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15 Abstract

16 Even though bacteria are important in determining plant growth and health via volatile organic 

17 compounds (VOCs), it is unclear how these beneficial effects emerge in multi-species microbiomes. 

18 Here we studied this using a model plant-bacteria system, where we manipulated bacterial 

19 community richness and composition and determined the subsequent effects on VOC production 

20 and VOC-mediated pathogen suppression and plant growth-promotion. We assembled VOC-

21 producing bacterial communities in different richness levels ranging from one to twelve strains 

22 using three soil-dwelling bacterial genera (Bacillus, Paenibacillus and Pseudomonas) and 

23 investigated how the composition and richness of bacterial community affect the production and 

24 functioning of VOCs. We found that VOC production correlated positively with pathogen 

25 suppression and plant growth-promotion and that all bacteria produced a diverse set of VOCs. 

26 However, while pathogen suppression was maximized at intermediate community richness levels 

27 when the relative amount and the number of VOCs were the highest, plant growth-promotion was 

28 maximized at low richness levels and was only affected by the relative amount of plant growth-

29 promoting VOCs. The contrasting effects of richness could be explained by differences in the 

30 amount and number of produced VOCs and by opposing effects of community productivity and 

31 evenness on pathogen suppression and plant-growth promotion along the richness gradient. 

32 Together, these results suggest that the number of interacting bacterial species and the structure of 

33 the rhizosphere microbiome drive the balance between VOC-mediated microbe-pathogen and 

34 microbe-plant interactions potentially affecting plant disease outcomes in natural and agricultural 

35 ecosystems. 

36 Keywords: Bacterial diversity, Community richness, Pathogen suppression, Plant growth 

37 promotion, Plant-microbe interactions 
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38 1. Introduction

39 Soil microbiome research has focused mainly on the beneficial effects of root-associated microbes 

40 that reside in the near vicinity of the plants. However, microbes also interact with each other and 

41 plants over long distances by producing volatile organic compounds (VOCs) that are a broad group 

42 of lipophilic compounds with low molecular weight (100–500 Da), high vapor pressure and low 

43 boiling point [2]. These properties facilitate evaporation and diffusion of VOCs over long distances 

44 through the atmosphere or porous soils from the point of production [3]. The VOCs have been 

45 reported for distinct bioactive functions, which are as diverse as the chemical structures of VOCs 

46 shaping a wide range of bacteria-bacteria and bacteria-plant interactions, including cell-to-cell 

47 communication, plant growth, flowering and photosynthesis stimulation, inhibition of parasites and 

48 pathogens and activation of systematic plant resistance against biotic and abiotic stresses [4, 5, 6, 

49 7]. The composition of the emitted VOCs can also vary depending on the environmental conditions 

50 such as the substrate composition of the growth media [8]. While several VOCs have been shown 

51 to change pairwise interactions with plants and microorganisms [9, 10], it is less clear how the 

52 presence of other microbes in multi-species communities affects the production and functioning of 

53 VOCs. Here we studied this directly by manipulating bacterial community richness and 

54 composition and determining subsequent effects on VOC production and VOC-mediated pathogen 

55 suppression and plant growth-promotion. 

56 Biodiversity is a key driver of several ecosystem functions [11] and the underlying bacterial 

57 interactions have been shown to affect the number, type and composition of produced antifungal 

58 VOCs [12, 13]. Bacterial community diversity could affect VOC production in many ways. First, 

59 multispecies communities could produce higher amounts and a greater number of VOCs by 

60 reaching higher cell densities compared to species grown in isolation due to complementary [14] 
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61 or facilitative [15] effects. Alternatively, it is possible that high bacterial community diversity could 

62 lead to increased antagonism within the bacterial community, which could then offset the VOC 

63 production by having a negative effect on the growth and overall metabolism of the community 

64 [16]. Increasing community diversity could thus either promote or constrain VOC production 

65 depending on the species interactions between the interacting community members that could be 

66 driven by competition for shared resources, cooperation, cheating or antibiosis [1, 3]. Second, 

67 increasing the number of species in a community could increase the number of unique VOCs that 

68 are produced if each species produces a different subset of compounds [17]. High community 

69 diversity could thus increase the range of VOC-mediated functions. Third, intra- and interspecific 

70 bacterial interactions could lead to the expression of certain ‘emergent’ VOCs that are not produced 

71 in monocultures. One potential mechanism for this could be interference competition which is often 

72 stronger in diverse bacterial communities due to the production of a high variety of antimicrobial 

73 compounds [18]. While co-culturing two to five bacteria together has been shown to induce the 

74 production of novel antifungal VOCs [3, 19], the effects of diversity on bacteria-specific VOCs 

75 have not yet been explored. 

76 Theory and experiments suggest that increasing community diversity and richness could 

77 predictably affect the production of VOCs by bacterial communities. However, it is still largely 

78 unknown how these changes affect the type and strength of VOC-mediated functioning with 

79 bacterial pathogens and plants. To address this shortcoming, we used a model plant-bacteria system 

80 to causally test how the microbial community richness affects the VOC-mediated functioning in 

81 terms of Arabidopsis thaliana plant growth-promotion and the suppression of a wide-spread 

82 bacterial pathogen, Ralstonia solanacearum, capable of infecting many plant species [20]. To 

83 achieve this, we assembled VOC-producing model bacterial communities in different richness 

84 levels ranging from one to twelve strains using three ubiquitous, soil-dwelling bacterial genera: 
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85 Bacillus, Paenibacillus and Pseudomonas. We then determined and classified the emitted VOCs 

86 by all bacterial communities and explored how this variation affected plant growth-promotion and 

87 pathogen suppression as a function of bacterial community richness. 

