
This is a repository copy of Latency and Lifetime Enhancements in Industrial Wireless
Sensor Networks:A Q-Learning Approach for Graph Routing.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/160127/

Version: Accepted Version

Article:

Künzel, Gustavo, Soares Indrusiak, Leandro orcid.org/0000-0002-9938-2920 and Pereira,
Carlos Eduardo (2020) Latency and Lifetime Enhancements in Industrial Wireless Sensor
Networks:A Q-Learning Approach for Graph Routing. Industrial Informatics, IEEE
Transactions on. pp. 5617-5625. ISSN 1551-3203

https://doi.org/10.1109/TII.2019.2941771

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

Latency and Lifetime Enhancements in IWSN: a
Q-Learning Approach for Graph Routing

Gustavo Künzel, Leandro Soares Indrusiak, Carlos Eduardo Pereira

Abstract—Industrial Wireless Sensor Networks usually have
a centralized management approach, where a device known as
Network Manager is responsible for the overall configuration,
definition of routes, and allocation of communication resources.
Graph routing is used to increase the reliability of the com-
munications through path redundancy. Some of the state-of-
the-art graph routing algorithms use weighted cost equations
to define preferences on how the routes are constructed. The
characteristics and requirements of these networks complicate
to find a proper set of weight values to enhance network
performance. Reinforcement Learning can be useful to adjust
these weights according to the current operating conditions
of the network. We present the Q-Learning Reliable Routing
with a Weighting Agent approach, where an agent adjusts the
weights of a state-of-the-art graph routing algorithm. The states
of the agent represent sets of weights, and the actions change
the weights during network operation. Rewards are given to
the agent when the average network latency decreases or the
expected network lifetime increases. Simulations were conducted
on a WirelessHART simulator considering industrial monitoring
applications with random topologies. Results show, in most cases,
a reduction of the average network latency while the expected
network lifetime and the communication reliability are at least
as good as what is obtained by the state-of-the-art graph routing
algorithms.

Index Terms—Industrial Wireless Sensor Networks, Routing,
Reinforcement Learning, Q-Learning, WirelessHART.

I. INTRODUCTION

INDUSTRIAL Wireless Sensor Networks (IWSN) are an

attractive technology for communication in process au-

tomation and allow the incorporation of Industrial Internet of

Things (IIoT) and Industry 4.0 (I4.0) concepts [1], [2]. The

global IWSN market size is anticipated to reach USD 8.67

billion by 2025 [3]. Flexibility, mobility, scalability, low main-

tenance and reduced infrastructure are advantages of IWSN

[4], [5]. An IWSN consists of a set of wireless sensor devices

(nodes) connected to a gateway through Access Points (AP).

The gateway provides a connection with the plant automation

Manuscript received February 25, 2019; revised May 20, 2019; accepted
September 9, 2019. This study was financed in part by the Federal Institute
of Science, Technology and Education of Rio Grande do Sul; in part by
the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001. Paper no. TII-19-2090. (Corresponding author:

Gustavo Künzel.)

G. Künzel is with the Federal Institute of Science, Education and Technol-
ogy of Rio Grande do Sul (IFRS), Farroupilha 95174-274, Brazil, (e-mail:
gustavo.kunzel@farroupilha.ifrs.edu.br)

L.S. Indrusiak is with the Department of Computer Science, University of
York, York YO10 5GH, UK (e-mail: leandro.indrusiak@york.ac.uk)

C.E. Pereira is with the Department of Electrical Engineering, Federal
University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-190, Brazil
(e-mail: cpereira@ece.ufrgs.br)

Digital Object Identifier:

network. A device known as Network Manager (NM) is con-

nected to the gateway and is responsible for the management

of the network, admission control, configuration, routing, and

scheduling. Centralized management is used to allow better

control of the network operation and also to simplify the hard-

ware and software of the nodes. WirelessHART (WH), ISA

SP100.11a and WIA-PA standards are being used in IWSN

applications [4]. These standards usually form a mesh network,

where nodes may act as routers to increase path availability for

communications [6]. IWSN applications typically require reli-

able, low-latency and real-time communications. Low energy

consumption is another requirement as batteries are often

used to power devices [1]. Meeting these requirements and

optimizing the network performance are often complex tasks

because of the characteristics of the devices, topologies, and

the wireless network properties (shared medium, interference,

signal reflections, and signal strength) [5]–[8].

Routing is an essential task of the NM. The routes built

by the NM influence the reliability of the communications,

latency, energy consumption, transmission errors and resource

usage [1], [6]. Path redundancy is used to increase reliability

and is implemented using graph routing. A graph is a route

that connects nodes in the network, and each intermediate

node in a route to the destination may have multiple neigh-

bors to forward a message to. If the communication with a

neighbor fails, a node can try to send the message through

another neighbor [9]. Graph routing algorithms for centralized

management protocols were described over the last decade

[9]–[17]. Parameters, heuristics, and weighted cost equations

are used to choose the connections on the graphs. Usually,

these weight values and parameters are statically defined and

suitable only for certain network conditions [6]. Manually

adjusting these parameters, aiming to improve the network

performance, is inconvenient. It needs several tests, requires

periodic monitoring of the network conditions, the user must

know about the properties of the algorithms, and a network

system representation is often unavailable [10]. It would be

significant if these adjustments could be made in a way

that achieves an adaptation according to the current network

operational conditions while balancing or optimizing some

performance metrics. Centralized routing algorithms that can

optimize the performance of the IWSN are a relevant research

topic.

In this context, the use of Machine Learning (ML) for

creating and adjusting routes in a centralized way may be

useful for IWSN and future IIoT and I4.0 protocols [10], [18].

