremely food-limited environment,
albeit one with considerable energetic patchiness at a range of
spatial scales. The decrease in environmental energy availability
is mirrored by substantial decreases in biomass and abundance
with depth (often used as a proxy for total energy availability)
in benthic faunal groups ranging from bacteria to large mobile
fish and invertebrates (Rex et al., 2006; Wei et al., 2010b;
McClain et al., 2012a).

Consequence
Nearly every aspect of deep-sea benthic ecology and evolution
is driven by this flux of carbon from the sea surface (Smith
et al., 2008), and “[t]he presence and persistence of life itself on
the ocean-floor can be viewed as a response to organic inputs”
(Gooday, 2002). In contrast to shallower ecosystems (Tittensor
et al., 2010), deep-sea diversity is primarily driven by patterns
of chemical energy and not by other forms of energy such as
thermal energy, indexed by temperature (Woolley et al., 2016). As
noted by Smith et al. (2008) “Many aspects of ecosystem structure

and function in the abyss are strongly modulated by the rate and
nature of food flux to the seafloor. Climate change and human
activities will alter patterns of sinking food flux to the deep ocean,
substantially impacting the structure, function and biodiversity of
abyssal ecosystems.”

PROPOSITION 4: SUBSTANTIAL
VARIATION EXISTS IN METABOLIC
NEED, I.E., ENERGETIC NEEDS,
ACROSS TAXA EVEN AFTER
ACCOUNTING FOR TEMPERATURE AND
BODY SIZE

Premise
Under the Metabolic Theory of Ecology (MTE) (Brown et al.,
2004), energy is an allocated resource translated into work and
mass and further allocated into the fitness-enhancing processes
of survival, growth, and reproduction. The energy demand, i.e.,
the metabolic niche, of an organism in the MTE is largely set
by first principles governing the distribution of materials and
temperature-related kinetics as indexed by temperature and body
size (Gillooly et al., 2001). Metabolic rate can be described by the
power-law relationship between organismal size, temperature,
and metabolic rate:

B = β0M
be−E/kT

where B is the metabolic rate, β0 is a normalizing constant, M is
mass, b is the scaling coefficient, T is temperature, E the activation
energy of the respiratory complex, and k is Boltzmann’s constant
(Gillooly et al., 2001). Substantial variation–at least 1–2 orders
of magnitude–exists in metabolic rates even when standardized
for organismal mass and temperature (Glazier, 2005) even among
deep-sea organisms (McClain et al., 2012a).

Data and Analysis
We analyze the global dataset of Brey et al. (2010) on relationships
between mass, elemental composition and energy content for
marine invertebrates to quantify the relationship between mass
and respiration rate. We limited the dataset to include only
benthic, marine, adult measurements. This includes data for
13,478 individuals from 444 species, 336 genera, 46 orders,
29 classes, and 14 phyla ranging in depths from 1 to 4,420
meters. Complete details on the construction of the database can
be found in Brey et al. (2010). Original respiration and mass
data from the literature included a wide array of measurement
units. All of these were converted into respiration into the
energy unit of Joules per day and all masses were converted
from dry, ash free dry, wet, or carbon content into Joules.
From the database, we analyze log10 of respiration rate (J) as
a function of log10 of mass (J) and the inverse of temperature
(◦K) using a linear model in R Package (R Development
Core Team, 2019). The general relationship was visualized
utilizing ggplot (Wickham, 2009). Residuals from the linear
model were further analyzed with ANOVA to test for significant
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differences in the residuals among taxa. Residuals were visualized
with ggridges (Wilke, 2018). We then test whether different
phyla vary in their typical departure from this relationship
by testing for significant differences in the residuals between
phyla using ANOVA.

Consequence
Respiration rate is strongly and positively related to mass
(Figure 1, p < 0.0001) across the 13,478 marine invertebrate
individuals in our dataset. Even after correcting for mass
and temperature, metabolic rate residuals exhibit considerable
variation (Figures 1, 2). Moreover, this variation is in part
related to ecological and evolutionary differences in higher
level taxa (Figure 2, ANOVA: p < 0.0001, R2 = 0.24). This
implies that the energetic need of organisms is set by factors
beyond the first principles of distribution of materials and
temperature-related kinetics (Gillooly et al., 2001). We thus
propose an adaptive model of the metabolic niche where
species are adapted to specific energy regimes to explain this
residual variation.

PROPOSITION 5: THIS VARIATION IN
METABOLIC NEED IS ADAPTIVE, I.E.,
SPECIES HAVE A METABOLIC NICHE

Premise
The metabolic niche represents a series of energetic tradeoffs
within an organism that sets overall metabolic need, and is
comprised of axes that govern the anatomy, physiology, and
behaviors of an organism that increase or decrease these energetic
costs. Under this model, we propose that species occur on a
continuum of energetic need, from “high-energy taxa” (HET) to
“low-energy taxa” (LET), and are thus adapted specifically for
temporally and spatially varying levels of carbon availability.

