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Abstract

Deep-water volcanoes are emplaced in water depths >1.0 km and are widespread along
continental margins and in ocean basins. Whilst the external morphology of deep-water volcanoes
can be mapped using bathymetric surveys, their internal structure and true volume remain
enigmatic. It is thus difficult to determine how deep-water volcanoes grow. We investigate 13
Late Miocene-to-Quaternary, deep-water volcanoes that are imaged in 3D by seismic reflection
data from the northern South China Sea, which allow us to quantify their external morphology
and examine their internal structure. These deep-water volcanoes were emplaced in water
depths >1.5 km, are relatively small (<3.0 km diameter, <0.56 km tall, and <0.92 km? in volume),
and have steep slopes (up to 42°). Most of the volcanoes have erosional, 'crater-like' bases, infilled
with sub-horizontal seismic reflections. These crater-like bases are overlain by downward-
converging, conical seismic reflections delineating the classical volcano morphology. We suggest

the crater-like bases formed by excavation of cold, wet, and poorly consolidated near-seabed
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sediment during expulsion of hydrothermal fluid, and not by explosive magmatic eruptions or
gravitational subsidence. Erupted igneous material infilled the precursor craters with the observed
sub-horizontal layers, likely comprising hyaloclastites. After this initial phase of volcanism, the
buildup of volcanic material produced layers that are now represented by the flank-parallel or
downward-converging, conical seismic reflections. We suggest high hydrostatic pressures of >15
MPa, which are typical of water depths >1.5 km, inhibited degassing and fragmentation of
ascending magma and thus erupted lava. This lack of degassing and fragmentation permitted
effusive eruptions during the latter stages of volcanism. Our models for volcano growth in the
deep submarine realm demonstrate the power of using 3D seismic data when investigating the

internal structure and total volume of deep-water volcanoes.

Keywords: deep-water volcanoes, volcanism, extrusion dynamics, growth mechanism, erosion,

South China Sea

1. Introduction

Volcanoes occur in a variety of plate boundary and intra-plate settings across Earth’s surface.
Determining how volcanoes grow is not only critical to predicting and mitigating volcanic
hazards, but this understanding can also provide information on the underlying plumbing system
structure (e.g., feeder and reservoir locations) and magma dynamics (e.g., composition and supply
rate) (e.g., Moore and Clague, 1992; Arnulfet al., 2014; Clague et al., 2018). Volcanoes emplaced
on land are typically well-studied and, by comparing their external morphology to similar
neighboring edifices, we can infer they are broadly built through fluctuations between so-called
summit- and diameter-prone growth (e.g., Moore and Clague, 1992; Rossi, 1996; Grosse et al.,
2009; Karlstrom et al., 2018). Yet without direct access to volcano interiors, it is difficult to test
growth models predicted from their external morphology alone. Examining ancient, (partially)
eroded volcanoes provides some insight into how volcanoes are constructed, but modification of
their original shape means we cannot assess relationship between internal structure and external
morphology (e.g., Goto and Tomiya, 2019). By using traditional remote-sensing and/or field-

based techniques, we can therefore either quantify the external morphology of uneroded
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volcanoes, but not know their internal structure, or study the interiors of eroded volcanoes where
information on their original edifice shape has been lost. Our ability to only constrain either the
external morphology or internal structure of onshore volcanoes, but not both, limits our
understanding of how volcanoes grow.

Remote sensing data and lithostratigraphic analysis of well cores allow us to constrain the
external geometry and internal structure of the evolution of shallow- and deep-water volcanoes
(e.g., Smith, 1988; Magee et al., 2013; Cocchi et al., 2016; Buchs et al. 2018). In particular,
seismic reflection imaging of volcanoes provides a unique opportunity to resolve uncertainties
regarding volcano growth, given these data can image both the external morphology and internal
structure of volcanoes (e.g., Gatliff et al., 1984; Calves et al., 2011; Magee et al., 2013; Reynolds
etal., 2018; Sun et al., 2019). For example, by using 2D seismic reflection data offshore southern
Australia, Magee et al. (2013) showed trends in the external morphology of buried, shallow-water
shield volcanoes were consistent with growth via summit eruptions and a proportionate increase
in summit height and volcano diameters. Interpretation of reflections within the volcanoes reveal
the majority of volcanoes did indeed grow by a proportionate increase in summit height and basal
diameter (i.e. the layers were parallel to the volcano flanks) (Magee et al., 2013; see also Reynolds
et al., 2018). A similar seismic-based study of shallow-water volcanoes (water depth <200 m),
emplaced along the western Indian rifted margin, reveal they preferentially grew via increases in
diameter without a commensurate increase in summit height (Calves et al., 2011). Whilst seismic
reflection data have been used to unravel the growth of shallow-water volcanoes, few studies
have utilized these data to study the internal structure of deep-water (>1 km) volcanoes (e.g.,
Gatliff et al., 1984; Sun et al., 2019).