88

89 2. Methods

90 (a) Bacterial strains

91 We used a total of twelve common soil bacterial strains belonging to Bacillus, Paenibacillus and 

92 Pseudomonas genera, which were isolated from the rhizosphere of different plant species (four 

93 strains from each genus; for more detail, see Table S1). The bacterial strains were selected based 

94 on the preliminary experiments, where we tested that pathogen suppression and plant growth-

95 promotion were solely mediated by VOCs (Table S1). The bacterial strains were stored at -80ºC in 

96 nutrient broth (BD DifcoTM, Becton, Dickinson and Company, USA) containing 70% glycerol and 

97 routinely grown on nutrient agar medium (Bacto® agar, Cat. No. 214030, Becton, Dickinson and 

98 Company, USA). We used the Ralstonia solanacearum QL-Rs1115 strain isolated in China [21] 

99 as our target pathogen, which was stored at -80oC in casamino acid-peptone-glucose (CPG) 

100 medium [1 g casamino acid (BD BactoTM, Becton, Dickinson and Company, USA), 10 g peptone 

101 (Sigma-Aldrich), 5 g glucose (Sigma-Aldrich) and pH 7.0] containing 70% glycerol [22]., 

102 During the experiments, R. solanacearum was grown on CPG agar medium. 

103 (b) Assembly of model rhizosphere bacterial communities

104 Single colonies of twelve bacterial strains (Table S1) were grown separately in nutrient broth as 

105 monocultures for 24 hours at 30ºC before washing twice and adjusting to the final concentrations 

106 of 1×107 colony forming units (CFU)/ml with 0.85% NaCl. The monoculture cell suspensions of 

107 bacterial strains were mixed in equal proportions (500 µl) to assemble 43 model communities with 
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108 varying diversity (strain richness) levels and composition ranging from monocultures to 2, 3, 4, 6 

109 and 12 species communities (Table S2) using broken stick design [23]. The final cell concentrations 

110 of monocultures and mixed co-culture communities were set to the same (1×107 CFU/ml). Each 

111 bacterial strain was replicated two times at each richness level except for richness levels 1 and 12. 

112 The assays for each model community were conducted in triplicate. 

113 In order to verify whether all three bacterial genera could co-exist, we grew all the 

114 assembled bacterial communities in microtiter plates. Each well was filled with 195 µl of modified 

115 minimal salt medium amended with 1.5% sucrose, and 0.4% tryptone soy broth (w/v) and 

116 inoculated with 5 µl of bacterial communities, thereby mimicking the conditions used for VOC 

117 measurements later in the experiment. After 36 hours at 30ºC, total bacterial, Pseudomonas, and 

118 Paenibacillus cell densities were determined by serial plating on nutrient agar medium, 

119 Pseudomonas selective agar (CFC) medium, and Paenibacillus selective nutrient agar medium 

120 supplemented with 10 µg/ml polymyxin B sulfate, respectively [24, 25]. Bacillus densities were 

121 determined by subtracting the Pseudomonas and Paenibacillus densities from the total bacterial 

122 densities. Plating method was chosen over the qPCR method to include only living cells to our 

123 analysis. Potential negative effects of selective plates on target bacteria were also confirmed: 

124 Paenibacillus and Pseudomonas genera were not negatively affected by the selective media as 

125 similar colony numbers were observed when the same samples were grown on nutrient agar 

126 medium (Figure S1). The bacterial cell densities were represented as community productivity at 

127 different bacterial richness levels.

128 (c) Measuring VOC-mediated pathogen suppression and plant growth-promotion by 

129 monocultures and communities

130 We assessed the VOC-mediated inhibitory potential of each bacterial monoculture and constructed 

131 community on R. solanacearum pathogen using divided Petri dish and soil systems. Briefly, a 
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132 single colony of R. solanacearum was grown in CPG medium for 24 hours at 30ºC before washing 

133 twice with 0.85% NaCl and adjusting to a final concentration of 1×107 CFU/ml. Later, one half of 

134 the divided Petri dish (85 mm diameter) was filled with 15 ml of CPG agar medium and spot-

135 inoculated with the cell suspension of R. solanacearum at five cm apart two locations (5 µl in each; 

136 Figure S2). The cell suspensions for 43 model communities (1×107 CFU/ml) were prepared as 

137 described above and spot-inoculated at five cm apart two locations (5 µl in each) on the other side 

138 of the Petri dish containing minimal salt agar medium (same as above but with 15 g agar/L; Figure 

139 S2). Petri dishes were incubated at 30ºC for 12 hours to initiate bacterial growth and then sealed 

140 with Parafilm and incubated for further three days at 30ºC. Three replicates were set up for each 

141 community, including negative control treatment with R. solanacearum growing in the absence of 

142 VOC-producing communities. Later, R. solanacearum colonies were removed along with agar 

143 medium using a sterilized scalpel, suspended in 1 ml of sterilized water, diluted by 500 times and 

144 spread on CPG agar plates to count the CFU/ml (cell densities) after incubation at 30ºC for 2 days. 