Consequence
This variation in energetic need spans evolution across the
tree of life (Uyeda et al., 2017). Major clades of vertebrates
exhibit significant differences in scaling, suggesting fundamental
evolutionary shifts in the adaptation of metabolic need (Uyeda
et al., 2017), and comparative studies have revealed other
generalities too, e.g., between endotherms and ectotherms
(Nagy, 1987), trophic levels (Carbone et al., 2007), passerines
and non-passerines (McNab, 2016), foraging (Childress,
1995), locomotory (Voight and Speakman, 2007; Shen et al.,
2010) and predator avoidance strategies (McNab, 1986).
Overall, this variation suggests that metabolic rates, while in
part controlled by first-order principles, vary considerably
within and across clades (Makarieva et al., 2008), and that
this reflects trade-offs in energetic demand. Importantly, the
links between metabolic rates and well-studied ecological
traits or other well-understood mechanisms could be
generalized to set up testable predictions in other groups
and environmental settings.

PROPOSITION 6: A RELATIONSHIP
EXISTS BETWEEN ENVIRONMENTAL
AVAILABILITY OF CARBON AND
METABOLIC NICHE

Premise
Given this variation in energy needs across the tree of life,
we might also expect to observe a relationship between the
environmental availability of carbon and the metabolic niche.
However, previous research indicates that temperature- and
mass-corrected basal metabolic rates do not appear to vary
over carbon gradients (Childress, 1995). One possibility to
reconcile our theory with this finding would be if basal metabolic
rates themselves, as the lowest basic need of organism, were
governed by fundamental first principles (Brown et al., 2004)
and evolutionarily conserved. In this scenario, field metabolic
rates or active metabolic rates indicating work and fitness beyond
maintenance may more strongly map onto environmental
availability of carbon.

Alternatively, total metabolic demand, accounting for
differences in organismal mass, may vary with carbon
availability, even if per unit mass metabolic rates do not.
To restate, the primary ecological and evolutionary energetic
response of species to changes in carbon availability is alterations
in body size. Indeed, reductions in body size, and thus total
metabolic demand, with declining POC are well documented in
the deep sea (Thiel, 1975, 1979; Rex et al., 2006; Wei et al., 2010a;
McClain et al., 2012b).

Data and Analysis
Allen (2008) compiled and taxonomically standardized bivalve
data from samples collected with an epibenthic sledge during
research cruises from 1962 to 1979. The dataset includes 204,068
individuals representing 527 bivalve species from 11 basins
and 255 sites ranging in depth from 68 to 5875 m (McClain
et al., 2012c). Species-level maximum body size (biovolume)
was collected from the literature and biovolume was calculated
as length∗width2 (details can be found in McClain et al.,
2012b). Intraspecific variation in biovolume is much less than
interspecific variation and the choice of using median or
maximum body size in mollusks is unlikely to mask ecological
patterns (McClain, 2004). Biovolumewas converted to wet weight
utilizing the conversions in Powell and Stanton (1985). Utilizing
published scaling equations for bivalve families and orders
(Vladimirova et al., 2003), we calculated metabolic rate (mW).
Body size data was not available for all species, reducing the
final analyzed dataset down to 475 bivalve species. We estimated
POC flux (gC/m2/yr) from Lutz et al. (2007) for each site. For
each species, we calculated the mean POC across all station
occurrences for that species. The Lutz et al. (2007) study uses
empirically derived sediment trap POC flux estimates compared
to remotely sensed estimates of net primary production and
sea surface temperature. These data were used to develop
an algorithm with coefficients predicting annual POC flux at
a given depth from remotely sensed data. We analyzed the
log10 of respiration rate (mW) as a function of log10 of POC
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FIGURE 1 | Log10 Metabolic Rate (Joules per Day) verses Log10 Mass (Joules) for marine invertebrates. Data represent a global database from Brey et al. (2010) on

relationships between mass, elemental composition and energy content for marine invertebrates. This includes data for 13,478 individuals from 444 species, 336

genera, 46 orders, 29 classes, and 14 phyla ranging in depths from 1 to 4,420 meters. Colors denote large negative (red) to large positive (orange) residuals of the

relationship between respiration and mass.

FIGURE 2 | Distribution of residuals for each of 14 phyla from a model fitting Log10 Metabolic Rate (Joules per Day) as a function of Log10 Mass (Joules) and

1/Temperature (◦K), using data from the same 13,478 individuals from 444 species shown in Figure 1. Colors denote large negative (red) to large positive (orange)

residuals of the relationship between respiration and mass.

flux and using a linear model in R Development Core Team
(2019). The general relationship was visualized utilizing ggplot
(Wickham, 2009).

