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Abstract 

This article reports a method of simultaneous T2
*
 mapping of 

14
N- and 

15
N-labeled 

dicarboxy-PROXYLs using 750-MHz continuous-wave electron paramagnetic resonance 

(CW-EPR) imaging. To separate the spectra of 
14

N- and 
15

N-labeled dicarboxy-PROXYLs 

under magnetic field gradients, an optimization problem for spectral projections was 

formulated with the spatial total variation as a regularization term and solved using a local 

search based on the gradient descent algorithm. Using the single-point imaging (SPI) method 

with spectral projections of each radical, simultaneous T2
*
 mapping was performed for 

solution samples. Simultaneous T2
*
 mapping enabled visualization of the response of T2

*
 

values to the level of dissolved oxygen in the solution. Simultaneous T2
*
 mapping applied to a 

mouse tumor model demonstrated the feasibility of the reported method for potential 

application to in vivo oxygenation imaging. 
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1. Introduction 

 The partial pressure of oxygen (pO2) in tumor tissues is a critical parameter of the tumor 

microenvironment and has significant impact on the outcomes of radiotherapy and anti-cancer 

drugs [1]. As such, techniques for the visualization of the distribution of partial pressure of 

oxygen in tumors are of significant interest in pre-clinical and clinical research. To date, 

several non-invasive methods for oxygen-sensitive imaging have been reported, including 

near-infrared spectroscopy (NIRS) [2], fluorescence/phosphorescence imaging [3], positron 

emission tomography (PET) using hypoxia radiotracers [4], 
19

F-magnetic resonance imaging 

(MRI) [5], blood oxygen level-dependent MRI [6], and electron paramagnetic resonance 

(EPR) imaging [7,8]. Of these imaging modalities, EPR is one of the few methods that enable 

quantitative visualization of the partial pressure of oxygen in tumors. In EPR-based oxygen 

mapping, the partial pressure of oxygen is typically measured from spectroscopic parameters 

such as the line-width of the absorption spectrum or the relaxation time of the unpaired 

electrons of an oxygen-sensitive spin probe. In pulsed EPR studies, a derivative of 

triarylmethyl radical, which has a relatively long relaxation time, is commonly used for 

oxygen mapping [9]. In contrast, continuous-wave (CW) EPR can be conducted with a variety 

of nitroxyl radicals as well as triarylmethyl radicals regardless of relaxation time. 

 The line-width of the EPR absorption spectrum and the relaxation time of unpaired 

electrons depend on both the concentration of the spin probe and the partial pressure of 

oxygen. Therefore, the influence of the probe concentration should be minimized to achieve 

quantitative measurements of the partial pressure of oxygen with high accuracy. In pulsed 

EPR, longitudinal relaxation time T1-based oxygen mapping can provide pO2 maps that are 

relatively less sensitive to the concentration of the spin probe than apparent 

transverse-relaxation time T2
*
-based pO2 mapping [10,11]. In contrast to pulsed EPR, the 

oxygen-induced line broadening in CW-EPR spectra requires distinction from the spin probe 
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concentration-induced line broadening for pO2 measurements, because the line-widths of 

first-derivative EPR absorption spectra in the CW detection method reflect relaxation time T2
*
, 

which is sensitive to the probe concentration as well as the partial pressure of oxygen. 

 To distinguish the effects of concentration-induced line broadening and the interaction 

with molecular oxygen on CW-EPR spectra, Halpern et al. used 

4-protio-3-carbamoyl-2,2,5,5-tetraperdeuteromethyl-3-pyrrolinyl-1-
15

N-oxy (mHCTPO) [12�

14] as a spin probe and demonstrated non-invasive oxygen measurements by exploiting the 

hyperfine structure of mHCTPO in tumor animal models [14]. In their work, two parameters 

were derived from the EPR spectrum in order to determine the two unknowns; the probe 

concentration and the partial pressure of oxygen. However, processing of the hyperfine 

structure of the EPR spectrum at each voxel in the three-dimensional (3D) data space requires 

relatively time-consuming four-dimensional (4D) spectral-spatial imaging [15]. Precise 4D 

image reconstruction is critical for accurate measurements of spectral lines for pO2 mapping 

[16]. 