Discerning how deep-water volcanoes erupt and grow is critical for: (1) accurate assessment
of deep-water volcanic hazards (e.g. submarine landslides and associated tsunami; e.g. Staudigel
and Clague, 2010); (2) calculation of accurate eruptive and total volume estimates, which
contribute to understanding melting conditions in the underlying crust and/or mantle (e.g. Buchs
et al., 2018; Sun et al. 2019); and (3) determining the role of volcanoes in gas venting and
hydrothermal circulation (e.g. Planke et al., 2005). Importantly, high hydrostatic pressures in

deep-water settings, which can inhibit degassing, ascent rate, and fragmentation of magma, mean
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the extrusion dynamics of deep-water volcanoes may fundamentally differ from their onshore and
shallow-water counterparts (e.g. Gregg and Fornari, 1998; Cas and Simmons, 2018; Carey et al.,
2018; Manga et al., 2018; Sun et al., 2019). These differences in eruption style and underlying
controls suggest we may not be able to simply apply our knowledge of volcanism in other,
subaerial or shallow water settings, to understand how deep-water volcanoes grow (e.g. Gregg
and Fornari, 1998; Manga et al., 2018). It is therefore necessary to image the internal structure of
deep-water volcanoes to reveal their growth history.

Here, we use 3D seismic reflection data to investigate 13 deep-water volcanoes located along
the continental margin of the northern South China Sea. These Late Miocene-Present volcanoes
were emplaced close to the Continent-Ocean Boundary (COB) in water depths >1.5 km. Our 3D
seismic reflection data allow us to map the external morphologies and internal structures of these
volcanoes in unprecedented detail. From our seismic reflection imaging, we propose the majority
of studied deep-water volcanoes grew through an initial phase of crater formation driven by
escape of hydrothermal fluids, which became infilled. Volcanic cones developed on top of these
infilled craters, or in two cases directly on undisturbed seabed sediment, primarily grew by
proportionate increases in summit height and basal diameter, thereby maintaining their slope
angle; some volcanoes appear to have grown by preferential addition of material to summit
regions. Although similar growth models have been proposed for volcanic cones in subaerial and
shallow marine settings, we demonstrate the deep-water volcanoes we study are relatively smaller
and have steeper slopes. We attribute the initial phase of crater formation and morphological
differences between deep-water volcanoes and those in other settings, to the unique physical
conditions under which deep-water volcanoes evolve. Our work shows seismic reflection data is

a powerful tool for unravelling volcano growth.

2. Geological setting

The South China Sea is located in a complex tectonic region between the Eurasian, Pacific and
India-Australia plates (e.g. Briais et al., 1993; Franke et al., 2014; Li et al., 2014) (Fig. 1a). The
South China Sea evolved as a magma-poor rift, culminating in seafloor spreading, the onset of

which varied across the region (e.g. Clift et al., 2001; Cullen et al., 2010; Larsen et al., 2018).
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Seafloor spreading began in the East Sub-basin in the early Oligocene (~33 Ma; Briais et al., 1993;
Li et al., 2014), before the spreading center jumped to the Southwest Sub-basin in the late
Oligocene (~25 Ma) (e.g. Franke et al., 2014). Spreading ceased sometime in the middle Miocene
(~15.0-15.5 Ma; Briais et al., 1993; Li et al., 2014). Since the late Miocene (~10.5 Ma), tectonic
activity in the northeastern part of South China Sea has been mainly driven by its collision with
the Philippine Sea Plate (i.e. the Dongsha Event; e.g. Liidmann and Wong, 1999).

The study area is located to the south of the Dongsha Islands in the northern South China Sea
(Fig. 1a). Geological and geophysical studies (e.g. borehole, gravity, magnetic, and 2D and 3D
seismic reflection data) indicate widespread Cenozoic volcanism across the northern South China
Sea (e.g. Li and Liang, 1994; Yan et al., 2006; Zhao et al., 2016). From the early Paleocene to
earliest Oligocene, before the onset of seafloor spreading, intermediate-acidic volcanoes were
emplaced in a subaerial setting (Yan et al., 2006). From the Oligocene to middle Miocene, there
was a compositional and environmental transition to the emplacement of mafic-to-intermediate
volcanoes in shallow-water (<200 m) and subaerial settings (e.g. Yan et al., 2006; Lester et al.,
2014) (Fig. 1a). Rapid post-emplacement subsidence led to these volcanoes being deeply buried
(up to depths of 1.5 km) beneath the current seafloor (e.g. Zhao et al., 2016). Late Miocene and
younger, intra-plate volcanoes (Figs. 1b-c) were emplaced close to the continent-ocean boundary
(Clift et al., 2001; Sun et al., 2019). Recent IODP Expeditions 349/367/368 drilled several of
these deep-water volcanoes in the South China Sea, revealing they are primarily basaltic (e.g. Li
et al., 2014; Larsen et al., 2018), and that some were emplaced during continental breakup and
directly covered by deep-water (>1.3 km) nanofossil-bearing clay sediments (Larsen et al., 2018).
Many of the deep-water volcanoes, emplaced since the Late Miocene, feed long run-out lava
flows that have irregular basal morphologies (Sun et al., 2019) (Figs. 1b-c). The volumes of these
long run-out lavas appear equivalent to, or substantially greater than, that of the erupted material

contained in the volcanoes themselves (Sun et al., 2019).

3. Datasets and methods

We use a time-migrated 3D seismic reflection dataset covering ~1150 km? to study the external

morphology and internal structure of deep-water volcanoes in the South China Sea (Fig. 1a). The
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data were acquired in 2012 using eight tuned air source guns, each with a volume of 8 x 20 in3,
to produce a total shot volume of 8 x 160 in®. Six 3000 m-long, 240-channel streamers with a
spacing of 12.5 m were used to tow the hydrophones. The data are zero-phase processed with
ordinary processing procedures (e.g. digital filtering, deconvolution, dynamic/static correction,
offset stack, etc.), and displayed with Society of Exploration Geophysicists (SEG) normal polarity.
A downward increase in acoustic impedance therefore corresponds to a positive reflection event
(red on displayed seismic profiles) and a downward decrease in acoustic impedance corresponds
to a negative reflection (black on displayed seismic profiles) (e.g. Brown, 2004).