Consequence
POC is a significant predictor of total bivalve metabolism
(p < 0.0001) among 475 deep-sea bivalve species across the
Atlantic Ocean (Figure 3). The intercepts (p < 0.0001) but

not the slopes (p = 0.0627) of this relationship vary among
bivalve orders. These results suggest that a species’ total energetic
demand, as set by body size, is concordant with energy
available in the environment. Additional evolutionary history
and ecology associated with higher taxonomic levels also sets
additional energetic needs. Thus while body size is a major
axis of the metabolic niche, different intrinsic factors of taxa
define the other axes.
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FIGURE 3 | Log10 Maximum Metabolic Rate (mW) verses Log10 Mean Standardized Carbon Flux (gC m-2 d-1) for 475 species of deep-sea bivalves across the

Atlantic Ocean. Black line represents linear regression for all species and gray area represents the 95% confidence interval around the linear fit.

PROPOSITION 7: THE METABOLIC
NICHE IS THE SUM OF A SERIES OF
ENERGETIC TRADEOFFS, THUS THE
REPRESENTATION OF ECOLOGICAL
TRAITS, AS SET BY THEIR METABOLIC
REQUIREMENTS, SHOULD VARY WITH
ENVIRONMENTAL AVAILABILITY OF
CARBON

Premise
Energetic niche axes can be defined as specific functional traits
that dictate overall energetic demand. Thus, quantifying the
underlying functional traits and tradeoffs that impact the balance
between metabolic intake and demand can be used to define the
energetic niche. We can quantify these functional trait tradeoffs
and begin to identify the traits of HET and LET, by either
exploring how they impact metabolic demand or exploring how
functional traits vary over a carbon energy gradient.

We know that energy demand is impacted by the functional
traits of the organisms. For example, metabolic rates are higher
in endotherms due to the increased costs of maintaining
homeostasis (Nagy, 1987). Metabolic rates increase with
increasing trophic level (McNab, 1986; Nagy, 1987) in vertebrates
(Carbone et al., 2007) and invertebrates (Vladimirova, 2001;
Vladimirova et al., 2003) alike, potentially reflecting the increased
need for locomotor capacity and range to capture and search
for resources at lower densities for carnivores versus herbivores
(Tamburello et al., 2015). In the deep sea, temperature- and
mass-corrected metabolic rates among species decline with depth
in pelagic fish and crustaceans because the attenuation of light
leads to a switch from visual-base foraging and a subsequent
decline in need for locomotor capacity (Childress, 1995). Prior
research indicates that at broad levels, physiological and trophic
adaptations lead to a LET to HET spectrum.

A number of traits are known to co-vary with spatial clines
in carbon availability. Metabolically expensive morphological
characteristics, such as the production and maintenance of
complex shells (McClain et al., 2004; McClain, 2005), may
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be precluded in low energy environments. The environmental
energy availability is also reflected in the trophic niches with, for
example, suspension feeders and specialist carnivores declining
in importance with decreasing carbon availability (Sokolova,
1960; Gage and Tyler, 1991). In some circumstances, lower
carbon availability and resource competition may drive species
to exploit and specialize on new carbon resources (Sanders,
1977), as observed in deep-sea polychetes (Jumars et al., 1990)
and, anecdotally, in the occurrence of wood- and bone-eating
deep-sea specialists (Turner, 1973; Rouse et al., 2004; Johnson
et al., 2010). In general, as carbon availability increases, so too
does the prevalence of direct development, while the prevalence
of planktonic larval stages decreases (McClain et al., 2014).
These findings suggest that some reproductive strategies are too
energetically expensive at low carbon availabilities, or arise only
when energy is available, and thus may be restricted to HET.

Data and Analysis
Methods and data are fromMcClain et al. (2018). Data, including
carbon flux, were originally taken from McClain et al. (2012b).
In brief, data on the taxonomy, maximum and minimum
water depth in meters, maximum and minimum longitude, and
maximum and minimum latitude were compiled for bivalves
in the Northeast Pacific and Northwest Atlantic through an
extensive search of the primary literature and online databases.
The final dataset includes complete information for 1578 species
from 75 families.

Over each species’ biogeographic range, we estimated POC
flux (gC/m2/yr) from Lutz et al. (2007) model (equal-area grid of
9 km resolution) as described above. These values were previously
determined as part of another study (McClain et al., 2012b).
For each species, McClain et al. (2012b) quantified the mean,
median, and standard deviation of carbon flux over their known
latitudinal and depth ranges. For the analyses here, we used
mean carbon flux only as mean and median fluxes are highly
correlated (Spearman’s rho = 0.94, p < 0.0001). We created a
range map for each species based on its latitudinal range. This
range map was then overlain onto a bathymetry layer (GEBCO
08, 30 arc-second grid, September 2010 release)1 and cropped to
regions between the minimum and maximum reported depth.
We assumed a species’ range represents an elongated band with
North/South limits set by maximum and minimum reported
latitude. East/West limits were set by depth, instead of longitude,
becauseNorth American coasts run approximately south to north
with species occurring in depth bands along the continental
margins. POC flux values were pulled for each cell within a
species’ biogeographic range as defined minimum and maximum
latitude and depth.