 In this work, we aimed to obtain two appropriate spectroscopic parameters for 

measurements of oxygen-induced line broadening in CW-EPR using a pair of 
14

N- and 

15
N-labeled nitroxyl radicals. In CW-EPR imaging, spectra pertaining to the 

14
N- and 

15
N-labeled nitroxyl radicals can be separated from the projection data measured from a 

mixture of the radicals under magnetic field gradients. This phenomenon has been previously 

reported [17,18], however, those works dealt with the EPR signal intensity only, rather than 

spectroscopic parameters such as the line-width or relaxation time T2
*
. Here we propose that 

simultaneous T2
*
 mapping of 

14
N- and 

15
N-labeled nitroxyl radicals using single-point 

imaging (SPI) might meet the need of two spectroscopic parameters for the quantitative EPR 

measurement of oxygen-induced line broadening.  

 Thus, the goal of this work was to establish a method of simultaneous T2
*
 mapping of 
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14
N- and 

15
N-labeled nitroxyl radicals. The realization of this goal requires a process to 

separate the EPR spectra measured from a mixture of 
14

N- and 
15

N-labeled nitroxyl radicals. 

Herein, a local search method was applied to the CW-EPR imaging data to carry out this 

separation, and SPI was employed to enable simultaneous T2
*
 mapping of a mixture of 

14
N- 

and 
15

N-labeled nitroxyl radicals in solution phantoms and living mice.  

 

2. Methods 

2.1. Spectral separation for 
14

N- and 
15

N-labeled nitroxyl radicals 

 The central concept behind our process of spectral separation is to find the spatial signal 

distribution of 
14

N- and 
15

N-labeled nitroxyl radicals in a mixture solution. Figure 1 shows the 

structure of a pair of 
14

N- and 
15

N-labeled nitroxyl radicals and the EPR spectrum for a 

mixture of those radicals. In this study, we consider that absorption spectra of each radical at 

low magnetic field (leftmost two peaks in Figure 1b) are simultaneously recorded with and 

without magnetic field gradients. After finding the spatial signal distribution for a given 

projection, each spectral projection can be computed by convolution of the spatial signal 

distribution and the corresponding zero-gradient spectrum of a mixture solution. Thus, to 

recover the spatial signal distribution, a process of deconvolution of the spectral projection 

and the zero-gradient spectrum is usually conducted. However, since it requires low-pass 

filtering to suppress the high-frequency noise and to avoid a division-by-zero problem, the 

reconstructed spatial distribution is typically blurred. To avoid blurring of the reconstructed 

spatial distribution, a process of deconvolution was not employed in the present work. 
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Fig. 1. Chemical structures of 
14

N- and 
15

N-labeled dicarboxy-PROXYLs and a 

representative EPR spectrum of a mixture of those nitroxyl radicals. (a) Chemical 

structure of 
2
H-DCP and 

2
H,

15
N-DCP radicals, (b) EPR spectrum of a mixture of 

2
H-DCP and 

2
H,

15
N-DCP radicals in solution. The probe concentrations were 2 mM 

for each radical. 

 

 To find the spatial distribution of the signals that are projected to the one-dimensional 

EPR spectra, we established the following optimization problem as a minimization of an 

evaluation function f, involving the measured spectrum under a magnetic field gradient Smeas, 

the computationally generated spectrum Scomp, and the spatial distribution of the signal g: 

 
 

where 

  

Here, the first term is the fidelity measure of the spectra (the sum of the squares of errors) and 

the second term is a regularization term. λ is a coefficient to control the regularization term, 

where TV stands for total variation norm for the spatial distribution of the projected signal: 
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where n is size of the array g, and gi is the i-th component [19]. A process of convolution 

gives the computationally obtained spectrum Scomp: 

 
 

 
 

 
 

where the symbol  denotes convolution,  and  are the zero-gradient spectra 

and 
 
and  are the computed spectral projections for 

14
N- and 

15
N-labeled nitroxyl 

radicals, respectively. 

 To solve the optimization problem in Eq. (1), we implemented a gradient descent 

(GD)-based local search algorithm. Figure 2 shows a flowchart of the proposed algorithm for 

computing the separation of each spectral projection. Each GD iteration is formulated as: 

 

 

where α is a coefficient for updating the spatial distribution of the signals g for each iteration, 

which controls the speed of convergence, and superscript k denotes the iteration number. The 

non-negativity constraint was applied to array g. To evaluate the convergence of the solution 

for each projection, we monitored the relative error e of the evaluation function f [Eq. (2)]: 
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Fig. 2. Flowchart of the spectral projection separation process for 
14

N- and 
15

N-labeled 

nitroxyl radicals. 