The dominant frequency in the interval of interest (i.e. 0—400 m below the seabed) is ~40 Hz.
The estimated limit of separability within the deep-water strata (i.e. nanofossil-bearing clay)
encasing the volcanoes is ~14 m, based on a seismic velocity of 2.2 km/s for the sedimentary
rocks; this velocity is derived from nearby seismic refraction profiles (Yan et al., 2001; Wei et al.,
2011) (Fig. 1a). There are no seismic velocity data available for the studied deep-water volcanoes,
but we assume they have an interval velocity of the 4.0+1.0 km/s based on: (i) measured seismic
velocities of ~3.0-5.0 km/s for basaltic rocks (lava flows, volcaniclastic breccias and pyroclastics)
intersected by nearby boreholes (e.g. BY7-1 and IODP 1431) (Li et al., 2014; Zhao et al., 2016);
(ii) velocities of ~3.0-5.5 km/s obtained from seismic refraction profiles that cover other deep-
water volcanoes within the basin (Yan et al., 2001; Wei et al., 2011); (iii) typical seismic velocities
calculated from boreholes penetrating basaltic submarine volcanoes (~3.3-5.5 km/s) elsewhere
(Calves et al., 2011); and (iv) the size of observed seismic velocity anomaly-induced ‘pull-ups’
beneath the studied volcanoes (V7, V11, and V13, Fig. S1), caused by acoustic waves travelling
faster through hard, crystalline igneous rocks than the surrounding sedimentary strata (Jackson,
2012; Magee et al., 2013; Reynolds et al., 2018). With regard to the latter point, we calculate
interval velocities of 3.2-4.1 km/s for the three volcanoes (V7, V11, and V13), derived from the
magnitude of velocity pull-up artifacts (~82.7 ms - 161.3 ms TWT high) present in underlying

seismic reflections (Fig. S1):

TsxVps
Ti

Vpi =
where Vps (Vps = 2.2 km/s) and Vpi are the seismic velocities of encasing rocks/sediments and

igneous rocks; Ts and Ti are the seismic wave travel time in the encasing rocks/sediments and
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igneous rocks, respectively (Fig. 2a).

Given a dominant frequency of ~40 Hz and an interval velocity of the 4.0+1.0 km/s, the
estimated limits of separability and visibility of layers within the volcanoes is 25+6 m (A/4) and
3.5+0.5 m (A/30), respectively (Sun et al., 2019). When the volcanic structures are thicker than
the estimated limit of separability, their top and base reflections can be distinguished. However,
if their thickness lies between the limits of separability and visibility, they will appear as tuned
reflection packages; i.e. reflections from their top and base interfere on their return to the surface
and cannot be distinguished (e.g. Brown, 2004). Volcanic structures thinner than the limit of
visibility will likely not be distinguishable from noise within the seismic data (Eide et al., 2017).

The volcanoes we study comprise two distinct components, involving a volcanic edifice and
an underlying infilled crater-like base (Fig. 2b). We mapped three key seismic horizons: TV (top
of volcano), BV (base of volcano), and the seabed (Figs. 3a-c). From these mapped horizons, we
measured key geomorphologic parameters of the volcanoes, including diameter and height/depth
of the edifices and crater-like bases (Fig. 2b). We define volcano thickness, which we also use to
calculate volume, as the difference in height between TV and BV (Fig. 2b); volume estimates also
take into account the irregular morphologies of TV and BV. Because the observed volcano flanks
are rugged, we calculated average flank dips as height/(diameter/2) (Fig. 2b). In places, where
volcanoes appear to merge, we constrain the plan-view extent of each edifice by distinguishing
the location of minimum thickness between them (Fig. 3d). Errors in height, depth, volume, and
flank dip measurements largely arise from uncertainties in the seismic velocities (4.0+1.0 km/s)
used to undertake the depth conversion rather than measurement errors. The collected edifice and
crater dimensions data allow us to better understand how much volcanic material may be
underestimated by surficial remote-sensing techniques, and thus unaccounted for when
calculating volumes of magma production. We also compare the geomorphologic characteristics
of the volcanic edifices to volcanoes emplaced in different environments with varying
composition, such as ocean basins (Basalt; Smith, 1988), subaerial volcanic arcs (Basalt - andesite;
Grosse et al., 2009), submarine volcanic arcs (dacite, basalt-andesite; Wright et al., 2006) and

shallow water (Basalt; Magee et al., 2013).
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4. Characteristics of the deep-water volcanoes