We classified species according to a framework for ecological
modes that is based on the first principles of functional
morphology and developed by Bambach et al. (2007) and Bush
et al. (2007). The ecological mode of a species is defined by
three axes: tiering, motility, and feeding. Each axis consists of
six categorical states. The tiering axis consists of pelagic, erect,
surficial, semi-infaunal, shallow infaunal, and deep infaunal.

1www.gebco.org

The motility axis consists of freely motile/fast; freely motile/slow;
facultatively motile/unattached; facultatively motile/attached;
non-motile/unattached; and non-motile/attached. The feeding
axis consists of suspension feeding, surficial deposit feeding,
mining, grazing, predatory, and other (for feeding strategies that
do not fit into the previous five feeding modes). Bush et al. (2007)
provide a full description of this ecospacemodel. Ecological mode
assignments weremade at the genus level. Huber (2010) describes
the life habits of individual bivalve families, and in the cases where
genera within families are known to differ from one another,
notes which genera differ and how they differ from other genera
in the family. All ecological assignments were based on the life
habits of the adult form. In the exceedingly rare cases where a
genus occupied more than one ecological category for a given
axis as an adult, the single ecological category that describes the
majority of species in the genus was chosen. For the modern
bivalve range dataset, we were able to assign ecological modes to
1,477 of 1,578 species by matching species to genera.

We conducted a correlation analysis of mean POC fluxes
among ecological modes, to elucidate which modes were
associated with HET and LET, comparing the mean POC values
determined with the Atlantic data to those determined with the
Pacific data using Spearman’s rho statistic to estimate a rank-
basedmeasure of association. This allowed us to examine whether
high-energy or low-energy ecological modes were consistently
found in high- or low-energy settings using independent lists of
species and independent ocean basins. We also tested whether
the representation of ecological modes differs between the
overall higher productivity Pacific Ocean and lower productivity
Atlantic Ocean. For the Atlantic and Pacific oceans separately, we
calculated the proportion of each species within each ecological
mode. We then calculated the difference in the proportion of
species within each ecological mode between the Atlantic and
Pacific oceans and compare that to the mean carbon flux of the
ecological mode. We predict that ecological modes more strongly
tied to higher POC fluxes will occur at higher proportions in
the Pacific compared to the Atlantic Ocean due to the overall
higher productivity in the Pacific. We tested this relationship
using a general linear regression model with mean POC flux of
the ecological mode as the independent and the Atlantic/Pacific
ratio of the proportion of species as the dependent variable.
Linear models were performed in R Development Core Team
(2019). The general relationship was visualized utilizing ggplot
(Wickham, 2009).

Consequence
Ecological niche axes in modern bivalves over oceanic scales
are correlated with the available environmental energy (McClain
et al., 2018; Figures 4, 5). More specifically, the basic functional
traits of feeding mode, tiering level, and motility level are
associated with their relative prevalence in low- or high-energy
settings (McClain et al., 2018). The strong consistency between
the rank orders of ecological modes based on carbon flux between
the Atlantic and Pacific Oceans, observed across independent
lists of endemic species, implies that the association between
ecological mode and carbon flux is also not an artifact of indirect
connections but, rather, a fundamental aspect of these ecological
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FIGURE 4 | Mean carbon flux of bivalve ecological modes in the Pacific

Ocean versus the mean carbon flux of ecological modes in the Atlantic

Ocean. Black line denotes the rank order correlation and the gray line

represents the one-to-one value line. Numbers refer to unique functional

combinations on three ecological mode axes: tiering, motility, and feeding.

Each axis consists of six categorical states. The tiering axis consists of 1

pelagic, 2 erect, 3 surficial, 4 semi-infaunal, 5 shallow infaunal, and 6 deep

infaunal. The motility axis consists of 1 freely motile/fast; 2 freely motile/slow; 3

facultatively motile/unattached; 4 facultatively motile/attached; 5

non-motile/unattached; and6 non-motile/attached. The feeding axis consists

of 1 suspension feeding, 2 surficial deposit feeding, 3 mining, 4 grazing, 5

predatory, and 6 other (for feeding strategies that do not fit into the previous

five feeding modes). Using independent values of mean carbon flux for

ecological modes by restricting the analysis to species endemic to either the

Atlantic or the Pacific, we find striking consistency in the ranking of carbon flux

requirements in bivalve ecological modes. The finding that most ecological

modes are typically associated with higher flux values in the Pacific Ocean is

not surprising; the Pacific is on average more productive than the Atlantic

(Marra et al., 1987; Lutz et al., 2007). From McClain et al. (2018).

modes (Figure 4). Ecological differences among ocean basins,
correlated with differences in POC, provide evidence that overall
food availability at broad scales can shape the ecology of the
regional to global biota (Figure 5). The differences in total carbon
flux between the Atlantic and PacificOcean determine the relative
proportion of specific bivalve ecologies (Figure 5). In the more
productive Pacific, HET ecologies are numerically dominant, and
conversely, in the less productive Atlantic, LET ecologies are
numerically dominant (Figure 5).