ML provides a system the ability to learn and improve from

experience, and Reinforcement Learning (RL) relies on the

existence of an agent that acts in an environment and receives

2

rewards based on the results of its actions. By exploring the

environment, it learns which behavior it must take to maximize

its rewards [19]. RL demands low computational resources

and implementation efforts, thus providing high flexibility to

topological changes and near-optimal results, without requi-

ring any apriori network model [18]–[20]. RL algorithms like

Q-Learning are being used for centralized and decentralized

routing approaches in general-use network technologies and

Wireless Sensor Networks (WSN) [20]–[22]. In decentralized

approaches, each node is modeled as a learning agent that

selects routes to forward its packets. These approaches are

not suitable for IWSN, since they require nodes to exchange

information independently, reconfigure and decide its routing

strategies [10]. Similarly, the available centralized approaches

are not suitable for IWSN since they are intended to be used

for other protocols and do not build graphs or routes with path

redundancy.
This paper presents the Q-Learning Reliable Routing with a

Weighting Agent (QLRR-WA) algorithm. QLRR-WA builds a

routing graph used by nodes to send information to a gateway.

During the construction of the graph, nodes and neighbors

(edges of the graph) are selected through a weighted cost

equation. A set of weights defines how some topology and

device characteristics influence the cost values. Periodically,

an agent acts in the environment trying to learn a set of

weights that optimizes the network performance. The Q-

Learning states are modeled as a fixed set of weights, and

the actions represent the increase or reduction of weights.

Rewards are given when the agent decreases the Average

Network Latency (ANL) or increases the Expected Network

Lifetime (ENL). To increase reliability, QLRR-WA tries to

build an uplink graph where nodes have at least two neighbors

to forward data to the gateway. QLRR-WA was evaluated using

a WH stack implemented over the Network Simulator 2 (NS2)

[23]. QLRR-WA was compared against other uplink routing

algorithms using ANL, ENL, Packet Delivery Ratio (PDR)

and the Percentage of Reliable Nodes (PRN) as performance

metrics. The tested topologies consisted of nodes with different

types of power sources randomly scattered over an area.
The main contribution of this paper is the QLRR-WA

algorithm, which builds the uplink routing graph in a cen-

tralized manner suitable for IWSN protocols such as WH,

using Q-Learning to enhance the network performance. Other

contributions are the discussion of the implications of the use

of Q-Learning for graph routing in centralized approaches,

the performance evaluation and the comparison of the state-

of-the-art routing algorithms. The remainder of this paper is

organized as follows. Section II presents the literature review.

Section III describes the QLRR-WA algorithm. Section IV

presents the simulation setup and performance evaluation.

Section V presents the conclusions and future works.

II. LITERATURE REVIEW

A. Network Manager tasks

In an IWSN, the NM has a sequence of management tasks

that must be executed. These tasks run when the topology

changes, when some operational conditions change, or pe-

riodically for optimization purposes. The routing algorithms

that will provide the routes used by the gateway and nodes to

exchange information are first executed. Then, the scheduling

algorithms translate these routes in a sequence of timeslots

(links) for communication. Routes and links are then converted

into a sequence of commands sent to the nodes to update

the network configuration [1], [9]. Sending these commands

causes a communication overhead. Some implementations of

the NM reduce overhead by comparing the old and new routes

and links and updating the changes only [9], [23]. To ensure

path availability during reconfiguration, the new routes and

links are first configured, and only then the old ones are

removed [23]. NM must keep information about the current

network topology, nodes, and operating conditions to properly

run these tasks. An overview of IWSN requirements, WH

protocol, and management tasks can be found in [1], [6], [9],

[23].

B. Graph routing algorithms

Three graph types are defined for IWSN: broadcast, al-

lowing the gateway to send messages to all nodes; uplink,

allowing nodes to send messages towards the gateway; and

downlink, allowing the gateway to send messages to specific

nodes [6], [9]. ELHFR [12] produces an uplink graph based

on a Breadth First Tree (BFS) and uses the Received Signal

Level (RSL) information to select neighbors. The distance

in hops from the gateway is used to build graphs in [9],

reducing latency and resource usage. Communication load,

energy consumption, and residual energy are used by nodes to

choose which neighbors they will use to forward a message,

considering that a graph was already given [15]. Residual

energy, link quality, and node degree are used to calculate a

priority for neighbor selection [14]. A survey on routing and

scheduling for WH suggests the use of adaptive weighted cost

functions [6]. Network lifetime maximization is formulated as

a greedy heuristic and as an optimization problem that requires

intensive processing [13]. Quality of service is achieved by es-

timating the reliability and delay using link quality information

[16]. A greedy algorithm builds graphs where nodes and edges

are selected through a weighted cost equation that uses the

number of hops, RSL, number of neighbors, and node power

source type [11]. Primary and redundant paths are chosen

based on the residual energy of neighbors to balance energy

consumption in [17], but the configuration of a preferred

neighbor for a node is not available in the WH standard. Few

of these approaches adjust parameters autonomously or try to

improve network performance over time. These approaches

does not try to reduce latency and increase lifetime at the

same time. Some of the algorithms require changes in the WH

standard. Besides, the works are not compared using similar

conditions or a simulator with a complete stack of an IWSN

protocol such as WH.

C. Reinforcement Learning and Q-Learning

RL is an ML approach where a learning agent is usually

modeled through a tuple consisting of a set of states S, actions

A, and rewards R. At each iteration t, the agent takes an action

at ∈ A that leads the environment to the state st+1 ∈ S. The

3

agent receives a reward rt+1 ∈ R based on the effects of

the last action taken and associates the reward with the action

at and state st. The main goal of the agent is to maximize

its long-term rewards, and after several iterations, the agent

learns which actions it should take on each state to achieve

this goal. Fig. 1 presents the interaction between an agent and

the environment.