 

When this relative error was below a given threshold e0, the process of iteration was 

terminated. We set the empirically optimized coefficients as follows: e0=10
-4

, α=10
-4

, and 

λ=1.0. Coefficient λ was reduced to 0.15 when the relative error e approached e0. 

 

2.2. Image reconstruction and T2
*
 mapping 

 The SPI method was used for image reconstruction of the spatial distribution and 

relaxation time T2
*
 of the unpaired electrons [20�22]. Specifically, the acquired data (15 × 15 

× 15 array) in the Fourier domain (k-space) were reformatted into a 64 × 64 × 64 or 32 × 32 × 

32 array by zero padding, and a 3D spatial image was reconstructed by the 3D inverse Fourier 

transform using the subroutine of FFT3B in the IMSL Numerical Libraries (Rogue Wave 

Software, Louisville, CO). The field-of-view (FOV) of the reconstructed spatial image is 
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determined by the delay-time τ of free-induction decay (FID) detection under magnetic field 

gradients, given by:  

  

where γe is the free-electron gyromagnetic ratio, and ∆G is the field gradient increment [21]. 

We computed the FID signal from the inverse Fourier transform (the FFTCB subroutine in the 

IMSL Numerical libraries) of an EPR absorption profile that was obtained by integration of 

the first-derivative EPR spectrum acquired by CW-EPR. The delay-time for FID detection 

was discretely set according to the sampling interval ∆τ, given as: 

  

where h is the Plank constant, g is the g-factor for the electron, β is the Bohr magneton, and 

∆B is the width of magnetic field scan [22]. Specific parameters in our experiments are given 

in section 2.5. The effective spatial resolution of the reconstructed images was estimated from 

the 10%�90% distance in an edge-response curve of the image intensity profile after 

zero-padding the 1D signal profile to 1024 points.  

 To compute the relaxation time T2
*
 at the voxel level, the FOV for the reconstructed 

images at different delay time-points was fixed using the k-space extrapolation method [23]. 

Multiple delay times were chosen to calculate T2
*
 using a least-squares fitting method for the 

decay curve of the image intensities (see section 2.5). The effect of the Gaussian component 

was taken into account as well as the Lorentzian component (exponential decay) by using a 

Voigt function [24]. The signal decay curve s as a function of time t can thus be written as: 

  

where K is the signal intensity at time t = 0. Coefficient a can be obtained from the full-width 

at half maximum (FWHM) of a Gaussian function 
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The FWHM of the Gaussian component was obtained by spectral fitting of the first-derivative 

EPR absorption spectrum using a Voigt function [24]. The 3D matrix size of T2
*
 maps was 32 

× 32 × 32. SPI-based image reconstruction and relaxation time computation was implemented 

using the Absoft Pro Fortran 2016 development environment (Rochester Hills, MI). Surface 

rendering was conducted using IDL version 8.4 (Exelis Visualization Information Solutions, 

Boulder CO). Two-dimensional images were visualized using ImageJ 1.50c (National 

Institutes of Health, Bethesda, MD, http://imagej.nih.gov/ij). 

 

2.3. Chemicals 

 A pair of nitrogen-labeled nitroxyl radicals was used as oxygen-sensitive probes. The 

nitroxyl radicals, 

trans-3,4-dicarboxy-2,2,5,5-tetra(
2
H3)methylpyrrolidin-(3,4-

2
H2)-(1-

15
N)-1-oxyl 

(
2
H,

15
N-DCP) and trans-3,4-dicarboxy-2,2,5,5-tetra(

2
H3)methylpyrrolidin-(3,4-

2
H2)-1-oxyl 

(
2
H-DCP) (see Fig. 1a), were synthesized as previously reported [25]. 

 

2.4. Solution phantoms 

 Two types of solution phantoms were prepared for proof-of-concept experiments of the 

separation of spectral projections and simultaneous T2
*
 mapping.  