In many cases, empirical results are surprising and contrary
to theoretical predictions. Simultaneous hermaphroditism,
predicted to increase with decreasing environmental carbon
availability as low populations sizes would decrease the chance
of finding a mate, actually show the opposite pattern in deep-sea
mollusks (McClain et al., 2014). These kinds of counter-theory
findings suggest that much work is required in order to elucidate
patterns of functional tradeoffs and adaptation over energetic
gradients. Emerging research does support the presence of

FIGURE 5 | Changes in the proportion of ecological modes between the

Atlantic and Pacific Oceans verses the mean carbon flux of the ecological

mode. Increases in values indicate increased representation in the Pacific and

decreased representation in the Atlantic. Size of text indicates

ecological-mode proportion in the data set. Numbers refer to unique

functional combinations on three ecological mode axes, tiering, motility, and

feeding (see Figure 4 caption for details of numbers). We find that HET

associated with higher POC fluxes occur in greater proportion in the Pacific

Ocean and, conversely, LET occur in greater proportion in the Atlantic. From

McClain et al. (2018). Dashed line represents in proportions in the Atlantic and

Pacific Oceans. Solid line indicates significant regression line.

certain metabolically expensive traits that can be tied to low-
energy and high-energy taxa (LET vs. HET) such that their
relative representations vary over energetic gradients. We
analyzed the Atlantic deep-sea bivalve database with a general
additive model (GAM) to examine how two common traits,
suspension and deposit feeding, vary with POC flux. We find
(Figure 6) that the proportion of species of suspension feeding
increases (p < 0.0001, R2 = 0.19) and deposit feeding decreases
(p = 0.0030, R2 = 0.11) with increasing POC flux. Suspension
feeders require a continuous supply of suspended particulate
matter at a density high enough to offset the energetic costs
of filter feeding; thus, the link to regional carbon fluxes is
predictable (McClain and Lundsten, 2015).

PROPOSITION 8: METABOLIC NICHE
WIDTH INCREASES WITH INCREASING
ENVIRONMENTAL AVAILABILITY OF
CARBON

Premise
To the extent that biogeographic range is the realization of
a species’ niche (Slayter et al., 2013), processes controlling
the metabolic niche should impact the size and placement
of species distributions. For example, energetically expensive
traits such as large body sizes may be confined to high
energy regions (Fernández and Vrba, 2005; McClain et al.,
2012b). In addition, within a given environmental setting
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FIGURE 6 | Proportion of deep-sea, bivalve species that are suspension feeders and deposit feeders among sampling stations across the Atlantic Ocean verses

Log10 Standardized Carbon Flux (gC m-2 d-1) for the sampling station. Dashed line represent LOESS smooths and the solid lines represent general additive model

fits.

HET are predicted to possess larger biogeographic ranges as
home range sizes increase to incorporate the increased food
resources required (McNab, 1963; Brown and Maurer, 1987).
Energetics may also impact biogeographic range size because
of the connections with niche breadth (Slatyer et al., 2013):
higher energy availability can lead to smaller ranges because
species become resource specialists (Sircom and Walde, 2010;
Whitton et al., 2012). Range size is also impacted by the
degree of environmental variability in both time and space.
For instance, marine bivalves achieve broad geographic ranges
across broad, contiguous isotherms (Jablonski et al., 2013;
Tomasovych et al., 2015); widespread biogeographic ranges could
also be constructed through large and homogenous chemical
energetic landscapes. Environmental variables associated with
habitat productivity, especially temperature and precipitation,
are typically important predictors of species occurrence across
taxonomic groups (Bradie and Leung, 2017), supporting the
contention that the biogeographic ranges of many species are set,
at least in part, by chemical energy availability.

Two different hypotheses relate niche width more generally
to carbon availability: (1) Increased carbon availability increases
the amount of a preferred resource allowing species to decrease
their consumption of less optimal resources, i.e., specialization
(Evans et al., 1999). Lower food availability may favor generalists,
e.g., scavengers, so that any carbon resources can be utilized,
expanding the niche. These hypotheses predict that niche width,
or generalism, exhibits a negative relationship with carbon
availability. (2) Alternatively, low carbon availability could favor
specialization on previously underutilized carbon sources as
energy sources become limited, leading to narrow niche widths
(Sanders, 1977).

Measuring niche breadth directly is difficult. However, we can
use geographic range as proxy, allowing us to test hypotheses.
Geographic range is known to reflect niche width such that
specialization is associated with smaller geographic ranges
(Slayter et al., 2013).

Data and Analyses
We examine this relationship between geographic range size,
as a proxy for niche width, and mean POC across the
geographic range for gastropod species across the Atlantic
Ocean. Data were compiled by McClain et al. (2018) in an
extensive search of the primary literature and online databases
resulting in complete information a 3,162 species from 100
families. Data include taxonomic information from subclass
to species, synonymies, maximum and minimum water depth
in meters, maximum and minimum longitude, and maximum
and minimum latitude. Biogeographic range and POC were
quantified for each gastropod species by the methods described
in the Proposition 6 for bivalves. Total range size was calculated
as the number of 1◦ by 1◦ cells assuming that a species
occurs at all sites across its latitudinal and depth range. For
the range size verses mean carbon flux, we utilized a GAM
to account for potential non-linear effects. The full model
also includes other known variants of range size including
temperature, mean latitude, mean depth, and species biovolume.
The GAM was implemented using the mgcv package in R
(Wood, 2011).