4.1. Seismic expression

We mapped the top and bases, and thus constrained the thickness and volume of 13 volcanoes
(Figs. 3b-c; Table 1). In our seismic data, several volcanoes appear to have merged to form a
single, large edifice defined by multiple distinct summits (i.e. V4-V6 and V11-V12; Figs. 3b-c).
All the volcanoes are at least partly buried by a thin layer (<300 m) of Late Miocene- Quaternary
strata (Figs. 4-5; Table 1), with the tips of edifices (i.e. V6, V7, V9, V11, V12 and V13) breaching
the seabed (Figs. 3a, 4a-b, 4d, 4f). Except for V1, all volcanoes are encircled by moats that are
up to 75 m deep, and which, depending on their stratigraphic occurrence, are unfilled (i.e. moats
expressed at seabed), partly infilled, or fully filled (i.e. buried moats) (e.g. V6-V9; Figs. 3a, 4a-b,
4d-f, 5). The volcanoes are typically characterized by continuous-to-moderately continuous, high-
amplitude top reflections (i.e. TV), and discontinuous, primarily low-amplitude base reflections
(i.e. BV) (Figs. 4-5; Fig. S1). Occasionally BV is continuous and high-amplitude (e.g. V6; Fig.
41). Projected boundaries dividing the crater-like bases and edifices of individual volcanoes occur
at different stratigraphic levels (Fig. 4). For example, the edifice-crater boundary for V12 is
coincident with the modern seabed, whilst for V9 the edifice-crater boundary is located ~50—100
ms TWT (~40-80 m) beneath the current seafloor (Figs 4a-b).

We identify two types of volcano bases: (i) crater-like bases that truncate underlying seismic
reflections (Figs. 4a-d); and (ii) relatively flat bases that are conformable with underlying strata
(e.g. V6 and V8; Figs. 4e-f). Based on these differences in basal geometry, we sub-divide the
volcanoes into two groups: (i) GP1 (11 volcanoes), which have crater-like bases (Figs. 4a-d); and
(ii) GP2 (2 volcanoes), which have strata-concordant bases (Figs. 4e-f). The bases of both groups
of volcanoes are located at various stratigraphic horizons, up to ~264 m beneath the seabed.
Seismic reflections directly beneath the volcanoes, as well as those below lavas emanating from
the volcanic edifices, have very low-amplitude compared to their typical seismic character away
from the overlying volcanoes (Fig. 5). These reflections beneath the volcanoes are also typically
disturbed and occasionally appear to be deflected upward relative to their regional dip (e.g. those

beneath V9 in Fig. 5).
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4.2. External volcano morphology and dimensions
4.2.1. Volcano edifices

The volcanic edifices have circular to elliptical basal sections, with diameters of ~0.6-3.0 km
(average of ~1.3 km), covering areas of ~0.25-7.15 km? (Table 1). Edifice height ranges from
~79+20 to 560140 m (Figs. 3b, 6a; Table 1). There is a very weak (i.e. R> = ~0.21), positive
correlation between edifice diameter and height, with an average height:diameter ratio of 0.25
(Fig. 6a). Flanks are linear, convex-upward, or convex-downward, and are moderate-to-steep,
with dips of up to 42° (average dip of ~26°) (Figs. 4-5; Figs. S1-S2); most (nine) of the volcanoes
have slopes >20° (Table 1). Flank dip is weakly, negatively correlated with edifice diameter (R?
= ~0.12; Fig. 6b) and weakly, positively correlated with height (R?> = ~0.39; Fig. 6¢). Overall,
edifice volumes range from ~0.0160+0.0040 to 0.9213+0.2303 km? and show a strong, positive
correlation to diameter (R? = ~0.94; Fig. 6d), but a weak correlation to height (R? = ~0.25; Fig.

6¢) and no correlation with flank dip and volume (R? = ~0.06) (Fig. 61).

4.2.2. Crater-like bases

The depth and diameter ranges of the crater-like bases are ~87+22 to 517129 m and ~0.8 to
4.6 km, respectively, and only weakly, positively correlated (R> = ~0.20) (Fig. 7a; Table 1); their
volumes range from 0.0082+0.0021 to 0.8144+0.2036 km? (Table 1). The dips (5°-32°) of the
basal crater flanks are only weakly, negatively correlated to crater diameter (R = ~0.29; Fig. 7b)
and very weakly, negatively correlated with depth (R?> = ~0.17; Fig. 7c). Crater volume is
moderately-to-strongly, positively correlated (R? = ~0.65) with crater diameter but only weakly
correlated to crater depth (R? = ~0.22) and very weakly, negatively correlated with crater flank

dip (R? =~0.16) (Figs. 7d-f).

4.2.3. Total volcano morphometrics

The heights of volcano edifices and depths of crater-like bases are weakly, positively correlated
(R? =~0.36; Fig. 7g), whilst their diameters are moderately-to-strongly, positively correlated (R?
= ~0.65; Fig. 7h). We note the diameters of the crater-like bases are typically greater than (e.g.

V5 and V11) or equal to (e.g. V10 and V13) those of their overlying edifices (Fig. 7h). These



263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

differences in diameter mean that the vo/umes of crater-like bases are typically larger than those
of the overlying edifices (Fig. 7i), e.g. by more than five times (e.g. V5; Table 1); the volumes of
the crater-like bases and edifices are weakly, positively correlated (R? = ~0.23; Fig. 7i).

The average diameters, combining that of the edifices and crater-like bases, of individual
volcanoes show a weak (R? = ~0.22), positive correlation to volcano thickness (Fig. 7j). The total
volumes of volcanoes range from 0.0277+0.0070 to 1.2669+0.3167 km?. Volcano thickness is
only weakly (R?> = ~0.28) positively correlated with total volcano volume (Fig. 7k). However,
there is a strong (R?> = ~0.88), positive correlation between total volcano volume and average

diameter (Fig. 7j).