145 The VOC effects were presented as the percentage increase or decrease in the pathogen suppression 

146 relative to the control treatment. Moreover, in a separate experiment, the effect of VOCs produced 

147 by R. solanacearum on the growth of monocultures of Bacillus, Paenibacillus and Pseudomonas 

148 bacterial strains was also evaluated in triplicate using the same method as described above 

149 including negative control treatments with bacterial monocultures growing separately in the 

150 absence of VOC-producing R. solanacearum. These results showed that the VOCs of R. 

151 solanacearum were not able to inhibit the cell densities of any of the bacterial strains from Bacillus, 

152 Paenibacillus and Pseudomonas genera (Figure S3). 

153 The Petri dish assays were validated using a sterilized soil system as follows [26]. The soil 

154 (pH 6.5, organic matter 11.65 g/kg, and available N, P, and K contents 41.3, 238.7, and 177.5 

155 mg/kg, respectively) was collected from Yixing, China, and sterilized 121ºC for 60 min. One ml of 
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156 each bacterial monoculture and community (1×107 cells/ml) was mixed with 7.5 g of soil (dry 

157 weight) and inoculated to one half of the divided Petri dish. The other half of the dish was filled 

158 with CPG agar and spot-inoculated with R. solanacearum as described above (Figure S2). Three 

159 replicates were set up for each treatment including negative control with R. solanacearum in the 

160 absence of VOC-communities. Dishes were incubated at 30ºC for 12 hours to initiate bacterial 

161 growth and then sealed with Parafilm and incubated for three days at 30ºC. The VOC-effects on 

162 the cell densities of R. solanacearum was quantified similarly as described above.

163 We used the A. thaliana plant model system to assess whether changes in microbial 

164 community richness and composition affected plant growth via changes in VOC composition. The 

165 Petri dish system was used in a similar way as described above in triplicate, including a negative 

166 control treatment where A. thaliana grew in the absence of VOC-producing bacteria. The cell 

167 suspensions of 43 model communities (1×107 CFU/ml) were spot-inoculated on one side of the 

168 Petri dish as described above and incubated at 30ºC for 12 hours to initiate bacterial growth (Figure 

169 S2). Later, three Arabidopsis Col-1 seedlings were placed onto the other half of the Petri dish 

170 containing half-strength Murashige and Skoog agar medium (0.8% agar and pH 5.7). Before that, 

171 Arabidopsis seeds were surface sterilized, vernalized for 2 days at 4ºC in the dark on half-strength 

172 Murashige and Skoog agar medium with 1.5% sucrose and then placed in a growth chamber (22ºC 

173 temperature, 12h light, 12h dark, 40W fluorescent light) for three days. The Petri plates were sealed 

174 with parafilm and placed in a growth chamber. After two weeks, plants were gently removed from 

175 the medium, roots washed with sterilized water and the whole plant was blot dried and weighted 

176 to determine the plant fresh weight (mg/plant). To determine VOC-mediated plant growth-

177 promotion in the soil, a similar system was used as when evaluating VOC-mediated pathogen 

178 suppression in the soil except that the pathogen was replaced with three Arabidopsis seedlings 

179 inoculated onto half-strength Murashige and Skoog agar medium. After two weeks, plant fresh 
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180 weight (mg/plant) was determined as described above. The VOC effects were presented as the 

181 percentage increase or decrease in plant growth relative to control treatment.

182 (d) Analysis of VOC profiles produced by bacterial strains and assembled communities 

183 To analyze the VOC profiles produced by all bacterial monocultures and communities, cell 

184 suspensions (1×107 CFU/ml) were prepared as described above and two spots (5 µl each) 

185 inoculated on minimal salt agar medium (15 g agar/L) in a 100-ml vial and placed at 30ºC. After 

186 12 hours of growth, vials were sealed and incubated for further 72 hours at 30ºC. Three replicates 

187 were set up for each treatment and vials without the inoculation of bacteria were used as controls. 

188 After incubation, 10 µl of (Z)-3-hexenyl acetate (5 mM) as an internal standard was added into the 

189 vial. Later, a solid-phase microextraction (SPME) fiber [Supelco (Bellefonte, PA) stable flex 

190 divinylbenzene/carboxen/polydimethylsiloxane (DCP, 50/30 μm)] was inserted into the vial and 

191 incubated further 30 min at 30ºC and another 30 min at 50ºC. The SPME fiber was then inserted 

192 into the injector of gas chromatography-mass spectrometry (GC-MS) (Finnigan Trace DSQ, Austin, 

193 TX, USA) and desorbed at 220ºC (1 min) with an RTX-5MS column (30 m, 0.25-mm inside 

194 diameter, 0.25 μm). The following oven temperature protocol was used: 33ºC (3 min), 180ºC 

195 (10ºC/min), and 240ºC (30ºC/min) and finally for 5 min at 240ºC. The mass spectrometer was 

196 operated at 70eV and 220ºC in the electron ionization mode with a scan from 50 to 500 m/z. 