 (i) The first phantom was used for demonstration of the process of spectral separation 

and evaluation of reconstructed spectra and images. 
2
H-DCP (2 mM) and 

2
H,

15
N-DCP (2 

mM) were dissolved in phosphate buffered saline (PBS) and the solution pH was adjusted to 

7.3 pH units by adding NaOH. The mixture was filled into a sample cell constructed from 

REXOLITE® 1422, cross-linked polystyrene, with an inner-cross section of 10 mm × 10 mm 



 11 

and a length of 25 mm. The cap of the cell was made of DURACON®, engineering plastic 

polyoxymethylene. The volume of the mixture solution was 2.5 mL. Figure 3a shows a 

photograph of the cell containing a mixture solution of 
2
H-DCP and 

2
H,

15
N-DCP. 

 (ii) The second phantom was used for simultaneous T2
*
 mapping of the mixture solution 

of the probes, in which the dissolved oxygen fraction was altered by bubbling in gas mixtures 

of oxygen and nitrogen. The same 2 mM mixture solution of 
2
H-DCP and 

2
H,

15
N-DCP 

dissolved in PBS (2.0 mL) was filled into a glass vial (14 mm inner diameter, 4 mL total 

volume). Separately, a mixture solution of 
2
H-DCP (3 mM) and 

2
H,

15
N-DCP (3 mM) was 

prepared in order to investigate the influence of concentration on T2
*
 mapping. Prior to EPR 

measurements, the mixture solution was bubbled with pure N2 gas (oxygen free condition) or 

5% O2 and 95% N2 gas mixture (oxygenated condition) to purge the air in the solution. A 

polytetrafluoroethylene tube was used to introduce gas into the solution in the vial, which was 

placed in an airtight plastic chamber. The flow rate of gas bubbling was set at 150 mL/min 

and monitored by a gas flow sensor (FD-A1, Keyence Corp., Osaka, Japan). Gas bubbling 

was performed for 5 min before each measurement. In preliminary tests, we confirmed that 

the T2
*
 of the radical solution is maintained throughout the experiment duration when using a 

vial with a tightly sealed screw cap, as opposed to a flame-sealed glass tube. Figure 5a shows 

a photograph of the vial partially filled with a mixture solution of radicals. 

 

2.5. In vitro imaging 

 To demonstrate the spectral separation method and simultaneous T2
*
 mapping in vitro, 

the mixture solutions of 
2
H-DCP and 

2
H,

15
N-DCP described above were visualized using a 

home-built 750-MHz CW-EPR imager (see section 2.7) with the following settings: scan time 

100 ms, magnetic field scanning width ∆B 1.5 mT, magnetic field modulation 40 µT, 

modulation frequency 90 kHz, time-constant of lock-in amplifier 0.1 ms, number of data 
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acquisition points 512 per scan, and incident RF power 18 mW. Field gradients were 

incrementally ramped in equal steps for EPR image acquisition. Projections were acquired for 

15 × 15 × 15 field gradients for the X-, Y-, and Z-directions (total of 3375 projections). The 

total acquisition time was 7.5 min. The maximum field gradient for each direction was 30 

mT/m and hence the field gradient increment ∆G was 30/7 mT/m = 4.29 mT/m (15 equal 

steps; zero ±7 steps). Since the width of magnetic field scanning was 1.5 mT, the sampling 

interval ∆τ of the FID signal becomes 23.8 ns [Eq. (10)] after inverse discrete Fourier 

transform of the EPR absorption spectrum. Therefore, we set the delay-times for FID 

detection to be integer multiples of the sampling interval ∆τ; 23.8, 47.6, 95.2, 142.8, and 

214.2 ns were chosen to calculate T2
*
. Since the signal decay curve [Eq. (11)] is close to 

exponential decay, we empirically chose to sample a greater number of short delay times. We 

chose the latest delay time (214.2 ns) to obtain an appropriate FOV (38.8 mm) of the resultant 

image [Eq. (9)].  

 The interval of spectral data acquisition was 130 ms. This interval is the sum of the 

spectral acquisition time (100 ms) and additional time (30 ms) to control magnetic field 

scanning, which includes the time taken for the external magnetic field to return to its initial 

value and the time required for a linear field scan before and after the spectral data acquisition. 

During this additional time, the magnetic field gradients were set for three directions and 

stabilized. 