Agent

Environment

Reward
r

State
s

Action
at

t+1

t

t+1r
s

t

Fig. 1: Agent-environment interaction in RL [19].

The selection of the action to be taken is made through

exploration or exploitation. When the agent explores the en-

vironment, it selects random actions to extend the knowledge

concerning the rewards. When the agent exploits, it chooses

actions where the expected rewards are already known. The

balance between exploration and exploitation helps to increase

the rewards accumulated over time, and the agent tries a

variety of actions and progressively favors those that seem

to give better rewards. ε-greedy is an approach to balance

exploration and exploitation where the agent explores with a

probability 0 ≤ ε ≤ 1 all available actions in a state and

exploits with a probability 1− ε the best action.

Q-Learning is an RL algorithm where a table with size |S|×
|A| store Q-values, which are the long-term rewards that an

agent can expect to receive by taking action at in state st.
The Q-values are updated at each iteration t + 1, using the

previously stored Q-value and the new reward rt+1 received

from the environment following Eq. 1.

Qt+1(st, at)← (1− α)Qt(st, at) + α [rt+1(st+1)

+ γmaxa∈A Qt (st+1, a)]
(1)

In Eq. 1, 0 ≤ α ≤ 1 is the learning rate, which makes the

agent give preference for immediate rewards. Higher values of

α tend to make the learning process susceptible to environmen-

tal perturbations. The discount factor 0 ≤ γ ≤ 1 allows the

agent to adjust its preference for long-term rewards because

the future reward expected in the state st+1 is considered. The

Q-table usually initiates with zero values or random values

[19]. The states, actions, rewards, and exploration approach for

a specific problem are defined during design time and must

consider the problem characteristics [19]. Further details of

RL and the Q-Learning algorithm can be found in [18]–[21].

D. RL applied to routing

A survey on RL routing approaches for networks was

recently presented in [21], but the centralized approaches

described are not related to IWSN. A literature review in

RL approaches for WSN networks is presented in [24] and

a survey in [20] describes three main decentralized RL ap-

proaches for WSN, where each node has an agent to choose

routes. In Q-routing, states are defined as the destination,

actions are the next-hop neighbor, and rewards are calculated

based on the information exchanged by nodes. In Multi-Agent

Reinforcement Learning, nodes exchange information about

its rewards with neighbors. In Partial Observable Markov

Decision Processes, a node estimates its state using data from

neighbors. In [25], a source node broadcasts a transmission

request to the destination node, which collects topology infor-

mation, simulates the transmission of the packet on a virtual

topology and creates a path using Q-Learning. The path is then

sent to the source node. In [10], an agent changes the value of

the weight of the power source type of nodes in a cost equation

used to build a broadcast graph. States store the current weight,

actions keep or change the state, and rewards are given only

when the agent reduces latency and increases lifetime. The use

of actions that lead to the same state and the given rewards

increase the worst-case complexity of the RL problem and

require more exploration [26]. Also, link quality information

is not used to define routes, and the simulations do not use

an error model in the physical layer, and therefore do not

provide proper information about reliability. To the best of our

knowledge, the current works are not suitable for centralized

IWSN because the decentralized approaches require nodes to

choose routes independently, and the centralized approaches

are used for other communication technologies and do not

build uplink graphs that address the IWSN requirements.

III. Q-LEARNING RELIABLE ROUTING WITH A

WEIGHTING AGENT

A. Scope and definitions

We focus on the construction of the uplink graph used by

nodes to send sensor readings towards the gateway in IWSN

monitoring applications. Static topologies are considered be-

cause IWSN are commonly planned topologies, having low-

mobility nodes, and some nodes may be powered by batteries

[6]. The network operates with a given topology during the

simulations. Nodes can inform the NM about poor connections

with neighbors. NM removes these connections from the

network topology. We evaluate QLRR-WA considering three

requirements of IWSN applications: low latency, low energy

consumption, and high reliability [1], [6]. The following

metrics are defined to evaluate these requirements, considering

IWSN monitoring applications and the literature. The latency

of a data packet is defined as the time interval between the

generation of the packet at the sensor’s Network Layer and

the reception at the gateway’s Medium Access Control layer.

The ANL is calculated by measuring the latency of all data

packets received at the gateway over a time interval ts. The

energy consumption is evaluated using the ENL, defined as the

minimum expected lifetime value between all battery-powered

nodes at a specific instant [13]. Reliability is evaluated using

PDR, which is the percentage of data packets received at the

gateway in comparison to the ones generated at the nodes, and

PRN, which is the percentage of nodes which have at least two

neighbors to forward data in the uplink graph [9], [13].

B. Uplink Graph Construction

The greedy algorithms in [9]–[11] are used as a baseline for

QLRR-WA, where nodes and edges are iteratively added to the

uplink graph and selected through a weighted cost equation.

4

The current network topology graph is G(V,E), where V
represents the devices such as nodes, VAP is the set of AP,

and g the gateway. E contains edges representing the available

connections between devices. Fig. 2b depicts an example of

G. The uplink graph GU (VU , EU) consists of a set of nodes

VU added while building GU , and EU , which is a subset of

E with edges connecting the nodes towards g. An edge from

a node v to a node u (successor) is represented by ev,u. Fig.

2 depicts some of the GU construction steps.