197 Chromatographs were obtained and analyzed by AMDIS 2.73 (National Institute of Standards and 

198 Technology, Gaithersburg, USA). The mass spectra of deconvoluted VOC peaks were compared 

199 with those in the NIST/EPA/NIH Mass Spectrometry Library with respect to the spectra in the 

200 Mainlib and/or Replib databases (Agilent Technologies, Santa Clara, CA, USA). Later, the Kovats 

201 retention indexes were calculated for each compound using an alkane calibration mix and 

202 compared with those found in NIST/EPA/NIH Mass Spectrometry Library. The compound was 

203 considered identified if its mass spectra matched well with a listed compound, had match 
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204 factor >800 and the difference between the retention index calculated for the detected compound 

205 and the listed compound (for a semi-standard non-polar column) was not larger than five. Except 

206 for 14 unidentified and four commercially unavailable VOCs (Data-set S1), the production of 67 

207 identified VOCs was further confirmed by comparing with standard compounds [Sigma, Tokyo 

208 Chemical Industry Co., Ltd. (TCI, Tokyo, Japan) and Aladdin Reagent Database, Inc. (Shanghai, 

209 China)]. The standards were mixed and measured using SPME fibers as described above. The peaks 

210 similar to the control treatment (without bacterial inoculation) were not considered for the 

211 identification of VOCs. The number of VOCs produced in each treatment were recorded and the 

212 chromatographic peak area was expressed as the relative peak area to (Z)-3-hexenyl acetate 

213 (internal standard) in arbitrary units (a.u.) as an indirect approach to estimate the relative amount 

214 (concentration) of each VOC.

215 (e) Classification of emitted compounds into pathogen-suppressing and plant growth-

216 promoting VOCs

217 To evaluate the effect of different concentrations of identified VOCs (GC-MS analysis) on 

218 pathogen suppression, the Petri dish system was used in a similar way as described above. The cell 

219 suspension of R. solanacearum (1×107 CFU/ml) was spot-inoculated at two locations (5 µl in each) 

220 on one side of the Petri dish and incubated at 30ºC for 12 hours to initiate bacterial growth. Later, 

221 stock solutions (20 µg/ml, 100 µg/ml, 500 µg/ml, 2 mg/ml and 10 mg/ml) of 67 commercially 

222 available pure VOCs (Dataset S1) were prepared separately in methanol by serial dilutions and the 

223 other side of Petri dish was inoculated with 15 µl of stock solutions to give 0.3 µg, 1.5 µg, 7.5 µg, 

224 30 µg and 150 µg final amount of each VOC on a ~10 mm diameter sterile filter paper disc 

225 (WhatmanTM filter paper, 6 μm pore size), respectively. Petri dishes were sealed with Parafilm and 

226 incubated for three days at 30ºC. The sterile filter paper discs inoculated with nothing or with 

227 methanol were used as control treatments (no difference found between these control treatments). 
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228 The VOC-effects on the cell densities R. solanacearum was quantified similarly as described above. 

229 [7, 25]. 

230 To evaluate the effect of VOCs on plant growth, the same methodology described above 

231 was used, with one exception: instead of the pathogen, three Arabidopsis Col-1 seedlings were 

232 placed onto the other half of the Petri dish containing half-strength Murashige and Skoog salt agar 

233 medium. After two weeks, plant fresh weight (mg/plant) was determined as described above. The 

234 VOC effects were presented as the percentage increase or decrease in plant growth relative to 

235 control treatment [7, 25].

236 (f) Statistical analysis

237 The statistical differences between bacterial strains and genera were analyzed using ANOVA and 

238 Tukey’s tests. Linear regression analysis was used to analyze separately the VOC-mediated 

239 pathogen suppression and plant growth-promotion, relative amount of VOCs (sum of relative peak 

240 area to (Z)-3-hexenyl acetate of detected GC-MS peaks), number of VOCs (number of peaks) and 

241 VOC composition (first axis of the principal component analysis on non-transformed data), and 

242 total community abundance, genera abundances and community evenness (at genera level) as the 

243 function of bacterial community richness (factor with 6 levels); significance at P=0.05. Similarly, 

244 to link VOCs production with VOC-mediated activity, we separately analyzed the VOC-mediated 

245 pathogen suppression and plant growth-promotion as the function of the relative amount of 

246 produced VOCs, number of VOCs and VOC composition; significance at P=0.05. To further link 

247 VOC profiles and community properties to functioning, we used separate models to explain plant 

248 growth-promotion and pathogen suppression with bacterial genera, community abundances and 

249 community evenness, community richness and strain identity effects and relative amount, number 

250 and composition of VOCs. To uncover the most parsimonious GLMs with the best explanatory 

251 power, and to avoid potential correlations between different explanatory variables, sequential 
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252 analyses were performed using stepwise model selection based on Akaike information criteria 

253 (AIC). Statistical analyses were conducted with SPSS version 19.0 statistical software (SPSS, Inc., 

254 Chicago, IL, USA).

255  

256 3. Results 

257 (a) Production, classification and activity of pathogen-suppressing and plant growth-

258 promoting VOCs by bacterial species and genera

259 All twelve bacterial strains were effective at VOC-mediated pathogen suppression and plant 

260 growth-promotion, though some bacterial strains were more effective than the others on agar 

261 medium and/or in soil (Figure S4a-b). Overall, these effects were similar regardless if they were 

262 measured on agar media or in the soil (F1, 70=0.02, P=0.891 for pathogen suppression and F1, 

263 70=2.20, P=0.143 for plant growth-promotion). As a result, VOC-mediated pathogen suppression 

264 and plant growth-promotion observed on agar media and in the soil were highly positively 

265 correlated (R2=0.20; P<0.0001 and R2=0.61; P<0.0001, respectively; Figure S5), which suggests 

266 that VOCs activity on agar media provided a realistic estimate of VOC activity in the natural soil. 