 

2.6. In vivo imaging of tumor-bearing mice 

 To demonstrate the feasibility of simultaneous T2
*
 mapping of 

2
H-DCP and 

2
H,

15
N-DCP 

in vivo, tumor-bearing mice were scanned and individual images of 
2
H-DCP and 

2
H,

15
N-DCP 

were reconstructed. All animal experiments were performed in accordance with the �Law for 

The Care and Welfare of Animals in Japan� and approved by the Animal Experiment 



 13 

Committee of Hokkaido University (approval no. 15-0120). Six-week-old C3H/HeJ male 

mice (20�22 g) were purchased from Japan SLC (Hamamatsu, Japan). Murine squamous cell 

carcinoma (SCC VII) cells were subcutaneously injected into the right hind leg as reported 

previously [26]. EPR imaging was performed 8 or 9 days after the implantation of SCC VII 

cells (when tumor size was more than 10 mm). Mice were anesthetized by the inhalation of 1�

2% isoflurane and the tail vein was cannulated. Mice were placed onto a dedicated holder, and 

the tumor-bearing leg was inserted into the resonator of the EPR imager. A mixture of 

2
H-DCP and 

2
H,

15
N-DCP (0.8 mmol/kg body weight for each radical, 8 µL/g body weight for 

100 mM 
2
H-DCP and 100 mM 

2
H,

15
N-DCP mixture in 5 mM PBS) was intravenously 

injected as a bolus. Cytotoxicity tests of 
2
H-DCP and the time course of EPR signals of both 

probes in tumors have been reported previously [26]. EPR image acquisition was started 5 

minutes after injection. The mouse body temperature and respiration rate were monitored 

using a small animal monitoring and gating system (model 1030, SA Instruments, Inc., Stony 

Brook, NY). The mouse body temperature was maintained at approximately 37ºC by 

feedback-regulated heated airflow. The measurement settings for in vivo mouse imaging were 

identical to those for the solution phantoms detailed above (total acquisition time 7.5 min). To 

reduce the influence of erroneous T2
*
 values associated with low SNR data, T2

*
 was only 

calculated for voxels with a signal intensity greater than 30% of that of the maximum. 

 

2.7. CW-EPR spectrometer/imager 

 A home-built CW-EPR spectrometer/imager operating at 750-MHz was used for EPR 

imaging of solution samples and tumor-bearing mice, details of which have been reported 

previously [27,28]. In brief, a permanent magnet (static magnetic field of 27 mT) and three 

sets of magnetic field gradients were used. The coils for magnetic field scanning were used in 

combination with the permanent magnet for EPR spectroscopy and imaging. A multi-coil 
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parallel-gap resonator (22 mm inner diameter and 30 mm length) was used to apply the RF 

magnetic field to the sample [27,29]. The measured conversion efficiency of the RF magnetic 

field was 44 µT/W
1/2

 at the center of the resonator when the resonator was empty. 

 

2.8. Magnetic resonance imaging 

 To evaluate the presence of bubbles in the sample volume and provide a standard with 

which to compare the EPR signal intensity distribution, 
1
H magnetic resonance imaging was 

performed. A 1.5 T permanent magnet system was used with a home-built 
1
H coil, and a Japan 

REDOX spectrometer (Japan REDOX Ltd., Fukuoka, Japan). Conventional 2D gradient echo 

images were acquired in all three orthogonal planes with a FOV of 39 mm × 39 mm, in order 

to match EPR images. Other sequence parameters were set as follows: acquisition matrix 128 

× 128, slice thickness 2.5 mm, flip angle 20°, echo/repetition time (TE/TR) 9/100 ms, number 

of averages 4. 

 

3. Results and Discussion 

3.1. Separation of spectral projections 

 The solution phantom (i) (see Fig. 3a) was measured under air saturation to demonstrate 

the separation process of spectral projections for 
2
H-DCP and 

2
H,

15
N-DCP. Surface-rendered 

SPI-reconstructed images for each probe are shown in Fig. 3b. Figure 3c shows representative 

measured spectra (black) and the corresponding computed spectra (red) of the solution 

phantom for three magnetic field gradients G = 0.0, 12.9, and 21.4 mT/m. The same magnetic 

field gradients were applied in three orthogonal directions (Gx = Gy = Gz = G). Figure 3d 

shows the corresponding spatial distributions of the EPR signals. Note that the horizontal axis 

shows the data point number rather than the position in real space. Figure 3e shows the 

individual spectral projections resulting from the separation of the measured spectra in Fig. 
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3c. 