Consequence
After accounting for temperature, body size, latitude and depth,
we find a significant and positive relationship between geographic
range size of Atlantic gastropods and mean POC (p < 0.0001,
Figure 7). Increasing temperature, body size, depth, and latitude
also correlated with increases in range size (p < 0.0001 for all
independent factors) with the overall model accounting for 41.9%
of the variation.

Lower carbon availabilities produce smaller geographic range
sizes and potentially narrow niche widths. Increases in food
availability correlate with larger ranges. This positive correlation
is in contrast to most theories suggesting that higher carbon
availability should lead to smaller ranges (Evans et al., 1999;
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FIGURE 7 | Geographic range size (1◦cells) of marine gastropods from the Atlantic Ocean verses Log10 Mean Carbon Flux (gC m-2 d-1). General additive model

relationship is shown for the conditional relationship once body size, mean depth, mean latitude, and temperature are accounted for.

Bonn et al., 2004; Sircom and Walde, 2010; Whitton et al.,
2012). One possible reason for this result is that the analyses
here control for a variety of other geographic, environmental,
and biological factors correlated with body size. Thus, the
negative pattern between productivity and range size may
reflect other factors correlated with productivity. For example,
body size increases with increasing productivity (McClain
et al., 2012b). Sanders (1977) originally proposed that low
productivity would favor specialization to consume previously
underutilized carbon sources. Indeed, the low productivity
encountered in the deep sea appears to select for specialization
on exotic carbon sources (Van Dover, 2000; Braby et al., 2007;
Bienhold et al., 2013).

PROPOSITION 9: IF METABOLIC
NICHES, AND ENERGETIC
REQUIREMENTS, VARY AMONG
SPECIES THEN COMPOSITIONAL
CHANGES ARE EXPECTED OVER
SPATIAL OR TEMPORAL GRADIENTS OF
ENERGY

Premise
Beta diversity (β-diversity) is “the extent of change in community
composition, or degree of community differentiation, in relation
to a complex-gradient of environment, or a pattern of
environments” (Whittaker, 1960, p. 320). β-diversity patterns
therefore emerge from the interaction between the environment
and the varying metabolic niche requirements (indexed by
biogeographic range and patchiness of occupancy within that
range) of all species in an assemblage. If metabolic niches,
and energetic requirements, do indeed vary among species then
compositional changes are expected over spatial or temporal
gradients of energy.

Consequence
In support of this, clines of β-diversity over energy gradients
have been documented among bacteria (Zinger et al., 2011),
invertebrates (McClain and Barry, 2010, 2014; McClain et al.,
2011, 2012c, 2016; Andrew et al., 2012), and vertebrates (He and
Zhang, 2009; Melo et al., 2009; Qian and Xiao, 2012), on land (He
and Zhang, 2009; Melo et al., 2009; Andrew et al., 2012; Qian and
Xiao, 2012) and in the ocean (McClain and Barry, 2010, 2014;
McClain et al., 2011, 2012c, 2016; Zinger et al., 2011), with the
rate of this turnover set by both niche width and the intensity of
the environmental gradient in energy availability. At a taxonomic
level, species or clades with comparatively higher metabolic
demands should exhibit higher rates of turnover (Soininen et al.,
2007a,b), because HET will be more sensitive to changes in
environmental energy. Any reduction in energy should push
HET increasingly near to their energetic minimum requirements.
β-diversity does vary greatly among taxa with different body
masses, trophic levels, and thermoregulation as predicted from
energetic theory based on how these factors control metabolic
demand (Soininen et al., 2007a,b).

Despite the overall paucity of energy, the deep seafloor
supports high alpha diversity, which may be comparable to
much more productive ecosystems such as coral reefs or tropical
rainforests. This paradox of seemingly high diversity in a low-
energy system is well treated in the deep-sea literature (McClain
and Schlacher, 2015) but the most influential idea is the
patch-mosaic hypothesis (Grassle and Sanders, 1973). Grassle
posited that interactions between the spatially heterogeneous
fall of POC and microscale topography such as burrows and
mounds, or feeding trails of large mobile deposit feeders, create
a mosaic of centimeter scale patches of high and low energy
availability (Grassle, 1989) which – unlike in shallow water
where patches are homogenized quickly (days to weeks) due
to frequent bioturbation and currents – can persist for years
(Etter and Mullineaux, 2001). Species are highly specialized in
microhabitat preference which leads to an overall diverse mosaic
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of assemblages, each with a unique set of species. To restate,
species have ametabolic niche that contributes to high small-scale
beta diversity increasing local alpha-diversity.