4.3. Internal architecture and seismic facies

We define two principal intra-volcano seismic facies (Fig. 4). Seismic facies 1 (SF1) is bound
at its base by BV and predominantly comprises discontinuous, short, parallel to sub-parallel,
moderate- to high-amplitude seismic reflections within the crater-like bases of GP1 (Figs. 4a-d).
Reflections within SF1 appear broadly parallel with those of the surrounding sedimentary layers.
Some outwardly dipping seismic reflections, which define broadly conical structures, are locally
observed within the cores of SF1 (Figs. 4a-d). Overlying SF1, seismic facies 2 (SF2) constitutes
the upper parts of all GP1 and GP2 volcanoes, broadly comprising stacked, continuous-to-
moderately continuous, moderate-amplitude reflections that downlap onto SF1 or BV (Fig. 4). In
most instances the internal SF2 reflections, where clearly observed, broadly parallel the outer
margins of the volcanic edifices (e.g. Figs 4a, e-f); in some edifices the SF2 reflections converge

down-dip (e.g. Fig. 4b).

5. Discussion

5.1 Age and environment of volcanism

Biostratigraphic data from nearby boreholes constrain the age of the nanofossil-bearing

sedimentary sequences encasing the 13 mapped volcanoes, which have edifice bases that mark
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the syn-eruptive seabed located at different stratigraphic levels (Figs. 4-5), and indicate volcanism
occurred periodically between the Late Miocene (e.g. ~6.3 Ma of V1; Sun et al., 2019) and
Quaternary. Analysis of ODP ( Site 1146) and IODP (Site U1501) data reveal that, at least since
the Early Miocene (~23 Ma) and throughout this prolonged period of intermittent volcanism, the
study area was a deep-water (>1.0 km) environment (e.g. Clift et al., 2001; Li et al., 2014; Larsen
et al., 2018). Because the mapped volcanoes are within an area characterized by a present water
depth of >1.3 km, and the subsidence-corrected, syn-emplacement Miocene-Quaternary sea level
was ~200 m higher than it is today (Xu et al., 1995), we consider it likely that eruptions occurred
in water depths >1.5 km; these water depths correspond to overlying hydrostatic pressures of >15

MPa.

5.2. Volcano formation and growth

Most of the thirteen mapped volcanoes (11 of 13) can be sub-divided into an edifice and a
crater-like base (Figs. 4a-d, 5). These crater-like bases truncate the underlying stratigraphic
reflections and are infilled by sub-horizontal reflections, onto which a conical edifice is developed
(Figs. 4a-d, 5). Here we discuss how each of these features relates to the initiation and growth of

these deep-water volcanoes.

5.2.1. Formation of crater-like bases

Crater-like bases have been observed beneath volcanoes and hydrothermal vents in subaerial
and shallow-water settings, and their formation has primarily been attributed to disaggregation
and material removal during explosive eruptions (e.g. Planke et al., 2005; Wright et al., 2006;
Geyer and Marti, 2008). Alternatively, crater-like bases could form by the collapse of subsurface
conduits following magma extraction and subsidence of overlying material (e.g. Walker, 1993;
Geyer and Marti, 2008) and/or post-emplacement gravitational subsidence in response to volcano
loading (e.g. Moore and Clague, 1992; de Silva and Lindsay, 2015); depressions generated by
these subsidence processes are expected to host inward-dipping layers (e.g. de Silva and Lindsay,
2015). We consider it unlikely that the crater-like bases documented here (e.g., Figs 4a-d) formed

by subsidence because: (i) gravitational subsidence driven by volcano loading could not produce
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craters volumetrically larger than, and which occasionally extend beyond the footprint of, the
overlying edifices (Moore and Clague, 1992; de Silva and Lindsay, 2015) (Fig. 7i; Table 1); (ii)
volcano loading will cause underlying reflections to sag and will not produce craters that truncate
and erode underlying strata (Figs. 4a-d); and (iii) the sub-horizontal reflections observed within
the crater-like bases are inconsistent with collapse of pre-existing strata into evacuated magma
conduits or deformation imposed by the volcano load (Figs. 4a-d).

By ruling out subsidence as a mechanism for driving crater formation, our observed truncation
and erosion of underlying strata by the craters may suggest they formed via an initial phase of
explosive activity (e.g. Planke et al., 2005; Wright et al., 2006; Geyer and Marti, 2008). However,
whilst evidence for explosive volcanism (e.g. pyroclast occurrence) has been documented in
silicic, volatile-rich deep-water settings, high hydrostatic pressures caused by large water
columns (e.g. >1.0 km) are expected to prevent substantial exsolution of volatiles from magma
and thereby inhibit explosive eruptions (e.g. Walker, 1993; de Silva and Lindsay, 2015; Carey et
al., 2018; Cas and Simmons, 2018). Although we lack the well data required to test whether the
crater-infilling-material was generated by explosive volcanic activity, we consider it plausible
that the deep-water emplacement (>1.5 km) and the basaltic, inferred volatile-poor nature of
magma extruded from these volcanoes may have restricted a namely “explosive” eruption style.
In particular, the interplay of the deep-water setting and magma composition may have led to
primarily effusive eruptions or rapid magma extrusion into the water column in a “non-explosive”
manner, e.g. such as suggested for high mass eruption rates by Manga et al. (2018). If explosive
activity was inhibited, a different mechanism for producing the observed erosive craters is
required.

Given the sub-horizontal seismic reflections (i.e. SF1) infilling the craters and truncation of
underlying strata by the basal surface, we suggest the crater-like bases could have formed in
response to the escape of magma-related hydrothermal fluids (e.g. fluids from magma and/or
heated pore fluids from the surrounding sediments). We propose that fluid escape disaggregated
and excavated the weak, near-seabed sediments via a similar process to that inferred for ancient,
seismically-imaged hydrothermal vents (e.g. Planke et al., 2005; Buarque et al., 2016).