 The computationally derived spectral projections agreed well with the measured 

projections as shown qualitatively in Fig. 3c. From visual assessment of the 3D image 

reconstruction (Fig. 3b) and separated spectra (Fig. 3e), we concluded that the separation of 

spectral projections was adequately performed under several magnetic field conditions. For 

the separation process, we used the same zero-gradient spectra of 
2
H-DCP and 

2
H,

15
N-DCP 

for all measured projections; i.e., we assumed a space-invariant (shift-invariant) image system 

[c.f. Eqs. (5) and (6)]. It is appropriate to consider a solution phantom as a space-invariant 

system, since the distribution of oxygen and the spin probes is approximately homogeneous. 

However, when we measure live mice, the distribution of oxygen and the concentration of 

probes are not homogeneous, and thus the measured system is no longer space-invariant for 

the zero-gradient spectra in the strict sense. Nevertheless, we note that the computationally 

derived spectral projections can be adapted to the measured spectra. The effect of a change in 

zero-gradient spectra at each point is mostly compensated for adapting the projected profile of 

EPR signals (g) due to the fidelity term in Eq. (2). Even if the adapted projection profile 

slightly differs from the actual distribution of a corresponding projection, the process of 

image reconstruction is not obstructed. This is because the SPI method uses the 

computationally derived spectra (Scomp
14N

 and Scomp
15N

) for its image reconstruction, instead of 

the projected spatial distribution. According to the results shown in Fig. 3, we concluded that 

our optimization-based separation process for EPR absorption peaks worked well.  
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Fig. 3. Spectral separation of EPR spectra of 
2
H-DCP and 

2
H,

15
N-DCP. (a) Photograph of 

the sample cell (i), (b) surface-rendered EPR images of 
2
H-DCP and 

2
H,

15
N-DCP, 

(c) representative EPR spectra under magnetic field gradients G = 0.0, 12.9, and 

21.4 mT/m, (d) spatial distribution of EPR signals in data point number, and (e) 

separated spectral projections of 
2
H-DCP and 

2
H,

15
N-DCP. 

 

3.2. Estimation of spatial resolution of reconstructed images 

 To estimate the spatial resolution of the reconstructed images, slice-selective intensity 

maps of 
2
H-DCP and 

2
H,

15
N-DCP were analyzed. Figures 4a and 4b show 

1
H MR images of 

the solution phantom as a reference in two orthogonal planes. Figures 4c and 4d (4e and 4f) 

present 2D slice-selective maps of the EPR signal intensity of 
2
H-DCP (

2
H,

15
N-DCP), which 
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qualitatively reflect the shape of the solution in the cell on MRI. However, since the k-space 

data for EPR images is band-limited, fluctuation of image intensity was observed in the maps 

in Figs. 4c to 4f (c.f. surface-rendered images in Fig. 3b). 

 Figure 4g shows a representative spatial profile of the EPR image intensity along the 

gray dashed line in Fig. 4f, to illustrate the calculation of the 10%�90% distance for 

estimating spatial resolution. Figure 4h shows box-and-whisker plots of the 10%�90% 

distance at 20 distinct locations for the maps in Figs. 4d and 4f. The median 10%�90% 

distances of the 
2
H-DCP map and the 

2
H,

15
N-DCP map were 2.70 mm and 2.69 mm, 

respectively, and there was no statistically significant difference between the mean spatial 

resolutions (two-tailed Student t-test, P=0.859, n=20). In summary, we concluded that the 

spectral projection separation process does not affect the spatial resolution of reconstructed 

images. 
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Fig. 4. Evaluation of reconstructed EPR signal intensity maps of the rectangular solution 

phantom. (a, b) 
1
H MR images of the solution phantom in two orthogonal planes at 

the center of the phantom, (c, d) slice-selective EPR signal intensity maps of 

2
H-DCP in the two orthogonal planes at the center of the phantom, and (e, f) 

corresponding EPR signal intensity maps of 
2
H,

15
N-DCP. (g) Spatial profile of the 

EPR signal intensity along the gray dashed line in Fig. 4f. (h) Box-and-whisker 

plots of the 10%�90% distance of the edge-response curve at 20 locations for the 

maps in Figs. 4d and 4f. Scale bars represent 5 mm. 