GA1 A2

(a) Initial GU

GA1 A2

2

5

1

4 7

3

6

(b) G, a candidate node and its
edges with possible successors

GA1 A2

2

(c) Insertion of the node in GU

GA1 A2

2

5

1

4 7

3

6

(d) 2nd round candidates

GA1 A2

2
1

(e) Insertion of the lowest-cost
candidate in GU (2nd round)

GA1 A2

2

5

1

4 7

3

6

(f) Finished GU

Fig. 2: Uplink graph construction sequence in QLRR-WA [11]

Alg. 1 describes the construction of GU . It is assumed that

nodes disconnected from the topology are previously removed

from G. At line 4, g, VAP , and the edges from VAP to g are

added to GU , as depicted in Fig. 2a. QLRR-WA then goes to a

loop that adds all nodes in V − VU to GU . First, the candidate

nodes S′ which have at least two possible successors in GU

are identified, as depicted in Fig. 2b. The successor nodes Uv

of a node v and the candidate nodes in S′ are assigned a cost

c using Eq. 2.

c = wh

h

hmax

+ wpp+ ws

min(s− sd, 0)

sd
(2)

The average number of hops h of a successor or node is

given by the average hops of its successors in GU plus one.

When evaluating the successors in Uv , hmax stores the highest

value of h between all successors, p is a constant value that is

associated with the energy source type of the successor, s is

the RSL value of the edge between node v and the successor.

sd is a constant value which gives a desirable level for the

RSL. When all successors in Uv have their costs evaluated,

they are sorted and then the two lower-cost successors u1

and u2 are selected for candidate node v. Then, the candidate

nodes in S′ are evaluated to choose one of them to be added

to GU with the edges to their selected successors. For the

evaluation of a candidate node, hmax is the maximum value

of h between all the candidate nodes in S′, p is associated with

the energy source type of v, and s is given by the average RSL

of the edges with u1 and u2. If |S′| = 0, the set of nodes S′′

with only one successor is identified and then the node which

has the maximum number of ingoing edges from V − VU is

chosen to maximize the chance of |S′| > 0 in the next round.

By changing the values of the weights wh, wp, and ws, it is

possible to define how nodes and successors will be selected.

Increasing wh will reduce the distance in hops from nodes to

g and thus the use of communication resources [9]. Increasing

wp will make nodes avoid choosing battery-powered nodes

as successors [10]. Increasing ws will make nodes connect to

successors with greater RSL, thus reducing the probability of

packet transmission failures [11], [27].

Algorithm 1: Building the Uplink Graph with QLRR-WA

1 Calculate reward rt+1 according to Eq. 3
2 Update Qt+1(st, at) according to Eq. 1
3 Select next action at+1 using ε-greedy and set the weights

wh, wp, ws according to at+1

4 VU = g ∪ VAP and EU contains all edges from VAP to g.
5 while VU 6= V do

6 Find S′ ⊆ V − VU : ∀v ∈ S′, v has at least 2 edges to VU

7 if S′ 6= ∅ do

8 for all v ∈ S′ do
9 Store in Uv the successors of the edges ev,u to VU

10 Sort Uv with Eq. 2, choose ev,u1
and ev,u2

11 hv = 1 +
hu1

+hu2

2

12 Choose the node v with min c using Eq. 2
13 Add v to VU and add ev,u1

and ev,u2
to EU

14 else

15 Find S′′ ⊆ V − VU : ∀v ∈ S′′, v has 1 edge ev,u to VU

16 for all v ∈ S′′ do

17 hv = hu1
+ 1

18 Calculate nv , the # of ingoing edges from V − VU

19 Choose the node v with maximum nv

C. Q-Learning Weighting Agent model

At each periodic execution of the tasks of the NM, the agent

acts choosing a set of weights to be used before rebuilding

GU (Alg. 1, lines 1-3). At the next periodic execution, the

agent access the performance metrics and receives a reward.

A set of states was defined, and each state has a fixed set of

values for wh, wp, and ws, and wh + wp + ws = 1. A step

factor 0 ≤ sf ≤ 1 defines how much the value of the weights

changes from state to state and is given by sf = m−1, where

m is an integer that represents how many transitions between

values each weight will have. This allows a trade-off between

the number of available states (influencing the exploration

time) and the change of the cost values (influencing the num-

ber of changes in GU from state to state). Actions represent

the increment or reduction of the weights from one state to

another, but actions available in one state only allow transitions

to states where the values of the weights change ±sf . Fig. 4

depicts an example of the states, the effect of the actions, and

the weights when m = 7 (states where a weight assumes zero

value were suppressed). The available actions are numbered

according to the increment or reduction of the weights.

In our approach, the reward has the main objective of

reducing the ANL while increasing the ENL. The ANL in

5

a specific iteration t of the agent is indicated as dt, while the

ENL is indicated as lt. The current ANL and ENL values are

indicated as dt+1 and lt+1. Two arrays D and L keep the last

measurements of d and l. D and L store the values of the

least k iterations of the agent. The use of these arrays allows

the agent to receive rewards not only based on the current

ANL and ENL, but to compare the current values over a time

window. A positive reward of value R is given if the ANL

has decreased and the ENL has increased in comparison with

min(D) and min(L) over the last iteration of the agent; a

positive reward of value R/2 is given if ANL has decreased

or ENL has increased; no reward otherwise. Eq. 3 describes

the rewards given to the agent.

rt+1 =











R, if dt+1 < min(D) and lt+1 > min(L)
R
2
, if dt+1 < min(D) or lt+1 > min(L)

0, otherwise

(3)

D. QLRR-WA use considerations

The impacts of exploration and the learning time must

be considered when using QLRR-WA. Fluctuations in the

latency are expected because of the following reasons: the

Q-Learning parameters and randomness of the exploration;

changes in GU require reconfiguration commands to be sent

over the network, causing overhead; commands messages may

have priority over data messages [7]; the number of hops

that a message takes to reach the gateway may change; the

number of messages waiting in the transmission stacks of the

nodes may increase; and poor connections with neighbors may

be chosen. When considering these fluctuations, several data

process messages should be received to measure the ANL. The

exploration will also reduce the ENL because of the energy

spent with overhead, and this influence will be more significant

when low-capacity batteries are used. Fluctuations may be

tolerable only during the network’s startup and maintenance,

but not during process monitoring and control. In applications

where variations in the latency are acceptable, the agent can

continuously explore.