267 At the genera level, Paenibacillus showed relatively lower pathogen suppression (F2, 33=14.73, 

268 P<0.0001) and Bacillus genera relatively lower plant growth-promotion on agar medium (F2, 

269 33=28.01, P=0.001; Figure S6a-b), while no between-genera differences were observed in the soil 

270 (Figure S6a-b). 

271 We next compared the relative amount and number of VOCs produced by different bacterial 

272 genera and strains. We found that Paenibacillus genera produced higher relative amount (F2, 33= 

273 263.3, P<0.0001) and number (F2, 33= 61.8, P<0.0001) of total VOCs compared to Pseudomonas 

274 and Bacillus genera, which did not differ from each other (Figure S6c-d). However, bacterial strains 

Page 13 of 30

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



13

275 showed significant variation in the relative amount (F11, 24= 357.2, P<0.0001) and number (F11, 24= 

276 54.6, P<0.0001) of produced VOCs within each genus (Figure S7a-f). 

277 When VOC effects were tested as pure compounds, most of the produced VOCs had 

278 pathogen-suppressing activity (52%; Figure S6a-b) and only 7% had plant growth-promoting 

279 activity (Figure S6c), while both pathogen-suppressing and plant growth-promoting activities were 

280 increased with the increase in the concentration of VOCs (Figure S8). At the genera level, we found 

281 that in total 49 VOCs produced by Paenibacillus genera showed pathogen suppression, while 

282 Pseudomonas and Bacillus genera produced 33 and 40 pathogen-suppressing VOCs, respectively 

283 (Figure S6c-d; Data-set S1). As a result, the relative amount (F2, 33= 46.9, P<0.0001) and the 

284 number of pathogen-suppressing VOCs (F2, 33= 34.6, P=0.001) were the highest with Paenibacillus 

285 genera (Figure S6c-d). In contrast, only eight Paenibacillus, eight Pseudomonas and five Bacillus 

286 VOCs showed plant growth-promotion (Figure S6c-d; Data-set S1). While the highest relative 

287 amount of plant growth-promoting VOCs was produced by Bacillus genera (F2, 33= 42.6, P<0.0001; 

288 Figure S6c), Paenibacillus and Pseudomonas genera both produced the most diverse selection of 

289 plant growth-promoting VOCs (F2, 33=10.5, P=0.011; Figure S6d). These results suggest that while 

290 all bacteria from each genus produced both types of VOCs, most of the produced VOCs had 

291 pathogen-suppressing effect and that the Paenibacillus genera showed the highest relative VOC 

292 production in general.

293 (b) Effect of bacterial community richness on the VOC-mediated pathogen suppression and 

294 plant growth-promotion 

295 We next explored how bacterial community richness affected the VOC-mediated pathogen 

296 suppression and plant growth-promotion using agar media assays (quantitatively similar results 

297 obtained in the soil; Figure S9a-b). We found that bacterial community richness and pathogen 

298 suppression showed a hump-shaped relationship (F2, 126=90.4, P<0.0001) where pathogen 
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299 suppression peaked at the intermediate community richness (4 species) reaching 40% suppression 

300 efficiency and then decreasing to 8% efficiency at richness level 12 compared to non-VOC control 

301 (Figure 1a). This pattern could be explained well with the relative amount (F2, 127=58.18, P<0.0001; 

302 Figure 1b), number (F2, 126=67.7, P<0.0001; Figure 1C) and composition (F2, 126=13.68, P<0.0001; 

303 Figure S10a) of produced pathogen-suppressing VOCs, which all showed a similar hump-shaped 

304 relationship peaking at richness level 4 and then decreasing at richness levels 6 and 12. Together, 

305 pathogen suppression showed highly significant and positive relationships with the relative amount, 

306 number and composition of pathogen-suppressing VOCs (Figure 2a-b; Figure S10b; Table S3).

307 In contrast, the highest plant growth-promotion was observed at low community richness 

308 levels (F1, 127=13.8, P<0.0001). Specifically, a 67% increase in plant growth-promotion observed 

309 at the richness level 1 decreased to 17% increase at richness level 4, and at richness level 12, an 

310 average of 33% decrease in plant growth-promotion was observed compared to control treatment 

311 (Figure 1d). Reduction in the plant growth-promotion correlated clearly with a decrease in the 

312 relative amount of plant growth-promoting VOCs (F1, 127= 39.9, P<0.0001; Figure 1e) resulting in 

313 90% decrease between richness levels 1 and 12. However, similar to pathogen-inhibiting VOCs, 

314 the number of plant growth-promoting VOCs peaked at intermediate richness levels reaching up 

315 to 139% increase at the richness level 4 and then decreasing down to 19% increase at the richness 

316 level 12 compared to the richness level 1 (F2, 126 =56.1, P<0.0001; Figure 1f). The composition of 

317 plant growth-promoting VOCs did not show any relationship with plant growth-promotion (Figure 

318 S10c). As a result, plant growth showed a highly significant and positive relationship only with the 

319 relative amount of plant growth-promoting VOCs (Figure 2c-d; Figure S10D; Table S3). 