 

3.3. In vitro T2* mapping of solution samples 

 Figure 5b presents a surface-rendered image of the EPR signal intensity of 
2
H,

15
N-DCP 

in the vial (photograph in Fig. 5a). Furthermore, Figs. 5c and 5d, and Figs. 5e and 5f, show 

slice-selective T2
*
 maps of 

2
H-DCP and 

2
H,

15
N-DCP in the oxygen-free condition and after 

bubbling of 5% O2 and 95% N2 gas mixture (oxygen condition; pO2 = 38 mmHg), 
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respectively for a 2 mM probe concentration. The peak-to-peak line-widths of the 

first-derivative Lorentzian component of the zero-gradient EPR spectra measured from the 

solution phantom (probe concentration 2 mM) for 
2
H-DCP and 

2
H,

15
N-DCP were 42.1 µT and 

34.7 µT in the oxygen-free condition, respectively. Also, the FWHMs of the Gaussian 

component for 
2
H-DCP and 

2
H,

15
N-DCP were 43.6 µT and 43.2 µT in the oxygen-free 

condition, respectively. These FWHM values were used in the computation of T2
*
 using Eq. 

(11). 

 A reduction in T2
*
 values of the probes can be seen as a shift in color on the T2

*
 maps. 

To further highlight the reduction in T2
*
 values in a quantitative manner, Figs. 5g and 5h show 

histograms of the T2
*
 values of 

2
H-DCP and 

2
H,

15
N-DCP for oxygen-free (blue bars) and 5% 

oxygen (red bars) conditions. Estimated T2
*
 values were 150.3 ± 2.6 ns for 

2
H-DCP and 178.7 

± 3.8 ns for 
2
H,

15
N-DCP for the oxygen-free condition; and 134.2 ± 2.5 ns for 

2
H-DCP and 

157.6 ± 4.2 ns for 
2
H,

15
N-DCP for the 5% oxygen condition (mean ± standard deviation of 

each 3D T2
*
 map). These measurements indicate that the relaxation time T2

*
 is a sensitive 

marker of dissolved oxygen in the solution. 

 Figure 6 presents slice-selective T2
*
 maps (panel a�d) and the histograms of T2

*
 values 

(panel e, f) of 
2
H-DCP and 

2
H,

15
N-DCP for oxygen-free (blue bars) and 5% oxygen (red bars) 

conditions for a spin probe concentration of 3 mM. Estimated T2
*
 values were 125.5 ± 2.2 ns 

for 
2
H-DCP and 136.5 ± 3.0 ns for 

2
H,

15
N-DCP for the oxygen-free condition; and 119.7 ± 2.1 

ns for 
2
H-DCP and 129.9 ± 2.9 ns for 

2
H,

15
N-DCP for the 5% oxygen condition. The results 

shown in Figs. 5 and 6 indicate that the effects of both the concentration of the probes and 

dissolved oxygen in the solution on the relaxation time T2
*
 can be quantitatively visualized. 

Thus, if calibration data of T2
*
 as a function of the probe concentration and the oxygen partial 

pressure are obtained, the partial pressure of oxygen may be estimated more accurately by 

isolating the effect of concentration-induced relaxation. 
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 T2
*
 mapping with high accuracy requires a minimal standard deviation of the T2

*
 values. 

Performing spatial filtering, e.g., with a moving average filter or median filter, can help 

reduce the scatter of T2
*
 values. However, no filtering was applied to the T2

*
 maps shown in 

Figs. 5 and 6. Additional factors affecting the scatter of T2
*
 values may include the linearity of 

magnetic field scanning and gradients and the image reconstruction process itself. Therefore, 

all technical aspects should be appropriately optimized to enable minimal standard deviation 

of T2
* 
values to aid the realization of the end goal of accurate oxygenation mapping with EPR. 