The learning time is influenced by the reconfiguration and

the agent model. The time between the iterations of the

agent must allow the network to reconfigure properly and

the measurements of ANL and ENL to represent stabilized

conditions. In the current protocols, reconfiguration may take

from seconds to tens of minutes. Changes in the topology are

usually informed by health reports and path down alarms, also

influencing the time needed for reconfiguration. The number of

iterations required depends on the complexity of the learning

model, which is influenced by the number of states, actions,

and the choice of the rewards function [19], [20], [26]. The

agent should explore several times the available actions in each

state, requiring many iterations to converge [21], [26]. The

actions of the agent will also be associated with the schedule

changes because the changes in GU will cause different

reconfiguration patterns on the timeslots depending on the

scheduling strategy. Thus, a proper combination of routing and

scheduling algorithms is needed to enhance performance [6].

IV. PERFORMANCE EVALUATION

A. Simulation setup

We conducted simulations using the WH simulator over

NS-2 [23], which was validated through comparison with

real WH networks [6], [23]. The simulation parameters used

are similar to the works described in Section II related to

IWSN monitoring applications using WH. The energy model

[6] and the simulator changes [10] were used to allow the

NM to poll the battery type and the current expected battery

lifetime from nodes. In the WH protocol, the battery lifetime

is reported through an integer value that represents days and

reduces slightly from one report to another. Because IWSN

are subject to different conditions of the wireless channel,

we included a general path loss model for RSL estimation

(Two-Ray Ground-Reflection) with power transmission of 0

dBm with a maximum communication range of 40 m [23].

A packet loss probability model for indoor environments was

included on the physical layer and uses the same transceiver

family of the energy model [27]. We added to the application

layer the Alarm Path Down command, so nodes can report

broken links with neighbors to the NM when a Keep-Alive

message is not exchanged between linked nodes after a certain

amount of time. We also adapted the simulator to measure

latency and PDR by monitoring the Absolute Slot Number

snippet available in the Network Layer of the WH, and to

calculate the PRN of GU . Topologies were built consisting

of: one NM/gateway positioned in the center of a 100 by

100 m area; two APs located 5 m to the left and 5 m to

the right of the gateway; and several randomly-positioned

nodes. The connections between the gateway and the APs are

considered wired and reliable [9]. The nodes were numbered

according to the distance from the gateway. 50 % of the nodes

were powered with industrial-standard batteries (3.6 V, 17

Ah). Simulations were conducted with 20 and 40 nodes to

verify QLRR-WA’s performance when IWSN have different

density of nodes. Fig. 3 depicts a 40-node topology used as

an example for the performance evaluation. Black nodes are

line-powered nodes, gray nodes are battery-powered nodes,

and lines represent nodes within the communication range of

each other.

GA A
0

1
2

3

4

5

6

7

8

9

10

1112

13

14

15

16

17

18

1920

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Fig. 3: A network topology example with 40 nodes.

Each simulation starts with the startup of the NM/gateway

and APs. The first node is turned on after 5 minutes, and the

6

other nodes are turned on in 1-minute intervals, according to

the sequence number given during the topology construction.

A node listens to the channel looking for an advertisement

packet from its neighbors and then beigns the join process.

After joining, it requests bandwidth to the NM, receives

configurations (routes and links), and starts sending sensor

readings towards the gateway with a period of 32 seconds.

Health reports are sent every 15 minutes and the NM polls

the battery lifetime in 1-minute intervals. The management

routines are executed when a new device joins the network

or in 10-minute intervals. The simulations run for 12 hours.

Other simulation parameters follow the work of [10], [23].

We used p = 1 for battery-powered nodes and p = 0 for

line-powered nodes; sd = −45 dBm; ts = 5 min; k = 2;

and R = 1. The Q-Learning parameters follow the suggested

values from the works in Section II-C, where α = 0.1,

γ = 0.8, and ε = 0.3. The Q-values were set to 0 at

startup. We set m = 7 and removed states with weights

with value 0 to keep all weights influencing the cost equation

and to reduce the number of states and the exploration time

required. Fig. 4 depicts the states and actions used. The initial

state was arbitrarily set to s7, where all weights have similar

values. The exploration phase starts at the beginning of the

simulation and ends after 8 hours, allowing the agent to iterate

approximately 48 times. The number of iterations was chosen

because it represents the average number of iterations needed

considering the complexity of a similar RL problem for goal-

oriented domains [26]. After the exploration phase, the agent

goes to the next state related to the state-action pair with

greater value in Q(s, a), where it exploits the best set of

weights found. QLRR-WA executes only with the periodic NM

management routines (10-minute intervals) to avoid network

reconfiguration when a node is joining. This time interval

between iterations was chosen based on simulation tests which

allowed the evaluation of the network reconfiguration time for

those topologies. Periods of hours are required for exploration

in WH because of the time needed for network reconfiguration

and stabilization.

Downlink graphs without path redundancy were used in

the simulations to reduce the number of links required during

the scheduling process. They were created using a BFS tree,

where edges are chosen based on the RSL of neighbors.