Considering expelled, fine-grained sediments are likely to be removed by bottom currents (e.g.
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Judd and Hovland, 2007), we suggest the crater may have been infilled by sub-horizontal
packages composed of either: (i) erupted dense material that settles out of the water column (i.e.
it is not affected by bottom currents), perhaps forming layers of hyaloclastites; and/or (ii) material
eroded from the depression flanks and deposited within the crater. The process we infer for the
formation of the crater-like bases is similar to the generation of deep-water pockmarks, which are
usually of kilometer-scale and infilled by sub-horizontal sedimentary strata (e.g. Judd and
Hovland, 2007). Further exploration of the material filling these basin-like structures by drilling
and coring would help clarify the style and nature of the eruptive activity and crater formation.
Regardless of the process(es) driving crater formation, the absence of crater-like bases beneath
GP2 edifices indicates volcanism did not always involve near-seabed excavation and was site
specific (Figs. 4e-f). It is difficult to determine exactly what factors (e.g. seabed cohesivity and
porosity, water depth, mass eruption rate, magma composition and volatile content) controlled
the initial emplacement styles of the GP1 and GP2 volcanoes solely from the geophysical data

we use here.

5.2.2. Model of volcano growth

Volcano geometry is influenced by the interplay of constructive (e.g. dyke intrusion and
stacking of lava flows) and destructive processes (e.g. flank collapse and erosion) (e.g. Annen et
al., 2001; Kervyn et al., 2009; Magee et al., 2013). To evaluate edifice growth, field- and remote
sensing-based studies broadly rely on the assumption that, in any given volcanic field or setting,
small volcanoes develop into large volcanoes (e.g. Walker, 1993; de Silva and Lindsay, 2015).
Patterns in volcano morphometry have therefore been used to infer growth models (e.g. Rossi,
1996; Calves et al., 2011; Magee et al., 2013; Karlstrom et al., 2018). From these morphometric
data, the following growth models for various volcanoes from subaerial and shallow marine
settings have been proposed (Fig. 8): (i) proportional increase in summit height and basal diameter,
maintaining flank dip (Magee et al., 2013; Figs 8b, f); (ii) preferential addition of material to the
summit area and upper volcano flanks, whilst the diameter remains consistent and flank dip
increases with time (Magee et al., 2013; Figs 8c, f); (iii) lateral progradation of the edifice flanks

while summit height is fixed, such that flank dip decreases with time (Calves et al., 2011; Figs
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8d, f); and (iv) maintenance of a proportional increase in summit height and basal diameter with
time, interrupted by a short-stage of lateral progradation of the edifice flanks (Rossi, 1996; Figs
8e, ). However, these growth models derived from volcano morphometry data are difficult to test
because we cannot easily access and evaluate the internal 3D structure of volcanoes. Seismic
reflection data uniquely allows us to image volcano interiors in 3D, meaning we can interrogate
how edifices build up through time by mapping internal layers (Magee et al. 2013; Sun et al.,
2019). Here, we compare the internal architecture of our deep-water volcanoes to growth models
from those emplaced in subaerial and shallow marine conditions (Fig. 8), and discuss potential
environmental controls on the differences we recognize in their geometry and evolution.

The internal seismic facies variations we recognize within our GP1 volcanoes differ from the
seismic facies observed within monogenetic volcanoes that are mainly characterized by
homogeneous seismic reflections (e.g. Reynolds et al., 2018). These facies differences suggest
the GP1 volcanoes were instead formed through multiple eruptive events (i.e. they are polygenetic)
and we propose they likely developed in three stages (Fig. 9): (Stage 1) during the first stage,
crater-like bases formed through the explosive expulsion of hydrothermal fluids (see Section
5.2.1); (Stage 2) crater infilling through eruption of material and/or mass wasting of crater flanks,
forming the aggradational SF1 facies; (Stage 3) construction of a broadly conical edifice on a
relatively flat surface, following crater infilling, through summit eruptions that promoted vertical
and lateral growth as evidenced by the positive correlation between volcano height and basal
diameter, and the parallelism between their external morphology and internal SF2 reflections (cf.
Figs. 4, 6a, 8a-b, ). Down-dip convergence of internal SF2 reflections in some volcanoes (e.g.
V12; Fig. 4b) suggests that, for some edifices, vertical aggradation through accumulation of
erupted material at the summit may have outpaced lateral expansion of the basal diameter (e.g.
Figs. 8a, c, ) (Vail et al. 1977; Magee et al. 2013); i.e. in this scenario, little erupted material
reached the base flanks of the volcano, perhaps because eruption rate was low and episodic. The
growth of some volcanoes by vertical aggradation may explain why flank dips of the GP1
population correlate moderately positively with volcano height, but not basal diameter (Figs. 6b-
c). During Stage 2 or Stage 3, after full or partial infilling of the crater-like base, intrusions feeding

summit eruptions may have modified the core of SF1 to form the conical structures that are locally
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observed (Figs. 4a-d, 9).

GP2 volcanoes lack crater-like bases but otherwise appear similar to GP1 (Figs 4 and 6); i.e.
the volcanic materials contained in the GP2 volcanoes were expelled directly onto the paleo-
seabed, feeding a volcano that grew both vertically and laterally (Stage 3; Fig. 9). The narrow,
low-amplitude zone directly beneath the volcanoes and associated deformations (e.g. deflected-
upward seismic reflections) suggest that dykes or faults may have served as magma ascent
pathways (MP) (Fig. 5). However, these upward-deflected seismic reflections may also be
possibly interpreted as seismic artefacts (i.e. velocity pull-ups) that are caused by the overlying

thick, high-density volcanic rocks.