320 (c) Linking pathogen suppression and plant growth-promotion with the production of VOCs 

321 We next investigated if VOC-mediated functioning could be explained by the emission of certain 

322 VOCs. A total of 85 different VOCs were produced by all bacterial communities. Except for three 
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323 VOCs (1, 2-ethanediol 1, 2-diphenyl; 9-decen-i-ol and 5-octadecene), the relative amount of VOCs 

324 varied significantly between communities with different richness levels (Dataset S1). Interestingly, 

325 15 VOCs were produced only in communities. Similarly, 49 VOCs produced at richness levels 1-

326 4 were absent from the VOC profiles of 6 and 12 species communities (Figure S11A; Data-set S1). 

327 Out of 85 VOCs in total, 41 VOCs showed pathogen-suppressing activity. Of these, 4 pathogen-

328 suppressing VOCs were not produced at the community richness level 1, and 26 pathogen-

329 suppressing VOCs produced at richness levels 1-4 were absent from the VOC profiles of 6 and 12 

330 species communities (Figure S11b; Data-set S1). When chemical groups of VOCs were evaluated, 

331 80% (61) of the identified VOCs produced by twelve bacterial strains belonged to alkane, alcohol, 

332 aldehyde, benzene, ketone and fatty acid groups. Almost all alcohol, aldehyde, benzene and ketone 

333 group VOCs showed pathogen-suppressing activity. Other VOC groups related to pathogen 

334 suppression included naphthalene, phenol, sulfur and nitrogen containing compounds (Figure S12).

335 Only six out of 85 VOCs were found to show plant growth-promoting activity (Figure S8C). 

336 Of these compounds, four VOCs were not produced at richness level 12, while tetradecane was 

337 only produced at richness levels 6 and 12 albeit in low relative amount (Figure S11c; Data-set S1). 

338 Interestingly, two of the plant growth-promoting VOCs (indole, heptadecane) also showed 

339 antibacterial activity against R. solanacearum (Figure S8a-b). When chemical groups of VOCs 

340 were evaluated, plant growth-promoting VOCs mainly belonged to the alkane (4) group; while one 

341 VOC belonged to the diol and one to the nitrogen-containing compounds group (Figure S12). These 

342 results suggest that bacterial interactions within communities can trigger and abolish the production 

343 of certain pathogen-suppressing and plant growth-promoting VOCs. 

344 (d) Linking bacterial community properties with pathogen suppression and plant growth-

345 promotion
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346 Lastly, we explored if richness-mediated VOC effects could be explained by certain underlying 

347 community properties such as community productivity, evenness, genera abundances or strain 

348 identity effects. While the community productivity increased with bacterial richness (F1, 127=36.8, 

349 P=0.004; Figure 4a), the relative abundance of all three genera showed a parabolic relationship 

350 with the richness reaching the lowest abundances at the intermediate richness levels and the highest 

351 abundances when grown in the low or high richness level communities (Figure 4b). Moreover, 

352 while the community evenness of bacterial genera did not differ at the lower richness levels (in 2-

353 4 species communities), it considerably decreased at the higher richness levels (F4, 88=41.00, 

354 P<0.0001; Figure 4c). As a result, bacterial community properties showed contrasting effects on 

355 VOCs functioning; while total community productivity was positively linked with pathogen 

356 suppression, it showed a negative effect on the plant growth-promotion (Table S4). In contrast, 

357 while community evenness had no effect on the pathogen suppression, it was positively linked with 

358 the plant growth-promotion (Table S4). Furthermore, while the densities of Pseudomonas and 

359 Paenibacillus genera showed a negative relationship with pathogen suppression, the densities of 

360 all three genera showed positive effects on the plant growth-promotion (Table S4). Finally, some 

361 strains had strong and often opposing identity effects on both the pathogen suppression and plant 

362 growth-promotion (Table S4). These results suggest that bacterial community properties had 

363 contrasting effects on VOC-mediated functioning, which likely constrained simultaneous 

364 expression of pathogen suppressing and plant growth-promoting VOCs.