The scheduling algorithm in [9] (implemented in [23]) was

used. Links are allocated on the paths from the source to the

destination in a depth-first manner and the traffic is split from

a node among all its successors by reducing the bandwidth

required on each successor [6], [9]. Links are scheduled in

the following sequence: Advertisement links are allocated

for all devices currently in the network with a period of

8 s; For the downlink graphs, one permanent link between

two neighbors (for management communications) is allocated

with a period of 4 s, and normal links are allocated for

management (limited to 6 links between two neighbors) with

a period of 2 s. The same allocation is used for the uplink

graph for permanent and management links. Finally, links

for publishing periodic data are allocated. Downlink graphs

were scheduled first to reduce reconfiguration, because they

rarely change during the simulations. We compared QLRR-

s0
0.72

0.14

0.14

s1
0.58

0.28

0.14

s2
0.43

0.43

0.14

s3
0.28

0.58

0.14

s4
0.14

0.72

0.14

s5
0.58

0.14

0.28

s6
0.42

0.28

0.28

s7
0.28

0.42

0.28

s8
0.14

0.58

0.28

s9
0.43

0.14

0.43

s10
0.28

0.28

0.42

s11
0.14

0.43

0.43

s12
0.28

0.14

0.58

s13
0.14

0.28

0.58

s14
0.14

0.14

0.72

wh
wp
ws

a1 a1 a1 a1

a1a1a1

a1

a1

a1

a0 a0 a0 a0

a5

a4

a5

a4

a5

a4

a5

a4a2
a3

a2
a3

a2
a3

a2
a3

a5

a4

a5

a4
a3 a3

a2 a2

a0 a0 a0

a5

a4 a2
a3

a0 a0

a5

a4
a3

a2

a5

a4 a2
a3

a5

a4 a2
a3

a0

action w
h

w
p

w
s

a
0

-s
f

+s
f 0

a
1

+s
f

-s
f 0

a
2 0 -s

f
+s

f

a
3 0 +s

f
-s
f

a
4

-s
f 0 +s

f

a
5

+s
f 0 -s

f

Fig. 4: Set of Q-Learning states, actions and weights used in

the simulations (rounded values)

WA with the following baseline uplink algorithms: Han [9],

which builds graphs trying to reduce the number of hops from

the gateway; ELHFR [12], which chooses edges based on

the RSL of neighbors; Künzel [11], where weights were set

wh = 0, wp = 1, ws = 0, wn = 0 on all related equations

trying to build graphs that avoid battery-powered nodes as

routers; and Künzel [10], which uses RL to adjust the weight

of the power type of nodes in a cost equation, where we

used α = 0.1, γ = 0.8, ε = 0.3 and sf = 0.25. We ran

several repetitions of the simulation for each algorithm for

each topology to get statistics of ANL, ENL, PDR, and PRN.

B. Results

Fig. 5 depicts the ANL of the 40-node topology over time

(over several repetitions of the simulation). During the startup

of the network (from 0 to 4 hours), the ANL increased because

nodes were joining the network, exchanging commands and

sending process data. The ANL stabilized in the Han, ELHFR,

and Künzel [11] after the join process because the topology

stopped changing. Künzel [10] continued to reduce ANL as it

was exploring, but it had an average performance in these si-

mulations. In QLRR-WA, the ANL started with reduced values

during exploration because of the topology characteristics and

weights used, and also presented slight variations from 0 to

8 hours because of the exploration. After exploration, QLRR-

WA stabilized the ANL in a reduced value.

Fig. 6 depicts the boxplots of the ANL, ENL, and PDR at

the last hour of the simulations. Samples of the ANL, ENL,

PDR, and PRN were collected, for several simulations of the

same topology, over the last hour of simulation (1 sample every

10 minutes). In both 20 and 40-node topologies, QLRR-WA

presented the lowest ANL. Regarding ENL, it can be seen that

QLRR-WA kept values as good as the other routing algorithms

in both topologies. QLRR-WA presented the highest PDR for

both topologies. All algorithms kept a PRN of 100 % on

7

0 2 4 6 8 10 12
Simulation time (hrs)

0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

A
N

L
(s

)
9Han-[9]

Künzel-[10]
Künzel-[11]
ELHFR-[12]

QLRR-WA

Fig. 5: ANL for 40-node topology example

both topologies, except ELHFR which presented 80 % (20

nodes) and 85 % (40 nodes). ELHFR presented the lowest

PRN because it allows nodes to connect only to neighbors

from lower levels in a BFS tree, and usually a few neighbors

are available in lower levels.

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

A
N

L
(s

)

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

A
N

L
(s

)

4

5

6

7

8

9

10

EN
L

(y
ea

rs
)

4

5

6

7

8

9

10

EN
L

(y
ea

rs
)

H
an

-[
9]

K
ün

ze
l-[

10
]

K
ün

ze
l-[

11
]

EL
H

FR
-[

12
]

Q
LR

R
-W

A

93

94

95

96

97

98

99

PD
R

 (%
)

(a) 20 nodes

H
an

-[
9]

K
ün

ze
l-[

10
]

K
ün

ze
l-[

11
]

EL
H

FR
-[

12
]

Q
LR

R
-W

A

93

94

95

96

97

98

99

PD
R

 (%
)

(b) 40 nodes

Fig. 6: ANL, ENL and PDR boxplots for topology examples

Because each topology and application have different cha-

racteristics (i.e. spatial distribution and power source of

nodes), the performance metrics will present different values.

We conducted simulations to verify if QLRR-WA presented

similar performance over 30 random topologies. We collected

the ANL, ENL, PDR, and PRN samples of the last simulation

hour for several repetitions of the simulations for each topo-

logy, and then used One-way Analysis of Variance (ANOVA)

with a 95 % significance to verify if QLRR-WA improved

those metrics on each topology when compared side-by-side

to the other routing algorithms. Improvement is considered

to exist when, for a given topology, the ANL is less or ENL,

PDR, PRN are great than the other algorithm being compared,

and the null hypothesis of the ANOVA test is rejected.