5.2.3 Controls on edifice morphology

Compared to subaerial and shallow-water basaltic volcanoes, as well as moderate- to deep-
water (0.9-3 km) andesitic-basaltic volcanoes, the deep-water basaltic volcanoes we study: (i) are
~41-427 times (in volumes) smaller than basaltic and basaltic-andesitic volcanoes from
elsewhere (Fig. 6a, d-e; Table S1); (ii) display similar positive correlations between height,
diameter, and volume, implying volcano growth broadly involved a proportionate increase in
summit height and basal diameter (Fig. 8-9) (e.g., Magee et al., 2013); but (iii) have steeper flanks
(most of them >20°), with some volcanoes evidently growing via preferential vertical aggradation
(Fig. 6b-c). We tentatively suggest that the small size and steeper flanks we observe likely reflect
differences in the environment of emplacement (e.g., water depth) and seabed lithology. Below
we consider how mass eruption rate and magma volatile content may control the
geomorphological characteristics of volcanoes in this study.

The magnitude, duration, and steadiness of eruption rate influence the distribution of extruded
material (e.g. de Silva and Lindsay, 2015; White et al., 2015). For example, low eruption rates
drive lava to move slowly over short distances (e.g. Rossi, 1996) and, thus, erupted materials are
more likely to accumulate around the vents/upper flanks and form high-angle slopes; i.e. growth
is via preferential vertical aggradation. Low eruption rates could explain the steep slopes of the
volcanoes we study, and may relate to the limited magma supply during post-rift volcanism (e.g.

Yan et al., 2006; Li et al., 2014) and/or volatile undersaturation in the basaltic parental magma.
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Episodic, shorter-duration emplacement of lava (as opposed to a single event) would also build
notably steeper flanked volcanoes, as demonstrated in experiments by Fink et al. (1993). However,
we note that the presence of long run-out lava flows flanking the volcano edifices (>9.0 km long)
likely indicates eruption rates varied significantly through time, with intermittent periods of short-
lived, high eruption rates of, possibly, volatile-enriched magma feeding the longest run-out flows
(Sunetal., 2019) (Fig. 5). In addition to the low mass eruption rates, volatile-undersaturated lavas
(as primarily inferred here) have higher cooling rates,higher glass transition temperatures and
higher viscosities, and thus, lava may quench and build-up more proximal to the eruptive source
(Del Gaudio et al., 2007).

Because of high hydrostatic pressure, wet, cold, and unconsolidated sediments, and the overall
magma-deficient (low eruption rate and magma supply), post-rift setting during the Late Miocene,
the deep-water volcanoes documented here geomorphologically and genetically differ to their
subaerial and shallow-water counterparts in other tectonic environments (Fig. 6). In future,
physical and geochemical studies of eruptive products, particularly within GP1 volcanoes, may

help resolve the unusual morphologies and eruptive mechanisms within this tectonic setting.

6. Conclusion

We use 3D seismic reflection data to investigate the three-dimensional structure of thirteen
Late Miocene-to-Quaternary deep-water volcanoes. Two groups of volcanoes, one with (GP1)
and one without (GP2) crater-like bases, are identified. Internally, these volcanoes comprise two
dominant seismic facies types that document volcano growth processes. We are able to investigate
the relationship between the external morphology and internal structure of deep-water volcanoes,
and thereby build growth models for these hitherto poorly understood volcanic structures. The
growth of most of the volcanoes is defined by two main stages: crater formation and infilling,
likely initiated by the escape of hydrothermal fluids, and subsequent construction of an overlying
conical edifice. Importantly, recognition of crater-like bases beneath the volcanoes implies the
volume of modern deep-water volcanoes, which are typically quantified by bathymetric surveys,
may be grossly underestimated as the volcanoes may not have a flat, seabed-parallel base. In this

study, most of the deep-water volcanoes have edifice volumes less than the underlying craters.
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Our growth models suggest the morphology of the studied deep-water volcanoes were primarily
controlled by the high hydrostatic pressure occurring in the deep-water setting, the volatile-poor
nature of the parent magma, and variable magma supply due to the post-rift tectonic setting. In
particular, these factors led to erupted material primarily accumulating near the summit and on
the upper flanks of the volcanoes, meaning they have relatively smaller sizes (basal diameters,
heights and volumes) and are characterized by slopes steeper than that typically seen in their
subaerial, shallow-water, and deep-water arc-related counterparts. This study adds a unique
dataset to the global database of submarine volcano morphologies. Moreover, this study also
highlights that 3D seismic surveys could help revise previous estimates of submarine volcano or
seamount volumes and morphologies, and further our understanding of submarine volcanoes that

are already relatively-well studied.
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Figure Captions

Figure 1: (a) Geological setting of the study area. Red polygonal line located to the south of
Dongsha Islands is the 3D seismic survey. Top left: regional setting of the South China Sea. It is
bounded by the Red River Strike-slip faults (RRFs) to the west and by the subduction trench

(Manila Trench) to the east. Northern South China Sea is marked with black square. Igneous rocks
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with ages from exploration wells and seamount dredges are marked with blue circles/rings (Jin,
1989; Li and Liang, 1994; Zou et al., 1995). Crustal structure profiles (OBS1993 (Yan et al., 2001)
and OBS2006-3 (Wei et al., 2011)) are marked with pink solid lines. ODP sites 1145 and1146,
IODP site U1501 and location of Figure 3 are also labeled. The base map is modified from Yang
et al. (2015) and Sun et al. (2019); (b) and (c) Regional seismic strata of the study area. Volcanic

materials are mainly located in the shallow level (0-300 m) of post-rifting strata. See location in

(a).