This patchiness is reflected in high species turnover at
small scales (Etter and Mullineaux, 2001; Snelgrove and Smith,
2002), and experimental work enriching nutrients in deep-
sea colonization trays has underlined the key role that energy
plays, with species that are rare or absent in the background
environment reaching high abundances in enriched patches
(Levin and Smith, 1984; Snelgrove et al., 1992, 1994, 1996;
Bernardino et al., 2010; McClain et al., 2011).

PROPOSITION 10: METABOLIC NICHES,
AND ENERGETIC REQUIREMENTS, CAN
BE USED TO MAKE SPECIFIC
PREDICTIONS OF BIODIVERSITY
PATTERNS OVER SPATIAL OR
TEMPORAL GRADIENTS OF ENERGY

Premise
Increases in available carbon frequently translate into increases in
species richness or alpha-diversity (Rosenzweig and Abramsky,
1993; Waide et al., 1999; Clarke and Gaston, 2006; Cusens et al.,
2012), either linearly or as a unimodal relationship with richness
peaking at intermediate levels of energy. Although a variety of
mechanisms exist to explain the relationship between species
richness and energy (Rosenzweig and Abramsky, 1993), here
we explore only how understanding species metabolic niches
may inform about diversity gradients. We envision two different
scenarios for patterns of β- and a-diversity over gradients
in energy availability in the context of the metabolic niche
(Figure 8). These differ in whether β-diversity occurs because of
the replacement of some species with others (species turnover)
or because species loss leads to smaller communities forming
ordered subsets of larger communities (nestedness) (Baselga,
2010, 2012). It is worth noting, across energy gradients there is
evidence of both nestedness (Baselga et al., 2012; Brault et al.,
2013; McClain et al., 2016; Stuart et al., 2016) and turnover
(Andrew et al., 2012; Brault et al., 2013; Wagstaff et al., 2014).
These two scenarios lead to different predictions of alpha-
diversity over a productivity gradient as well.

PROPOSITION 10A: HIGH METABOLIC
DEMAND TAXA ARE LOST FROM
COMMUNITIES WHEN
ENVIRONMENTAL ENERGY DROPS
BELOW THEIR METABOLIC NEED

The first scenario predicts nestedness will occur as energy
availability falls below the minimum metabolic requirement of
certain taxa (Figure 8, top). At ecological scales, high-energy
habitats offer more niches because more species can meet their
minimum energetic requirements, and both LET and HET can

persist. LET may survive on patches of low quality, quantity, or
density of resources that are not monopolized by HET within
these high-energy habitats, i.e., no competitive exclusion occurs.
In low-energy habitats, HET are lost because minimum energetic
requirements cannot be met. While empirical tests for this idea
are lacking, the test is relatively straightforward – the diversity
of interspecific metabolic rates should increase with greater
energy availability.

If high-energy habitats support more energetic niches, species
richnessmay increase at higher energy availability because species
are able to specialize on preferred resources, e.g., a predator
consuming a single prey species or a herbivore consuming a
single plant, reducing competitive interactions and allowing for
greater species coexistence (Evans et al., 2005). Again, empirical
tests of this hypothesis are rare but easily conducted: the trophic
niche, measured for instance as the variance in δ13C (ameasure of
the variability in consumed carbon sources), and the variance in
δ15N (a measure of trophic specialization), should both decrease
with increasing energy availability.

PROPOSITION 10B: LOW METABOLIC
DEMAND TAXA ARE LOST FROM
COMMUNITIES FROM COMPETITIVE
EXCLUSION WHEN ENVIRONMENTAL
ENERGY IS HIGH

In the second scenario, over a decreasing gradient of carbon
availability, the expectation is for LET to replace HET, i.e.,
turnover (Figure 8, bottom). As before, the minimum metabolic
demands of HET cannot be met when environmental energy
declines, but this scenario additionally assumes that LET do
not exist in higher energy availability habitats, because they are
competitively excluded by HET that can monopolize resources.
To restate, HETs with faster growth rates, population growth
rates, increased mobility, and larger sizes may prove to be
superior competitors to LETs in high energy environments. This
is essentially the second half of the dynamic equilibrium model
(Huston, 1979) and is in some aspects very similar to the resource
ratio hypothesis in that it invokes competition under high energy
availability (Tilman, 1982). The competitive exclusion of LET in
high energy habitats predicts a unimodal relationship between
α-diversity and energy availability, similar to the interaction
competition hypothesis (Rosenzweig and Abramsky, 1993),
where all increases in energy go to a competing taxon.