Table I shows the percentage of topologies where QLRR-WA

improved the ANL, ENL, and PDR when compared to the

baseline algorithms. PRN was always around 100 % for all

algorithms except ELHFR which was always above 75 %.

Table I also shows the average relative decrease of the ANL

and increase ENL for the topologies where improvements

occurred when compared to the values presented by the other

algorithms. PDR and PRN were omitted because these values

were similar for all compared algorithms.

TABLE I: Performance comparison of the QLRR-WA with the

state-of-the-art algorithms

Topologies where QLRR-WA improved ANL, PDR, ENL (%)
Nodes Metric Han [9] Künzel [10] Künzel [11] ELHFR [12]

20

ANL 86 63 76 80
ENL 46 50 26 23
PDR 33 6 56 96

40

ANL 100 100 100 93
ENL 90 63 10 86
PDR 3 0 16 100

Average decrease of ANL, increase of ENL values for QLRR-WA (%)
Nodes Metric Han [9] Künzel [10] Künzel [11] ELHFR [12]

20
ANL 14 10 10 16
ENL 34 9 9 28

40
ANL 26 16 17 14
ENL 76 11 11 62

V. CONCLUSIONS AND FUTURE WORK

QLRR-WA is a centralized routing algorithm that builds

uplink graphs. An agent using Q-Learning learns a set of

weights to apply on a cost equation that is used to choose

nodes and connections during the graph construction. Rewards

are given when the agent reduces ANL or increases ENL.

Simulations were conducted on a WH simulator considering

IWSN applications and random network topologies. Results

showed a reduction of the ANL in most topologies, while

the ENL, PDR, and PRN were as good as the other state-of-

the-art algorithms. Considerations must be made regarding the

characteristics of the protocol and application, the time interval

for network reconfiguration, the parameters used, the number

of iterations necessary during the learning process, and the re-

wards of the agent. All these aspects influence the performance

of QLRR-WA. Open issues are: how to estimate and reduce the

required learning and exploration times, and how to quantify

the expected performance improvements. These issues could

be tackled by implementing a simulation/optimization module

inside the NM, which could use simulation or real data to

provide information about the network performance and an

optimized configuration to be used. Other research possibilities

include the development of QLRR approaches able to build

routes considering adjustments on the transmission power,

mobility, coexistence, scheduling, and real-time requirements;

simulation and experiments using other centralized network

protocols; to evaluate the state-of-the-art routing algorithms in

real IWSN, specific IWSN applications and physical channel

conditions.

ACKNOWLEDGMENT

The authors would like to thank the University of York,

UFRGS, and IFRS for the support provided, and also the

editors and anonymous referees for the contributions.

8

REFERENCES

[1] M. Sha, D. Gunatilaka, C. Wu, and C. Lu, “Empirical study and
enhancements of industrial wireless sensor-actuator network protocols,”
IEEE Internet of Things Journal, vol. 4, no. 3, pp. 696–704, June 2017.

[2] L. D. Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2233–
2243, Nov 2014.

[3] G. V. Research. (2018) Industrial wireless sensor network
market worth $8.67 billion by 2025. [Online]. Availa-
ble: https://www.grandviewresearch.com/press-release/global-industrial-
wireless-sensor-networks-iwsn-market

[4] J. M. Winter, I. Muller, G. Soatti, S. Savazzi, M. Nicoli, L. B. Becker,
J. C. Netto, and C. E. Pereira, “Wireless coexistence and spectrum sens-
ing in industrial internet of things: An experimental study,” International

Journal of Distributed Sensor Networks, 2015.
[5] J. Niu, L. Cheng, Y. Gu, L. Shu, and S. K. Das, “R3e: Reliable reactive

routing enhancement for wireless sensor networks,” IEEE Transactions

on Industrial Informatics, vol. 10, no. 1, pp. 784–794, Feb 2014.
[6] M. Nobre, I. Silva, and L. A. Guedes, “Routing and scheduling algo-

rithms for wirelesshart networks: A survey,” Sensors, vol. 15, no. 5, pp.
9703–9740, 2015.

[7] W. Shen, T. Zhang, F. Barac, and M. Gidlund, “Prioritymac: A priority-
enhanced mac protocol for critical traffic in industrial wireless sensor
and actuator networks,” IEEE Transactions on Industrial Informatics,
vol. 10, no. 1, pp. 824–835, Feb 2014.

[8] W. Ikram, S. Petersen, P. Orten, and N. F. Thornhill, “Adaptive multi-
channel transmission power control for industrial wireless instrumenta-
tion,” IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp.
978–990, May 2014.

[9] S. Han, X. Zhu, A. K. Mok, D. Chen, and M. Nixon, “Reliable
and real-time communication in industrial wireless mesh networks,” in
2011 17th IEEE Real-Time and Embedded Technology and Applications

Symposium, April 2011, pp. 3–12.
[10] G. Künzel, G. P. Cainelli, I. Müller, and C. E. Pereira, “Weight adjust-

ments in a routing algorithm for wireless sensor and actuator networks
using q-learning,” in 3rd IFAC Conference on Embedded Systems,

Computational Intelligence and Telematics in Control (CESCIT), vol. 51,
no. 10, 2018, pp. 58 – 63.

[11] G. Künzel, G. P. Cainelli, and C. E. Pereira, “A weighted broadcast
routing algorithm for wirelesshart networks,” in 2017 VII Brazilian

Symposium on Computing Systems Engineering (SBESC), Nov. 2017,
pp. 187–192.