365 4. Discussion

366 While the role of individual VOC on plant physiology and antimicrobial activity has been well 

367 described [3, 13], their production and effects in complex microbial communities are poorly 

368 understood. Especially, VOC-mediated effects on bacterial pathogens and plants remain unclear. 
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369 Here we investigated this by addressing how the composition and richness of bacterial communities 

370 affect the production of different VOCs and VOC-mediated functioning in terms of pathogen 

371 suppression and plant growth-promotion. We found that the majority of produced VOCs were 

372 pathogen-suppressing and that bacterial strains from all genera produced both types of VOCs in 

373 monocultures. However, VOC production was dramatically changed when the strains were grown 

374 together in communities. Specifically, we found that pathogen suppression was maximized at 

375 intermediate community richness levels when the relative amount and number of produced 

376 pathogen-suppressing VOCs were the highest. In contrast, plant growth-promotion was unaffected 

377 by the number of VOCs and maximized at low community richness levels when the relative amount 

378 of produced plant growth-promoting VOCs was the highest. Interestingly, community productivity 

379 and evenness had contrasting effects on the VOC functioning in this study: productivity promoted 

380 the pathogen suppression but constrained the plant growth-promotion, while evenness promoted 

381 the plant growth-promotion but constrained the pathogen suppression. Together these results 

382 suggest that species interactions within communities can change VOC-mediated functioning by 

383 affecting the amount and diversity of produced VOCs. VOC-mediated microbe-microbe and 

384 microbe-plant functions are thus likely to be optimized with contrasting community structures due 

385 to non-linear and contrasting relationships with community diversity, productivity and evenness.

386 Of all the detected VOCs, 41 VOCs (52%) showed pathogen suppression and their relative 

387 amount and numbers peaked at the intermediate community richness levels, which was highly 

388 correlated with VOC-mediated pathogen suppression. Moreover, compared to monocultures, 14 

389 unique VOCs, including four pathogen-suppressing VOCs, were produced in more diverse 

390 bacterial communities including two to four strains. These results suggest that the addition of new 

391 species likely increased the metabolic potential of the community by stimulating the production of 

392 antimicrobial compounds with greater chemical diversity and activity [16, 27]. However, the 
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393 relative amount and number of pathogen-suppressing VOCs decreased at higher richness levels 

394 and 26 VOCs including 10 pathogen-suppressing VOCs were not observed at 12 strain bacterial 

395 community. These results are in line with a previous study, which found a similar hump-shaped 

396 pattern between toxin production and bacterial community richness [28]. Bacteria often sense and 

397 respond to the presence of competitors by turning more antagonistic by upregulating secondary 

398 metabolism and by producing antimicrobial compounds like antibiotics [29, 30]. The secondary 

399 metabolism is also the main driver of antimicrobial VOC production that has been shown to change 

400 in the presence of competitors [18, 31]. It is thus possible that the presence of other bacterial strains 

401 promoted the production of pathogen-suppressing VOCs because they were also used in 

402 interference competition between VOC-producing species [18]. Some previous studies have also 

403 reported a relationship between increased VOC-mediated suppression of fungal pathogens and 

404 increasing microbial diversity [12, 32]. However, in this study, increasing community diversity 

405 beyond four strains could have intensified interference competition to the extent that it led to a 

406 decrease in the production of pathogen-suppressing VOCs. In addition, quorum sensing, cross-talk 

407 between species, chemical cues from competitors (antibiotics), silence gene clustering or cross-

408 feeding generating new metabolic pathways at community levels, etc. might also affect the 

409 production of VOCs [16, 28, 30, 33]. While linking community effects on certain species is difficult, 

410 we found that community evenness decreased with richness and that Paenibacillus genera 

411 dominated at the 12-strain community (Figure 3b-c). Interestingly, Paenibacillus polymyxa WR-2 

412 strain had a strong negative effect on pathogen suppression in general, which suggests that it might 

413 have played an important role in reducing VOC-mediated pathogen suppression at high richness 

414 levels (Table S4). We also found that community productivity had a positive relationship with 

415 pathogen suppression, indicative of a positive link between bacterial metabolic activity and VOC-

416 mediated pathogen suppression. However, most pathogen-suppressing VOCs were produced at 

Page 19 of 30

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



19

417 intermediate richness levels when all genera were found to be at very similar abundances. As a 

418 result, intra- and inter-bacterial species interactions might be more important for the expression of 

419 pathogen-suppressing VOCs instead of bacterial growth and metabolic activity.

420 Of all detected 85 VOCs, only six showed plant growth-promoting activity (7% of all 

421 VOCs). Moreover, and in contrast to pathogen-suppressing VOCs, plant growth-promotion was 

422 the highest in bacterial monocultures and steadily decreased with increasing community richness 

423 turning into plant growth-inhibition at 12-strain community. While a clear positive correlation was 

424 found with the relative amount of VOCs and plant growth-promotion, the numbers or composition 

425 of plant growth-promoting VOCs had no effect. This is likely explained by the low number of plant 

426 growth-promoting VOCs produced in general and by the fact that all genera tended to emit them 

427 similarly. Moreover, some of the plant growth-promoting VOCs were not detected at higher 

428 richness levels, which could also partly explain the reduction in VOC-mediated plant growth-

429 promotion along the richness gradient. One potential explanation for this pattern is that the presence 

430 of other bacteria triggered a switch from the expression of plant growth-promoting to pathogen-

431 suppressing VOCs due to bacterial competition, which has previously shown to upregulate 

432 antibacterial activity including VOC production [19, 30, 31]. Moreover, we found that the 

433 community evenness and the abundance of all genera promoted, while community productivity 

434 constrained the VOC-mediated plant growth-promotion. 