Data and Analyses
We analyze the Allen (2008) bivalve data as described in
Proposition 6. We decomposed β-diversity over the POC
gradient into two distinct components: species turnover and
species loss leading to nestedness using the betapart package
(Baselga et al., 2013) in R to decompose Sørensen’s dissimilarity
index βSØR into dissimilarity due to turnover measured as
Simpson’s index βSIM and a new index of dissimilarity due
to species loss leading to nestedness βNES. We computed
dissimilarity between pairs of sites against the difference in
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FIGURE 8 | Two hypotheses for beta- and alpha-diversity patterns in the context of metabolic niches. In both scenarios, high energy taxa (HET) are lost from

communities as chemical energy availability decreases across a gradient. In the second hypothesis, high chemical energy availability LET are additionally

outcompeted, e.g., due to slower populations rates, and are lost from these communities. The competitive exclusion in LET in second hypothesis leads to a

unimodal species-energy relationship as opposed to a linear pattern. In both hypotheses, metabolic niche diversity, e.g., interspecific variation in metabolic rate,

should mirror the species richness pattern.

depth for each pair (Baselga, 2010). We used a Mantel test
with 1,000 replicates (Pearson correlation) to assess whether
the components of β-diversity changed among sites along the
gradient of POC flux.

Consequence
In our analysis of bivalves from the deep-sea of the Atlantic
Ocean, we find that turnover (Mantel Test: r = 0.1141, p< 0.0001)
rather than nestedness (Mantel Test: r = -0.258, p = 0.904) is
prevalent (Figure 9) implying that both metabolic competition
and limits are important in shaping compositional changes.

In the context of the two scenarios illustrated in Figure 8,
turnover appears to be prevalent in deep-sea invertebrates over
a depth gradient, implying LET are replacing HET and that LET
are outcompeted at higher energy availabilities (Brault et al.,
2013). Equally, in deep-sea canyons areas with increased POC
support only a small subset of species, with the loss coming
from competitive exclusion (McClain and Barry, 2010). At larger
scales, patterns of taxonomic, functional, and phylogenetic beta-
diversity are tied to POC (McClain et al., 2012c), implying that the
changes in beta-diversity have an adaptive origin tied to species

traits. From local to oceanic spatial scales, a pattern is emerging
that the metabolic niche of deep-sea species and its relations to
energy availability sets beta-diversity.

However at very low energy values, like those occurring
on the abyssal plains, nestedness occurs, reflecting the loss
of even LET when energy availability falls below minimum
metabolic needs (Rex et al., 2005). Low-energy communities on
deep-sea wood falls are also nested taxonomic subsets of high-
energy communities (McClain et al., 2016). This switch from
turnover to nestedness implies that at extreme energy limitation,
evolutionary novelty and adaptation may not be possible; rather,
a source-sink system emerges in which populations from higher
energy availability regions of the deep sea sustain through
emigration populations of abyssal low-energy sites mitigating
Allee effects (Rex et al., 2005). This combination of nestedness
and turnover is reflected in a general unimodal pattern of alpha-
diversity which typically peaks at intermediate depths and levels
of POC (Rex and Etter, 2010): in low-energy habitats, HET are
lost because minimum energetic requirements cannot be met
(Rex et al., 2005), whereas LETs may not be able to survive at
the highest energy availabilities because they are outcompeted
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FIGURE 9 | Standard environmental distance-decay plots representing pairwise comparisons of bivalve community similarity verses differences in POC flux for each

sampling station in the Atlantic Ocean. (A) Simpson’s index βSIM of dissimilarity due to turnover vs. difference in Log10 Carbon Flux (gC m-2 d-1, Mantel statistic r:

0.08, p < 0.0001). (B) Dissimilarity due to species loss leading to nestedness βNES verses Log10 Carbon Flux (Mantel statistic r: -0.03, p = 0.904). (C) Sørensen’s

dissimilarity index βSØR verses differences Log10 Carbon Flux (Mantel statistic r: 0.11, p < 0.0001). Regression lines (solid lines) and quantile regressions lines (1 and

99%, dashed lines) are shown.
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by HETs that can monopolize resources, as observed in deep-sea
canyons (McClain and Barry, 2010).

CONCLUSION

Van Valen (1976) stated that “Potential energy in the form
of reduced carbon is the fuel of the fire of life. All other
resources, even when regulatory, can be considered surrogates,
when they are competed for.” This perhaps represents an extreme
view, but every aspect of an animal’s existence requires carbon.
We propose from this simple concept that understanding and
quantifying the metabolic niche can potentially link scales from
individuals to ecosystems and link adaptation to patterns in
biogeography and biodiversity. Energy and the metabolic niche
also allow for explicit links between ecological and evolutionary
theory. Future avenues of research include addressing the
following questions:

(1) Do intraspecific metabolic rates vary over energy
gradients?

(2) What is the diversity of and energetic adaptations among
organisms and how do these vary over energy gradients?
Is a greater diversity of metabolic niches and adaptations
afforded at greater energy availability?

(3) Do generalists or specialists prevail at high and low energy
habitats?

(4) To what extent are range limits and biogeographic patterns
set by the metabolic niche?

(5) Do patterns of α- and β-diversity differ among high and
low energy taxa?

(6) Are low energy taxa competitively excluded at high
energy availability?

We have outlined how the unique features of deep-sea benthos
that make them an ideal testbed for many of these questions,
but linking data on the occurrences and biological traits of
species with their energetic environmental settings in a range of
extreme systems, including deep-sea pelagic systems, will help to
generalize the metabolic niche concept.
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