[12] Z. Jindong, L. Zhenjun, and Z. Yaopei, “Elhfr: A graph routing in
industrial wireless mesh network,” in 2009 International Conference on

Information and Automation, June 2009, pp. 106–110.
[13] C. Wu, D. Gunatilaka, A. Saifullah, M. Sha, P. B. Tiwari, C. Lu, and

Y. Chen, “Maximizing network lifetime of wirelesshart networks under
graph routing,” in 2016 IEEE First International Conference on Internet-

of-Things Design and Implementation (IoTDI), April 2016, pp. 176–186.
[14] Q. Zhang, F. Li, L. Ju, Z. Jia, and Z. Zhang, Reliable and Energy Efficient

Routing Algorithm for WirelessHART. Cham: Springer International
Publishing, 2014, pp. 192–203.

[15] S. Zhang, A. Yan, and T. Ma, “Energy-balanced routing for maximizing
network lifetime in wirelesshart,” International Journal of Distributed

Sensor Networks, vol. 9, no. 10, p. 173185, 2013.
[16] M. Sepulcre, J. Gozalvez, and B. Coll-Perales, “Multipath qos-driven

routing protocol for industrial wireless networks,” Journal of Network

and Computer Applications, vol. 74, no. Supplement C, pp. 121 – 132,
2016.

[17] X. Han, X. Ma, and D. Chen, “Energy-balancing routing algorithm for
wirelesshart,” in 2019 15th IEEE International Workshop on Factory

Communication Systems (WFCS), May 2019, pp. 1–7.
[18] C. Savaglio, P. Pasquale, G. Aloi, A. Liotta, and G. Fortino, “Lightweight

reinforcement learning for energy efficient communications in wireless
sensor networks,” IEEE Access, vol. PP, pp. 1–1, 03 2019.

[19] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. The MIT Press, 2018.

[20] H. A. Al-Rawi, M. A. Ng, and K.-L. A. Yau, “Application of reinforce-
ment learning to routing in distributed wireless networks: A review,”
Artif. Intell. Rev., vol. 43, no. 3, pp. 381–416, Mar. 2015.

[21] Z. Mammeri, “Reinforcement learning based routing in networks: Re-
view and classification of approaches,” IEEE Access, vol. 7, pp. 55 916–
55 950, 2019.

[22] M. A. Habib, M. Y. Arafat, and S. Moh, “Routing protocols based
on reinforcement learning for wireless sensor networks: A compara-

tive study,” Journal of Advanced Research in Dynamical and Control

Systems, pp. 427–435, 01 2019.
[23] P. Zand, E. Mathews, P. Havinga, S. Stojanovski, E. Sisinni, and

P. Ferrari, “Implementation of wirelesshart in the ns-2 simulator and
validation of its correctness,” Sensors, vol. 14, no. 5, pp. 8633–8668,
2014.

[24] W. Guo, C. Yan, and T. Lu, “Optimizing the lifetime of wireless
sensor networks via reinforcement-learning-based routing,” Interna-

tional Journal of Distributed Sensor Networks, vol. 15, no. 2, p.
1550147719833541, 2019.

[25] Z. Jin, Y. Ma, Y. Su, S. Li, and X. Fu, “A q-learning-based delay-aware
routing algorithm to extend the lifetime of underwater sensor networks,”
Sensors, vol. 17, no. 7, 2017.

[26] S. Koenig and R. G. Simmons, “Complexity analysis of real-time
reinforcement learning applied to finding shortest paths in deterministic
domains,” Carnegie Mellon University, School of Computer Science,
Pittsburg,, Tech. Rep. CMU-CS-196, 12 1992.

[27] A. Bildea, O. Alphand, F. Rousseau, and A. Duda, “Link quality metrics
in large scale indoor wireless sensor networks,” in 2013 IEEE 24th

Annual International Symposium on Personal, Indoor, and Mobile Radio

Communications (PIMRC), Sep. 2013, pp. 1888–1892.

Gustavo Künzel received the B.Eng. degree in con-
trol and automation engineering from UNIVATES
in 2010, a MSc from Federal University of Rio
Grande do Sul (UFRGS) in 2012. He is a Pro-
fessor at Federal Institute of Science, Technology
and Education of Rio Grande do Sul (IFRS) and is
currently working toward the Ph.D. degree in the
Department of Electrical Engineering, UFRGS. His
current research interests include industrial wireless
networks and artificial intelligence.

Leandro Soares Indrusiak received the B.Eng.
degree in electrical engineering from the Federal
University of Santa Maria (UFSM) in 1995, ob-
tained a MSc in Computer Science from UFRGS in
1998, and was issued a binational doctoral degree
by UFRGS and Technische Universitt Darmstadt in
2003. He is a faculty member of University of York’s
Computer Science department since 2008, working
on real-time systems and networks, distributed em-
bedded systems, on-chip multiprocessing, energy-
efficient computing, cyber-physical systems, cloud

and high-performance computing, and several types of resource allocation
problems. He has more than 150 technical publications on conferences and
journals (nine of them received best paper awards).

Carlos Eduardo Pereira received the Dr.-Ing. de-
gree in Electrical Engineering from the University
of Stuttgart, Germany in 1995 and has MSc in
Computer Science and B.S. degree in Electrical En-
gineering both from UFRGS. He is a Full Professor
at UFRGS and Director of Operations at EMBRAPII
in Brazil. He has more than 400 technical publica-
tions on conferences and journals. He is Associate
Editor of the Journal ”Control Engineering Practice”
and Annual Reviews in Control from Elsevier and
Council Member of IFAC. He received in 2012 the

Friedrich Wilhelm Bessel Research Award from the Alexander von Humboldt
Foundation - Germany.