Figure 2: (a) Schematic diagram of the calculation method for igneous velocity within the volcano
and surrounding sediments; (b) Schematic diagram of geomorphic parameters measured in this
study, using an example volcano with an identified crater-like base and overlying edifice. Note
that the travel-time distances between the volcano summit and its base (Ts), or the top of the

velocity pull-up (Ti), were measured within the volcano edifices.

Figure 3: (a) Present seabed morphologies of the study area, interpreted from the 3D seismic data.
The landmark areal projections of buried or partly buried volcanoes are marked; (b) Thickness
(and thus, height) of volcano edifices in the study area; (¢) Thickness (and thus, depth) of volcano
craters in the study area; (d) Total thickness of the volcanoes, calculated from the vertical addition

of (b) and (c). The boundaries of merged volcanoes are marked. 100 ms (twt) = ~200 m.

Figure 4: (a) - (d): Seismic characteristics of volcanoes (GP1). (a) Volcano 9 (V9) and its line
drawing; (b) Volcano 12 (V12) and its line drawing; (c¢) Volcano 1 (V1) and its line drawing; (d)
Volcano 7 (V7) and its line drawing. (e) - (f): Seismic characteristics of volcanoes (GP2). (e)
Volcano 8 (V8) and its line drawing; (f) Volcano 6 (V6) and its line drawing. 150 ms (twt) for
volcano is equal to ~300 m. TV = top of volcano; PS = present seabed (solid pink line); PLS =
paleo-seabed (solid green line); IS = inferred present seabed (dashed pink line); SF1 = seismic

facies 1; SF2 = seismic facies 2; VE. = vertical exaggeration. See locations in Fig. 3a.

Figure 5: 3D seismic profile crosses through V8, V9 and V10. The igneous pathways underneath
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the volcanoes are narrow, vertical structures (dashed arrows) and the surrounding strata are
slightly pushed upward, suggesting them probably as dykes. VE. = vertical exaggeration. See

location in Fig. 3a.

Figure 6: Geomorphologic parameters of deep-water volcanoes (gray solid circles; this study),
shallow-water volcanoes (pink squares; Magee et al., 2013), subaerial arc volcanoes (green
triangles; Grosse et al., 2009), submarine arc volcanoes (grey cross; Wright et al., 2006) and ocean
volcanoes (blue thombus; Smith, 1988). (a) Height vs diameter; (b) Dip vs diameter; (c) Dip vs
height; (d) Diameter vs volume; (e) Height vs volume; (f) Dip vs volume; The deep-water
volcanoes in this study have different trends (slopes) to other types. The errors of geomorphologic

parameters of volcanoes in the study area are from the ranges of volcano velocities.

Figure 7: (a)-(f): Geomorphologic characteristics of the craters of deep-water volcanoes in this
study. (a) Depth vs diameter (crater); (b) Dip vs diameter (crater); (c) Dip (crater) vs depth; (d)
Depth vs volume (crater); (e) Diameter (crater) vs volume (crater); (f) Dip (crater) vs volume
(crater). (g)-(i): Geomorphologic characteristics between the volcano edifices and craters of deep-
water volcanoes. (g) Height vs depth; (h) Diameter (crater) vs diameter (edifice); (i) Volume
(crater) vs volume (edifice); (j)-(1): Geomorphologic characteristics of the total volcanoes. (j)
(Height + depth) vs average diameter; (k) (Height + depth) vs total volume; (1) Average diameter

vs total volume.

Figure 8: Volcano growth models. (a) Model of deep-water volcano growth (GP1; purple dashed
lines) with preferentially vertical aggradation of the edifice flanks; (b) Model of shallow-water
volcano growth (red dashed lines) through a proportional increase in summit height and basal
diameter (offshore southern Australia; Magee et al., 2013); (c) Model of shallow-water volcano
growth (green dashed lines) where summit height increases, whilst basal diameter remains
consistent (offshore southern Australia; Magee et al., 2013); (d) Model of shallow-water and
subaerial pioneer cones of hyaloclastite mounds (dark blue dashed lines) where the basal diameter

increases, whilst the summit height remains consistent (western Indian rifted margin; Calvés et
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al., 2011); (e) Model of subaerial shield volcano growth (orange dashed lines) involving a
proportional increase in summit height and basal diameter, which is disrupted by a short stage of
preferentially lateral progradation of the edifice flanks (Iceland, Rossi, 1996). (f) The expected
trends in summit or basal diameter plotted against volcano volume and average flank dip for all

models (a-d).

Figure 9: Cartoon showing proposed three-stage evolution of GP1 volcanoes (see text for details).
GP2 volcano growth may be akin to Stage 3. SF1 = Seismic facies 1; SF2 = Seismic facies 2; MP

= Possible magmatic intrusions.
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Table Caption

Table 1: Geometrical parameters of the edifices and craters of volcanoes. (1) = water depth of the
seabed where the volcanoes emplace or emplace underneath it (W.D.); (2) = sediment thickness

overlying the buried volcanoes (Th.).
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