435 These results clearly show that bacterial interactions within multi-species communities can 

436 affect the VOC production, which in turn can change VOC-mediated functioning in terms of 

437 pathogen suppression and plant growth-promotion. Furthermore, VOC-mediated microbe-

438 pathogen and microbe-plant interactions were optimized with different community structures due 

439 to non-linear and contrasting relationships with community diversity, productivity and evenness. 

440 These results suggest that VOC-mediated interactions in communities cannot be predicted based 
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441 on VOC expression patterns observed in bacterial monocultures [34]. Our results are in contrast 

442 with several previous studies. For example, Wagg et al. [11] and Hu et al. [35] have reported 

443 positive relationships between microbial diversity and plant performance in communities 

444 containing four and eight microbes, respectively. It is thus possible that diversity-functioning 

445 relationships between soil bacteria and plants are less predictable, especially when mediated 

446 through VOCs. Moreover, soil is a complex and heterogenous environment, and in reality, 

447 rhizosphere bacterial communities are composed of thousands of interacting bacterial strains. 

448 Because analyzing this many interactions at the same time is practically impossible, we used small 

449 model communities consisting of 12 bacterial strains belonging to three genera. Even though, our 

450 model system does not reflect the natural soil conditions, it can help to understand how interspecies 

451 bacterial interactions can change the production and activity of VOCs. In the future, it would be 

452 interesting to study the underlying ultimate mechanisms like quorum sensing, cross-talk, chemical 

453 cues (antibiotics), silence gene clustering or cross-feeding, etc. driving the VOC production within 

454 the communities. Moreover, it would be interesting to explore how the VOCs produced in the soil 

455 affect the microbiota residing in the aerial parts of the plant for example in leaves and flowers, that 

456 could affect pollination [36]. Our results also show that bacterial communities can interact with 

457 plants and plant pathogens over long distances through VOCs, and crucially, that bacterial 

458 interactions within communities change their effects on plants or pathogens in the absence of direct 

459 contact. Thus, it is important to move beyond plant rhizosphere microbiomes to explore microbe-

460 microbe-plant interactions over larger spatial scales that also include VOC-mediated long-distance 

461 interactions in porous soils [37]. For example, plant root VOCs were reported to disperse over 12 

462 cm distances mediating long-distance belowground interactions in the soil [2] indicative of 

463 interactions between microbial metapopulations. From the applied perspective, our study suggests 

464 that VOC-mediated functions could potentially be employed to manipulate rhizosphere 
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465 microbiome composition to simultaneously improve multiple ecosystem functions including 

466 pathogen suppression and plant growth.
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581 Figure 1: Effect of bacterial community richness on volatile organic compound (VOC)-mediated 

582 pathogen suppression (PS) and plant growth promotion (PGP) and on the relative amount and 

583 number of produced pathogen-suppressing and plant growth-promoting VOCs. Top panels show 

584 the effect of bacterial community richness on VOC-mediated pathogen suppression (A) and on the 

585 relative amount (B), and number (C) of pathogen-suppressing VOCs. Bottom panels show the 

586 effect of bacterial community richness on VOC-mediated plant growth-promotion (D) and on the 

587 relative amount (E) and number (F) of plant growth-promoting VOCs. The relative amount of 

588 VOCs shows the chromatographic peak area that was expressed relative to the peak area of (Z)-3-

589 hexenyl acetate (internal standard) as an indirect approach to estimate the relative concentration of 

590 each VOC, while number of VOCs means the total number of VOCs produced at each community 

591 richness level. In all panels, each observation shows the effect of each replicate of each bacterial 

592 monoculture or community. The experiments were repeated twice in triplicate.

593 Figure 2: The relationship of volatile organic compound (VOC)-mediated pathogen suppression 

594 (PS) and plant growth promotion (PGP) with the relative amount and numbers of pathogen-

595 suppressing and plant growth-promoting VOCs, respectively, produced by bacterial communities 

596 at different richness levels. Top panels show the relationship between VOC-mediated pathogen 

597 suppression and the relative amount (A) and number (B) of pathogen-suppressing VOCs. Bottom 

598 panels show the relationship between VOC-mediated plant growth-promotion and the relative 

599 amount (C) and number (D) of plant growth-promoting VOCs. The relative amount of VOCs shows 

600 the chromatographic peak area that was expressed relative to the peak area of (Z)-3-hexenyl acetate 

601 (internal standard) as an indirect approach to estimate the relative concentration of each VOC, 

602 while number of VOCs means the total number of VOCs produced at each community richness 

603 level. In all panels, each observation shows the effect of each replicate in each bacterial 

604 monoculture or community. The experiments were repeated twice in triplicate.
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605 Figure 3: Effect of bacterial community richness on community productivity (total bacterial 

606 abundance), genera abundances and genera evenness. The relationships between bacterial 

607 community richness and total bacterial community productivity (A), genera abundances (B) and 

608 community evenness based on bacterial genera abundances (C). In panels A and B, CFU denotes 

609 for bacterial cell numbers per ml in terms of colony forming units. In panel B, black, dark grey and 

610 light grey data points represent Paenibacillus, Bacillus and Paenibacillus genera, respectively. In 

611 all panels, each observation shows the effect of each replicate in each bacterial monoculture or 

612 community. The experiments were repeated twice in triplicate.
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