This optimization is a goal of present research in our laboratory. 
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Fig. 5. Simultaneous T2
*
 mapping of a mixture of 

2
H-DCP (2 mM) and 

2
H,

15
N-DCP (2 

mM). (a) Photograph of the vial partially filled with a mixture solution of the 

probes, (b) surface-rendered image of EPR signal intensity for 
2
H,

15
N-DCP (FOV 

38.8 mm ×38.8 mm ×38.8 mm, image matrix 64 × 64 × 64), slice-selective T2
*
 

maps of each radical (c, d) after nitrogen bubbling (oxygen-free condition), and (e, 

f) after bubbling of 5% O2 and 95% N2 gas mixture (pO2 = 38 mmHg), and (g, h) 

histograms of T2
*
 values of 

2
H-DCP and 

2
H,

15
N-DCP under the oxygen free and 5% 

oxygen conditions. The overlaid slice map in (b) indicates the position of 

slice-selective T2
*
 maps. Blue bars indicate T2

*
 values for the oxygen free condition 

and red bars indicate T2
*
 values for the 5% oxygen condition in the histograms (bin 

width 2 ns). Scale bar represents 5 mm. 
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Fig. 6. Simultaneous T2
*
 mapping of a mixture of 

2
H-DCP (3 mM) and 

2
H,

15
N-DCP (3 

mM). Slice-selective T2
*
 maps of each radical (a, b) after nitrogen bubbling 

(oxygen-free condition), and (c, d) after bubbling of 5% O2 and 95% N2 gas 

mixture (pO2 = 38 mmHg), and (e, f) histograms of T2
*
 values of 

2
H-DCP and 

2
H,

15
N-DCP under the oxygen free and 5% oxygen conditions. Scale bar represents 

5 mm. 

 

3.4. In vivo T2* mapping of a mouse tumor model 

 Figure 7a shows a photograph of a tumor-bearing mouse on the dedicated animal holder 

and Figure 7b shows a representative surface-rendered image of EPR signal intensity from 

2
H,

15
N-DCP in the tumor-bearing right hind leg of a representative mouse (body weight 24 g, 

tumor volume approximately 970 mm
3
). Figures 7c and 7d and Figs. 7e and 7f show the 

slice-selective signal intensity maps and corresponding T2
*
 maps, respectively, of 

2
H-DCP and 

2
H,

15
N-DCP in the tumor-bearing hind leg. 
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 An inhomogeneous distribution of EPR signals was observed, with a low signal 

intensity region in the center of the tumor. This may be attributed to insufficient delivery of 

the probes due to poor vasculature in the tumor microenvironment. Since the values of T2
*
 

were only calculated when the signal intensities at each voxel were above a given threshold, 

T2
*
 values were not obtained in the low-signal intensity region in the center of the tumor. In 

the proximity of the signal void area in both T2
*
 maps, prolonged T2

*
 values were detected, 

which likely reflects a low concentration of the probes and/or a low partial pressure of oxygen. 

While pO2 mapping was not performed in the current work, low-oxygen status in the same 

murine SCC VII tumors has been reported previously [30]. 

 The results of simultaneous T2
*
 mapping clearly show evidence of a successful spectral 

projection separation process in the tumor-bearing mouse hind leg. This mapping yields two 

spectroscopic parameters (T2
*
 values) at a single voxel in the 3D image data, which we plan 

to use to generate pO2 maps by employing appropriate calibration curves of the 

concentration-dependence and oxygen-dependence of the probes in the near future. 
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Fig. 7. Simultaneous T2
*
 mapping of a mouse tumor-bearing hind leg. (a) Photograph of a 

subject mouse on the dedicated mouse holder, (b) surface-rendered image of EPR 

signals for 
2
H,

15
N-DCP, (c, d) slice-selective maps of EPR signal intensity for 

2
H-DCP and 

2
H,

15
N-DCP in the coronal plane, and (e, f) corresponding T2

*
 maps of 

2
H-DCP and 

2
H,

15
N-DCP. FOV of the surface-rendered image (Fig. 7b) is 38.8 mm 

×38.8 mm ×38.8 mm. The overlaid slice map in (b) indicates the position of 

slice-selective T2
*
 maps (c�f). Scale bar represents 5 mm. 

 

4. Conclusion 

 A method of simultaneous T2
*
 mapping was established with CW-EPR-based SPI using 

2
H-DCP and 

2
H,

15
N-DCP probes, employing a spectral projection separation process 

performed with a GD-based local search. Our experiments demonstrate that simultaneous 3D 

T2
*
 mapping is feasible in vitro and in vivo. With further refinement, the presented T2

*
 

mapping approach should be extendable to enable quantitative oxygen mapping by CW-EPR 
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imaging. 
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